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Zusammenfassung

Unendliche Zwei-Personen-Spiele sind von wesentlicher Bedeutung in der
Informatik, denn sie stellen einen algorithmischen Rahmen für die Unter-
suchung von nicht-terminierenden reaktiven Systemen bereit. Üblicherweise
werden unendlichen Spiele durch eine ω-Sprache spezifiziert, die alle gewin-
nenden Partien für einen der beiden Spieler enthält, oder durch einen Spiel-
graphen und eine Gewinnbedingung auf den unendlichen Pfaden durch diesen
Graphen. Viele algorithmische Resultate sind bekannt für den Fall von regu-
lären Spezifikationen und für endliche Spielgraphen mit Gewinnbedingungen
wie der Muller- oder Paritätsbedingung, die reguläre Problemstellungen er-
fassen. Die Ergebnisse der vorliegenden Arbeit behandeln eine Klasse von
nicht-regulären Spezifikationen und eine Klasse von unendlichen Spielgra-
phen, nämlich solche, die durch Pushdown-Automaten spezifiziert werden,
d.h. wir betrachten kontextfreie Spezifikationen und Pushdown-Spielgraphen
mit Muller- oder Paritätsