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heweUniversity of Liverpoolsven.s
hewe�liverpool.a
.ukAbstra
t. The introdu
tion of an eÆ
ient determinisation te
hniquefor B�u
hi automata by Safra has been a milestone in automata theory.To name only a few appli
ations, eÆ
ient determinisation te
hniquesfor !-word automata are the basis for several manipulations of !-treeautomata (most prominently the nondeterminisation of alternating treeautomata) as well as for satis�ability 
he
king and model synthesis forbran
hing- and alternating-time logi
s. This paper proposes a determin-isation te
hnique that is simpler than the 
onstru
tions of Safra, Piter-man, and Muller and S
hupp, be
ause it separates the prin
iple a

ep-tan
e me
hanism from the 
on
rete a

eptan
e 
ondition. The prin
ipleme
hanism intuitively uses a Rabin 
ondition on the transitions; we showhow to obtain an equivalent Rabin transition automaton with approxi-mately (1:65 n)n states from a nondeterministi
 B�u
hi automaton with nstates. Having established this me
hanism, it is simple to develop transla-tions to automata with standard a

eptan
e 
onditions. We 
an 
onstru
tstandard Rabin automata whose state-spa
e is bilinear in the size of theinput alphabet and the state-spa
e of the Rabin transition automaton,or, for large input alphabets, 
ontains approximately (2:66 n)n states, re-spe
tively. We also provide a 
exible translation to parity automata withO(n!2) states and 2n priorities based on a later introdu
tion re
ord, andhen
e 
onne
t the transformation of the a

eptan
e 
ondition to otherre
ord based transformations known from the literature.1 Introdu
tionAutomata over in�nite words have been introdu
ed by B�u
hi in his proof that themonadi
 se
ond-order logi
 of one su

essor (S1S) is de
idable [B�u
62℄. B�u
hi au-tomata are an adaptation of �nite automata to languages over in�nite sequen
es.They di�er from �nite automata only with respe
t to their a

eptan
e 
ondition:While �nite runs of �nite automata are a

epting if a �nal state is visited at theend of the run, an in�nite run of a B�u
hi automaton is a

epting if a �nal stateis visited in�nitely many times. Unfortunately, this 
lose relationship between �-nite and B�u
hi automata does not imply that automata manipulations for B�u
hiautomata are equally simple as those for �nite automata [RS59℄. In parti
ular,? This work was partly supported by the EPSRC through the grant EP/F033567/1Verifying Interoperability Requirements in Pervasive Systems



B�u
hi automata are not 
losed under determinisation: While a simple subset
onstru
tion suÆ
es to eÆ
iently determinise �nite automata [RS59℄, determin-isti
 B�u
hi automata are stri
tly less expressive1 than nondeterministi
 B�u
hiautomata. Determinisation therefore requires automata with more involved a
-
eptan
e me
hanisms [Saf88,MS95,Pit07,KW08℄, su
h as automata with Muller'ssubset 
ondition [Mul63,M
N66℄, Rabin's [Saf88℄ a

epting pair 
ondition, orStreett [MS95℄ or parity [Pit07,KW08℄ automata. Also, an n
(n) lower boundfor the determinisation of B�u
hi automata has been established [Yan08℄ even ifwe allow for Muller obje
tives, whi
h implies that a simple subset 
onstru
tion
annot suÆ
e.The development of determinisation te
hniques for B�u
hi automata was in-spired by the problem of synthesising rea
tive systems [Chu63,PR89℄, a prob-lem originally introdu
ed by Chur
h [Chu63℄ in 1962: Given a relation R �(2I)! � (2O)! represented by a B�u
hi automaton (or an S1S or LTL formula),we want to �nd a fun
tion p : (2I)� ! (2O) su
h that (�; p(�)) 2 R satis�es therelation for all in�nite sequen
es � 2 (2I)! . Chur
h's problem was solved inde-pendently by Rabin [Rab69℄, and B�u
hi and Landweber [BL69b,BL69a℄ in 1969.Sin
e their seminal works, the relation [Wil01℄ between �nite automata overin�nite stru
tures [Rab69℄ and �nite games of in�nite duration [BL69b,BL69a℄be
ame apparent.Determinisation is a key ingredient in these proofs. Rabin's extension of the
orresponden
e between automata and monadi
 logi
 to the 
ase of trees [Rab69℄,for example, builds on M
Naughton's determinisation theorem [M
N66℄, andMuller and S
hupp's [MS95℄ eÆ
ient nondeterminisation te
hnique for alternat-ing tree automata is 
losely linked to the determinisation of nondeterministi
word automata. Indeed, the standard te
hnique to nondeterminise an alternat-ing automaton A with a memoryless a

eptan
e 
onditions (su
h as a parityor Rabin automata [Eme85℄) is to enri
h the input tree with a (guessed) mem-oryless strategy. Nondeterminising A 
an then be redu
ed to determinise theresulting universal automaton [MS95,Wil01℄, and proje
ting away the strat-egy. Improved determinisation te
hniques thus have a 
onsiderable impa
t inautomata theory and its appli
ation to module 
he
king [KV97℄, satis�ability
he
king [B�u
62,Rab69,EJ91,SF06,S
h08℄, and open synthesis [PR89,KV99℄.Contribution. This paper 
ontributes a determinisation te
hnique for B�u
hiautomata that simpli�es the 
onstru
tions of Safra [Saf88℄ and Piterman [Pit07℄by separating the prin
iple data stru
ture of the algorithm | the history treesproposed in Se
tion 3 | from the a

eptan
e me
hanism. It is my believe thatthis separations eases tea
hing and understanding the prin
iples, but it alsoprovides better bounds on the size of the resulting automata.The 
entral advan
ement of the proposed method over the previous leadingdeterminisation te
hniques [Saf88,MS95,Pit07,KW08℄ is that we abandon theintrodu
tion of expli
it names for the nodes. One positive e�e
t of this de
ision1 Deterministi
 B�u
hi automata 
annot, for example, re
ognise the simple !-regularlanguage that 
onsists of all in�nite words that 
ontain only �nitely many a's.2



is that it yields a leaner and simpler 
ore data stru
ture: The number hist(n)of history trees for B�u
hi automata with n states is in o�(1:65n)n�. We usethis observation to 
onstru
t a deterministi
 Rabin automaton with only hist(n)states whose pairs are de�ned on the transitions, a bound whi
h has meanwhilebeen shown to be sharp by Col
ombet and Zdanowski [CZ09℄. As Rabin treeautomata have a memoryless a

epting run if they a

ept a tree [Eme85℄, thisimplies a hist(n) bound on the size of a program that solves Chur
h's problemas well as an l � hist(n) bound on the size of an ordinary deterministi
 Rabinautomata on alphabets with l letters.If we want the size of the Rabin automaton to be independent of the alphabetsize, or if we want to 
onstru
t a deterministi
 parity automaton be
ause of the
omputational advantages atta
hed to parity obje
tives, we have to add memoryto the history trees. The required amount of memory depends on the a

eptan
eme
hanism. For Rabin automata, it suÆ
es to store the a

eptan
e informationfrom the last transition, whi
h only leads to a minor blow-up of the state-spa
eto o�(2:66n)n� states.For parity automata, we turn to the proved method of keeping a re
ord of themost re
ent relevant events in the tradition of later [GH82℄ and index appearan
ere
ords [MS95℄ We store (an abstra
tion of) the order in whi
h the nodes of the
urrent history tree have been introdu
ed in a later introdu
tion re
ord.The separation of 
on
erns enables us to give a 
learer and more intuitiveexplanation of Piterman's 
onstru
tion [Pit07℄ and to better analyse its 
om-plexity, improving the known 
omplexity bound from O(nn n!) to O(n!2). Liuand Wang [LW09℄ have independently2 developed a 
omparable O(n �n!2) bounddire
tly on Piterman's 
onstru
tion. Furthermore, the separation of 
on
erns un-veils a potential optimisation that, although it does not alter the bound on thenumber of states, is likely to lead to smaller automata in pra
ti
e: We show thatthe update rule for the later introdu
tion re
ord o�ers some leeway. The 
on-stru
tion rule of the su

essor therefore does not need to be stri
t, whi
h leadsto the formulation of a nondeterministi
 determinisation pro
edure.Organisation of the Paper. In the following se
tion, we re
apitulate the dif-ferent types of automata used in this paper. Se
tion 3 then introdu
es historytrees, whi
h serve as the main data stru
ture used in the proposed determinisa-tion te
hniques, transitions between them, and a prin
iple approa
h to exploitthis data stru
ture in an eÆ
ient determinisation te
hnique. Finally, we use thisblueprint of a determinisation te
hnique in Se
tions 4 and 5 to devise di�erenttranslations from nondeterministi
 B�u
hi tree automata to deterministi
 Rabinautomata, and one to deterministi
 parity automata, respe
tively.2 I was not aware of the work of Liu and Wang [LW09℄ when writing this paper, butI would like to point out that while their work looks younger (being submitted andpublished later), it is the older work. 3



2 Preliminaries | Rabin, Parity and B�u
hi AutomataNondeterministi
 Rabin automata are used to represent !-regular languagesL � �! = ! ! � over a �nite alphabet�. A nondeterministi
 Rabin automatonA = (�;Q; I; Æ; f(Ai; Ri) j i 2 Jg) is a �ve tuple, 
onsisting of a �nite alphabet�, a �nite set Q of states with a non-empty subset I � Q of initial states, atransition fun
tion Æ : Q�� ! 2Q that maps states and input letters to sets ofsu

essor states, and a �nite family f(Ai; Ri) 2 2Q � 2Q j i 2 Jg of Rabin pairs.Nondeterministi
 Rabin automata are interpreted over in�nite sequen
es � :! ! � of input letters. An in�nite sequen
e � : ! ! Q of states of A is 
alleda run of A on an input word � if the �rst letter �(0) 2 I of � is an initial state,and if, for all i 2 !, �(i+ 1) 2 Æ��(i); �(i)� is an �(i)-su

essor state of �(i).A run � : ! ! Q is a

epting if, for some index i 2 J , some state q 2 Ai in thea

eptan
e set Ai of the Rabin pair (Ai; Ri), but no state q0 2 Ri from the reje
t-ing setRi of this Rabin pair appears in�nitely often in �. (9i 2 J: inf (�)\Ai 6= ;^inf (�)\Ri = ; for inf (�) = fq 2 Q j 8i 2 ! 9j > i su
h that �(j) = qg). A word� : ! ! � is a

epted by A if A has an a

epting run on �, and the set L(A) =f� 2 �! j � is a

epted by Ag of words a

epted by A is 
alled its language.For te
hni
al 
onvenien
e we also allow for �nite runs q0q1q2 : : : qn withÆ�qn; �(n)� = ;. Naturally, no �nite run satis�es the Rabin 
ondition; �nite runsare therefore reje
ting, and have no in
uen
e on the language of an automaton.Two parti
ularly simple types of Rabin automata are of spe
ial interest:parity (or Rabin 
hain) and B�u
hi automata. We 
all a Rabin 
ondition a Rabin
hain 
ondition if J is an initial sequen
e of the natural numbers !, and ifRi � Ai and Ai � Ri+1 holds for all indi
es. The Rabin 
hain 
ondition isnowadays usually referred to by the term parity 
ondition, be
ause it 
an berepresented by a priority fun
tion pri : Q ! ! that maps a state q to 2i + 2(
alled the priority of q) if it appears in Ai but not in Ri, and to 2i+1 if it appearsin Ri but not in Ai�1. A run � of A then de�nes an in�nite tra
e of priorities,and the parity of the lowest priority o

urring in�nitely often determines if � isa

epting. That is, � is a

epting if min(inf (pri (�))) is even. We denote parityautomata A = (�;Q; I; Æ; pri), using this priority fun
tion. B�u
hi automataare even simpler: they are Rabin automata with only one a

epting pair (F; ;)that has an empty set of reje
ting states (or, likewise, parity automata with apriority fun
tion pri whose 
odomain is f0; 1g. A B�u
hi automaton is denotedA = (�;Q; I; Æ; F ), and the states in F are 
alled �nal states.A Rabin, parity, or B�u
hi automaton is 
alled deterministi
, if it has a singleinitial state and its transition fun
tion is deterministi
. (That is, if jÆ(q; �)j � 1holds true for all states q 2 Q and all input letters � 2 � of the automata A.)3 B�u
hi DeterminisationThe determinisation te
hnique dis
ussed in this se
tion is a variant ofSafra's [Saf88℄ determinisation te
hnique, and the main data stru
ture | thehistory trees proposed in the �rst subse
tion | 
an be viewed as a simpli�
a-tion of Safra trees [Saf88℄. 4



a; b; 
; d; e; f; gb; e; f 
 d; ge f g
0 1 20 1 0Fig. 1. Example History Tree. The labels of the 
hildren of every node are disjoint,and their union is a stri
t subset of their parent's label. The label of the root node
ontains the rea
hable states of the B�u
hi automaton A on the input seen so far.

a
b


 d
ef gFig. 2. Relevant Fragment of a B�u
hi Automaton. This �gure 
aptures all tran-sitions for an input letter � from the states in the history tree from Figure 1. Thedouble lines indi
ate that the states 
, f , and g are �nal states.3.1 History TreesHistory trees are an abstra
tion of the possible initial sequen
es of runs of aB�u
hi automaton A on an input word �. They 
an be viewed as a simpli�
ationand abstra
tion of Safra trees [Saf88℄. The main di�eren
e between Safra treesand the simpler history trees introdu
ed in this paper is the omission of expli
itnames for the nodes.An ordered tree T � !� is a �nite pre�x and order 
losed (with respe
t toto siblings) subset of �nite sequen
es of natural numbers. That is, if a sequen
e� = t0; t1; : : : ; tn 2 T is in T , then all sequen
es s0; s1; : : : ; sm with m � n,sm � tm, and, for all i < m, si = ti, are also in T . For a node � 2 T ofan ordered tree T , we 
all the number of 
hildren of � its degree, denoted bydegT (�) = jfi 2 ! j � � i 2 Tgj.A history tree (
f. Figure 1) for a given nondeterministi
 B�u
hi automatonA = (�;Q; I; Æ; F ) is a labelled tree hT; li, where T is an ordered tree, and5



a; b; 
; d; e; f; gb; 
; d d e; f; g 
; f; gb b; 
 
 d e; f f; g
 f
0 1 2 30 1 2 0 0 10 0 0Fig. 3. First Step of the History Transition. This �gure shows the tree resultingfrom the history tree of Figure 1 for the B�u
hi automaton and transition from Figure 2alter the �rst step of the history transition. Every node of the tree from Figure 3 hasspawned a new 
hild, whose label may be empty (like the label of node 10) if no �nalstate is rea
hable upon the read input letter from any state in the label of the parentnode. (States printed in red are deleted from the respe
tive label in the se
ond step.)l : T ! 2Q r f;g is a labelling fun
tion that maps the nodes of T to non-emptysubsets of Q, su
h that{ the label of ea
h node is a proper superset of the union of the labels of its
hildren, and{ the labels of di�erent 
hildren of a node are disjoint.We 
all a node � the host node of a state q, if q 2 l(�) is in the label of � ,but not in the label of any 
hild of � .Our estimation of the number of history trees for a given B�u
hi automatondraws from an estimation of Temme [Tem93℄ (in the representation of Friedgut,Kupferman, and Vardi [FKV06℄) for the number of fun
tions from a set withn elements onto a set with �n elements, where � 2℄0; 1[ is a positive rationalnumber smaller than 1: For the unique positive real number x that satis�es�x = 1� e�x, and for a = � lnx+ � ln(ex � 1)� (1� �) + (1� �) ln � 1��� �, thenumber of these fun
tions is in [(1+ o(1))M(�)n℄n for M(�) = � �1�� �1��e(a��).This simpli�es to m(x) = 1ex (ex � 1)�(x)for �(x) = 1�e�xx andm(x) =M��(x)� when using ea�� = 1ex (ex�1)�� 1��� �1�� ,where x 
an be any stri
tly positive real number.To estimate the number hist(n) of history trees for B�u
hi automata with nstates, the number order (m) of trees with m nodes 
an be estimated by 4m.6



a; b; 
; d; e; f; gb; 
; d e; f; gb 
 e; f g
 f
0 1 2 30 1 2 0 0 10 0 0Fig. 4. Se
ond Step of the History Transition. This �gure shows the labelled treethat results from the se
ond step of the history transition. the states from the labels ofthe tree shown in Figure 3 that also o

ur in the label of an older sibling (like the statef from the old label of the node 21) or in the label of an older sibling of an an
estor ofthe node (like the state d from the old label of the node 10) are deleted from the label.In this tree, the labels of the siblings are pairwise disjoint, but may be empty, and theunion of the label of the 
hildren of a node are not required to form a proper subset oftheir parent's label. (The nodes 
olour 
oded red are deleted in the third step.)(More pre
isely, order (m) = (2m�2)!m!(m�1)! is the (m�1)-st Catalan number [Pit07℄.)The number of history trees withm nodes for a B�u
hi automaton with n states isthe produ
t of the number order (m) of ordered trees with m nodes and fun
tionsfrom the set of n states onto the set ofm nodes (if the root is mapped to all statesof A), plus the fun
tions the automata states to a set with (m + 1) elements.Together with the estimation from above, we 
an numeri
ally estimatehist(n) 2 supx>0O�m(x) � 4�(x)� � o�(1:65n)n�:3.2 History TransitionsFor a given nondeterministi
 B�u
hi automaton A = (�;Q; I; Æ; F ), history treehT; li, and input letter � 2 �, we 
onstru
t the �-su

essor h bT ;bli of hT; li infour steps. (An example transition for the history tree shown in Figure 1 for the�-transition of an automaton A shown in Figure 2 is des
ribed in Figures 3{6.)In a �rst step (shown in Figure 3), we 
onstru
t the labelled tree hT 0; l0 :T 0 ! 2Qi su
h that{ � 2 T 0 � T is a node of T 0 if, and only if, � 2 T is in T or � = � 0 � degT (� 0)is formed by appending the degree degT (� 0) of a node � 0 2 T in T to � 0,7



a; b; 
; d; e; f; gb; 
; d e; f; gb 

0 20 1Fig. 5. Third Step of the History Transition. The nodes with (a) an empty label(nodes 000, 02, 1, 10 and 3 from the tree shown in Figure 4) and (b) the des
endantsof nodes whose 
hildren's labels de
omposed their own label (nodes 010, 20, 200 and21) have been deleted from the tree. The labels of the siblings are pairwise disjoint,and form a proper subset of their parent's label, but the tree is not order 
losed (withrespe
t to siblings). The nodes that are renamed when establishing order 
losedness(with respe
t to siblings) in the �nal step are depi
ted in red. Node 01 is the onlya

epting node (indi
ated by the double line): Its siblings have been removed due to(b), and, di�erent to node 2, node 01 is stable.{ the label l0(�) = Æ(l(�); �) of an old node � 2 T is the set Æ(l(�); �) =Sq2l(�) Æ(q; �) of �-su

essors of the states in the label of � , and{ the label l0(� � degT (� 0)) = Æ(l(�); �)\F of a new node � � degT (�) is the setof �nal �-su

essors of the states in the label of � .After this step, ea
h old node is labelled with the �-su

essors of the statesin its old label, and every old node � has spawned a new sibling � 0 = � � deg(�),whi
h is labelled with the �nal states l0(� 0) = l0(�)\F in the label of its parent � .The new tree is not ne
essarily a history tree: (1) nodes may be labelled withan empty set (like node 000 of Figure 3), (2) the labels of siblings do not need tobe disjoint (f and g are, for example, in the interse
tion of the labels of nodes2 and 3 in Figure 3), and (3) the union of the 
hildren's labels do not need toform a proper subset of their parent's label (the union of the labels of node 20and 21, for example, equals the label of node 2 in Figure 3).In the se
ond step, property (2) is re-established. We 
onstru
t the treehT 0; l00 : T 0 ! 2Qi, where l00 is inferred from l0 by removing all states in the labelof a node � 0 = � � i and all its des
endants if it appears in the label l0(� � j) ofan older sibling (j < i). In Figure 3, the states that are deleted by this rule aredepi
ted in red, and the tree resulting from this deletion is shown in Figure 4.Properties (1) and (3) are re-established in the third transformation step. Inthis step, we 
onstru
t the tree hT 00; l00 : T 00 ! 2Qi by (a) removing all nodes �with an empty label l00(�) = ;, and (b) removing all des
endants of nodes whoselabel is disintegrated by the labels of its des
endants from T 0. (We use l00 in spiteof the type mismat
h, stri
tly speaking we should use its restri
tion to T 00.) The8



a; b; 
; d; e; f; gb; 
; d e; f; gb 

0 10 1Fig. 6. Final Step of the History Transition. The history tree that results from the
omplete history transition, has the shape and labelling of the tree from Figure 5, butthe former node 2 has been renamed to 1 in order to re-establishing order 
losedness(with respe
t to siblings).part of the tree that is deleted during the third step is depi
ted in red in Figure 4,and the tree resulting from this transformation step is shown in Figure 5.We 
all the greatest pre�x and order 
losed (with respe
t to siblings subsetof T 00 the set of stable nodes and the stable nodes whose des
endants have beendeleted due to rule (b) a

epting. In Figure 5, the unstable node 2 is depi
ted inred, and the a

epting leaf 01 is marked by a double line. (Note that only leaves
an be a

epting.)The tree resulting from this transformation satis�es the properties (1){(3),but it is no longer order 
losed with respe
t to siblings. The tree from Figure 5,for example, has a node 2, but no node 1. In order to obtain a proper historytree, the order 
losedness (with respe
t to siblings) is re-established in the �nalstep of the transformation. We 
onstru
t the �-su

essor h bT ;bl : bT ! 2Q r f;giof hT; li by \
ompressing" T 00 to a an order 
losed (with respe
t to siblings)tree, using the 
ompression fun
tion 
omp : T 00 ! !� that maps the emptyword " to ", and � � i to 
omp(�) � j, where j = jfk < i j � � k 2 T 00gj is thenumber of older siblings of � � i. For this fun
tion 
omp : T 00 ! !�, we simplyset bT = f
omp(�) j � 2 T 00g and bl(
omp(�)) = l00(�) for all � 2 T 00. The nodesthat are renamed during this step are exa
tly those whi
h are unstable. In ourexample transformation this is node 2 (depi
ted in red in Figure 5).Figure 6 shows the �-su

essor for the history tree of Figure 1 and an au-tomaton with �-transitions as shown in Figure 2.3.3 Deterministi
 A

eptan
e Me
hanismFor a nondeterministi
 B�u
hi automaton A = (�;Q; I; Æ; F ), we 
all the historytree hT0; l0i = hf"g; " 7! Ii that 
ontains only the empty word and maps it tothe initial states I of A the initial history tree.For an input word � : ! ! � we 
all the sequen
e hT0; l0i; hT1; l1i; : : : ofhistory trees that start with the initial history tree hT0; l0i and where, for every9



i 2 !, hTi; lii is followed by �(i)-su

essor hTi+1; li+1i the history tra
e or �. Anode � in the history tree hTi+1; li+1i is 
alled stable or a

epting, respe
tively,if it is stable or a

epting in the �(i)-transition from hTi; lii to hTi+1; li+1i.Proposition 1. An !-word � is a

epted by a nondeterministi
 B�u
hi automa-ton A if, and only if, there is a node � 2 !� su
h that � is eventually alwaysstable and always eventually a

epting in the history tra
e of �.Proof. For the \if" dire
tion, let � 2 !� be a node that is eventually always stableand always eventually a

epting, and let i0 < i1 < i2 < : : : be an as
ending 
hainof indi
es su
h that � is stable for the �(j)-transitions from hTj ; lji to hTj+1; lj+1ifor all j � i0, and a

epting for the �(i�1)-transition from hTi�1; li�1i to hTi; liifor all indi
es i in the 
hain.By de�nition of the �-transitions, for every j 2 !, the �nite automatonAj = (�;Q; lij (�); Æ; F ) has, for every state q 2 lij+1 (�), a run �qj on the �niteword �(ij)�(ij+1)�(ij+2) : : : �(ij+1 � 1) that 
ontains an a

epting state andends in q. Also, A = (�;Q; I; Æ; F ) read as a �nite automaton has, for every stateq 2 li0(�), a run �q on the �nite word �(0)�(1)�(2) : : : �(i0 � 1) that ends in q.Let us �x su
h runs, and de�ne a tree T � Q� that 
ontains, besides the emptyword and the initial states, a node iq0 of length 2 if q0 is in lij+1(�) and i is the�rst letter of �q0 , and a node iq0q1q2 : : : qkqk+1 of length k+1 > 2 if iq0q1q2 : : : qkis in T , qk+1 is in lik+1(n) and qk is the �rst letter of �qk+1k . By 
onstru
tion, Tis an in�nite tree with �nite bran
hing degree, and therefore 
ontains an in�nitepath iq0q1q2 : : : by K�onig's Lemma. By 
onstru
tion, �q0�q10 �q21 : : : is a run of Aon � that visits some a

epting state in�nitely many times.To demonstrate the \only if" dire
tion, let us �x an a

epting run, � =q0q1 : : : of A on an input word �. Then we 
an de�ne the sequen
e # = �0�1 : : :of nodes su
h that, for the history tra
e hT0; l0i; hT1; l1i; : : :, �i is the host nodeof qi 2 li(�i) for the history tree hTi; lii. Let l be the shortest length j�ij of thesenodes that o

urs in�nitely many times.It is easy to see that the initial sequen
e of length l of the nodes in # even-tually stabilises: Let i0 < i1 < i2 < : : : be an in�nite as
ending 
hain of indi
essu
h that the length j�j j � l of the j-th node is not smaller than l for all j � i0,and equal to l = j�ij for all indi
es i 2 fi0; i1; i2; : : :g in this 
hain. This impliesthat �i0 ; �i1 ; �i2 ; : : : is a des
ending 
hain when the single nodes �i are 
omparedby lexi
ographi
 order, and hen
e almost all �i := � are equal. This also impliesthat � is eventually always stable.Let us assume that � is a

epting only �nitely many times. Then we 
an
hose an index i from the 
hain i0 < i1 < i2 < : : : su
h that �j = � holds for allindi
es j � i, and � is not a

epting for any j � i. (Note that every time thelength of �j is redu
ed to l, �j is unstable, whi
h we ex
luded, or a

epting, whi
hviolates the assumption.) But now we 
an pi
k an index i0 > i su
h that qi0 2 Fis a �nal state, whi
h, together with �i0 = �, implies that � is a

epting for�hTi0�1; li0�1i; �(i0 � 1); hTi0 ; li0i�. (Note that qi0 is in the label of � � degTi0�1(�)in the labelled tree hT 0i0�1; l0i0�1i resulting from the �rst step of the �-transitionof history trees.)  ut10



4 From Nondeterministi
 B�u
hi Automata toDeterministi
 Rabin AutomataIn this se
tion, we dis
uss three determinisation pro
edures for nondeterminis-ti
 B�u
hi automata. First we observe that the a

eptan
e me
hanism from theprevious se
tion already des
ribes a deterministi
 automaton with a Rabin 
on-dition, but the Rabin 
ondition is on the transitions. This provides us with the�rst 
orollary:Corollary 1. For a given nondeterministi
 B�u
hi automaton with n states, we
an 
onstru
t a deterministi
 Rabin transition3 automaton with o�(1:65n)n�states and 2n�1 a

epting pairs that re
ognises the language L(A) of A. utTo see that the number of a

epting pairs is bounded by 2n�1, note that thelabels of siblings are disjoint, and that the label of every node 
ontains a statenot in the label of any of its 
hildren. Thus, the number of an
estors and theirolder siblings of every node is stri
tly smaller than n. Thus, a node i0i1i2 : : : in
an be represented by a sequen
e of i0 0's followed by a 1, followed by i1 0's andso on, su
h that every node that 
an be a

epting is representable by a sequen
eof stri
tly less than n 0's and 1's.There are two obvious ways to transform an automaton with a Rabin 
on-dition on the transitions to an automaton with Rabin 
onditions on the states.The �rst option is to \postpone" the transitions by one step. The new states are(with the ex
eption of one dedi
ated initial state bq0) pairs, 
onsisting of a stateof the transition automaton and the input letter read in the previous round.Thus, if the deterministi
 Rabin transition automaton has the run � on an inputword �, then the resulting ordinary deterministi
 Rabin automaton has the run�0 = bq0; ��(0); �(0)�; ��(1); �(1)�; ��(2); �(2)�; : : :.Corollary 2. For a given nondeterministi
 B�u
hi automaton A with n statesover an alphabet with l letters, we 
an 
onstru
t a deterministi
 Rabin automatonwith l � o�(1:65n)n� states and 2n�1 a

epting pairs that re
ognises the languageL(A) of A. utGiven that the alphabets tend to be small in pra
ti
e | in parti
ular 
om-pared to (1:65n)n | a blow-up linear in the alphabet size is usually a

eptable.However, an alphabet may, in prin
iple, have up to 2n2 distinguishable letters,and the imposed bound is not very good for extremely large alphabets. (Twoletters �1 and �2 
an be 
onsidered equivalent or indistinguishable for a B�u
hiautomaton A = (�;Q; I; Æ; F ) if Æ(q; �1) = Æ(q; �2) holds true for all statesq 2 Q of the automaton A.) As an alternative to preserving one input letter inthe state-spa
e, we enri
h the history trees with information about whi
h nodeof the resulting tree was a

epting or unstable in the third step of the transition.3 A transition automaton re
ords the history of transitions in addition to the history ofstates. For su
h a history of transitions, we 
an translate the a

eptan
e 
ondition1 : 1 by using the nodes as index set, and (A� ; R� ) where A� are the transitionswhere � is a

epting, and R� are the transitions where � is unstable as Rabin pairs.11



To estimate the number of di�erent enri
hed history trees with n nodes,we have to take into a

ount that the unstable and a

epting nodes are notarbitrarily distributed over the tree: Only leaves 
an be a

epting, and if a nodeof the tree in unstable, then all of its des
endants and all of its younger siblingsare unstable, too. Furthermore, only stable nodes 
an be a

epting and the root
annot be unstable. (An unstable root implies that the B�u
hi automaton hasno run for this word. Instead of allowing for an unstable root, we use a partialtransition fun
tion.)The number eOrder(n) of ordered trees enri
hed with this information 
anbe re
ursively 
omputed using the following 
ase distin
tion: If the eldest 
hild0 of the root is unstable, then all nodes but the root are unstable. Hen
e, thenumber of trees of this form is order(n) = (2n�2)!n!(n�1)! . For the 
ase that the eldest
hild 0 of the root is stable, there are eOrder(n� 1) trees where the size of thesub-tree rooted in 0 is n� 1, and eOrder(i) � eOrder(n� i) trees where the sub-tree rooted in 0 
ontains i 2 f1; : : : ; n � 2g nodes. (Every tree 
an be uniquelyde�ned by the tree rooted in 0, and the remaining tree. The spe
ial treatmentof the 
ase that 0 has no younger siblings is due to the fa
t that the root 
annotbe a

epting if it has a 
hild.) Thus, we have eOrder(1) = 2 (as a leaf, the root
an be a

epting or stable but not a

epting), andeOrder(n) = eOrder(n� 1) + order (n) + n�2Xi=1 eOrder (i)eOrder(n� 1)for n � 2. A numeri
al analysis4 of this sequen
e shows that eOrder(n) < 6:738n.This allows for an estimation of the number eHist(n) of enri
hed history treesfor a B�u
hi automaton with n states similar to the estimation of the numberhist(n) of history trees:eHist(n) 2 supx>0O�m(x) � 6:738�(x)� � o�(2:66n)n�:Corollary 3. Given a nondeterministi
 B�u
hi automaton A with n states, we
an 
onstru
t a deterministi
 Rabin automaton with o�(2:66n)n� states and 2n�1a

epting pairs that re
ognises the language L(A) of A. ut5 From Nondeterministi
 B�u
hi Automata toDeterministi
 Parity AutomataFrom a pra
ti
al point of view, it is often preferable to trade state-spa
e for sim-pler a

eptan
e 
onditions. Algorithms that solve Rabin games, for example, areusually exponential in the index, while the index of the 
onstru
tions dis
ussedin the previous se
tions is exponential in the size to the B�u
hi automaton wewant to determinise.4 eOrder(n+1)eOrder(n) is growing, and � eOrder(n+1)eOrder(n) ��1 + 2n� is falling for growing n � 2.12



While a reasonable index has been a side produ
t of previous determinisa-tion te
hniques [Saf88,MS95,Pit07℄, the smaller state-spa
es resulting from thedeterminisation te
hniques dis
ussed in Se
tions 3 and 4 are partly paid for bya higher index.Traditional te
hniques for the transformation of Muller and Rabin orStreett to parity a

eptan
e 
onditions use later [GH82℄ and index appearan
ere
ords [MS95℄, respe
tively. However, using index (or later) appearan
e re
ordswould result in an exponential blow-up of the state-spa
e, and hen
e in a doublyexponential 
onstru
tion. We therefore introdu
e the later introdu
tion re
ordas a re
ord tailored for ordered trees.A later introdu
tion re
ord (LIR) stores the order in whi
h the nodes of theordered trees have been introdu
ed. For an ordered tree T with m nodes, alater introdu
tion re
ord is a sequen
e �1; �2; : : : �m that 
ontains the nodes ofT , su
h that every node appears after its parent and older siblings. The expli
it
onsideration of the memory as a LIR leads to a 
onstru
tion that essentiallyre
e
ts Piterman's determinisation pro
edure [Pit07℄, and the following 
om-plexity analysis also implies for his 
onstru
tion.To analyse the e�e
t of adding a later introdu
tion re
ord to a history treeon the state-spa
e, we slightly 
hange the representation: We represent the treestru
ture of a tree with m nodes and its later introdu
tion re
ord by a sequen
eof m � 1 integers i2; i3; : : : im, su
h that ij points to the position < j of theparent of node �j in the later introdu
tion re
ord �1; �2; : : : �m. (The root �1 hasno parent.) There are (m� 1)! su
h sequen
es.The labelling fun
tion of a history tree hT; li whose root is labelled withthe 
omplete set Q of states of the B�u
hi automaton 
an be represented by afun
tion from Q onto f1; : : : ;mg that maps ea
h state q 2 Q to the positions ofits host node in the LIR. In this representation, pairs of history trees and LIRsresemble the 
ompa
t Safra trees [Pit07℄ without the 
olouring fun
tion.Let t(n;m) denote the number of trees and later introdu
tion re
ord pairsfor history trees with m nodes and n = jQj states in the label of the root. First,t(n; n) = (n � 1)!n! holds: There are (n � 1)! ordered-tree / LIR pairs, and n!fun
tions from a set with n elements onto itself. For every m � n, a 
oarseestimation5 provides t(n;m� 1) � 12 t(n;m). Hen
e, Pni=1 t(n; i) � 2(n� 1)!n!.Likewise, the labelling fun
tion of a history tree hT; li whose root is labelledwith the 
omplete set Q of states of the B�u
hi automaton 
an be represented bya fun
tion from Q onto f1; : : : ;mg that maps ea
h state q 2 Q to the positionsof its host node in the LIR, or to 0 if the state is not in the label of the root. Lett0(n;m) denote the number of history tree / LIR pairs for su
h history trees withm nodes for a B�u
hi automaton with n states. We have t0(n; n� 1) = (n� 2)!n!5 If we 
onne
t fun
tions by letting a fun
tion g from Q onto f1; : : : ;m � 1g be thesu

essor of a fun
tion f fromQ onto f1; : : : ;mg if there is an index i 2 f1; : : : ;m�1gsu
h that g(q) = i if f(q) = m and g(q) = f(q) otherwise, then the fun
tions onto mhave (m�1) su

essors, while every fun
tion ontom�1 has at least two prede
essors.Hen
e, the number of labelling fun
tions growth at most by a fa
tor of m�12 , whilethe number of ordered tree / LIR pairs is redu
ed by a fa
tor of m� 1.13



and, by an argument similar to the one used in the analysis of t, we also havet0(n;m� 1) � 12 t0(n;m) for every m < n, and hen
ePn�1i=1 t0(n; i) � 2(n� 2)!n!.Proposition 2. For a given nondeterministi
 B�u
hi automaton A with n states,we 
an build a deterministi
 parity automaton with O(n!2) states and 2n prior-ities that re
ognises the language L(A) of A.Proof. We 
onstru
t a deterministi
 parity automaton, whose states 
onsist ofthe history tree / LIR pairs, and an expli
itly represented priority. The priorityis determined by the position i of the �rst node in the previous LIR that is eitherunstable or a

epting in the �-transition: If it is a

epting, the priority is 2i, if itis unstable, the priority is 2i�1. If no node is unstable or a

epting, the priorityis 2n+1. The automaton has at most the priorities f2; 3; : : : ; 2n+1g and O(n!2)states | O�(n� 1)!n!� history tree / LIR pairs times 2n priorities.Let � be a word in the language L(A) of A. Then there is by Proposition 1a node � that is always eventually a

epting and eventually always stable in thehistory tree, and will hen
e eventually always remain in the same position p inthe LIR and be stable. (A stable node 
an only move further to the front ofthe LIR, whi
h 
an only happen �nitely many times.) From that time onward,no node with a smaller position p0 < p is deleted (this would result � to movefurther to the front of the re
ord), nor is the node � on position p unstable.Hen
e, no odd number < 2p o

urs in�nitely many times. Also from that timeonward, the node � is a

epting in�nitely many times, whi
h results in visitinga priority � 2p by our prioritisation rule. Hen
e the smallest number o

urringin�nitely many times is even.Let, on the other hand, 2i be the dominating priority of the run of our deter-ministi
 parity automaton. Then eventually no lower priority than 2i appears,whi
h implies that all positions � i remain un
hanged in the LIR, and the re-spe
tive nodes remain stable from that time onward. Also, the node that is fromthat time onward on position i is a

epting in�nitely many times, whi
h impliesby Proposition 1 that � is in the language L(A) of A. utWhile the separation of 
on
erns does not generate the same theoreti
albene�t with respe
t to state-spa
e redu
tion when we 
onstru
t parity automatainstead of Rabin automata, the pra
ti
al advantage might be 
omparable. Whilethe update rule for history trees is stri
t, the update rule for LIR's is mu
h lessso: The only property of LIR updates used in the proof of Proposition 2 is thatthe position of a

epting positions is redu
ed, and stri
tly redu
ed if there wasan unstable node on a smaller position of the previous LIR. This leaves mu
hleeway for updating the LIR | any update that satis�es this 
onstraint will do.Usually only a fragment of the state-spa
e is rea
hable, and determinisationalgorithms tend to 
onstru
t the state-spa
e of the automaton on the 
y. Thesimplest way to exploit the leeway in the update rule for LIR's is to 
he
k ifthere is a suitable LIR su
h that a state with an appropriate history tree / LIRpair has already been 
onstru
ted. If this is the 
ase, then we 
an, dependingon the priority of that state, turn to this state or 
onstru
t a new state thatdi�ers only in the priority, whi
h allows us to ignore the new state in the further14



expansion of the state-spa
e. It is my belief that su
h a nondeterministi
 deter-minisation pro
edure will result in a signi�
ant state-spa
e redu
tion 
omparedto any deterministi
 rule.A
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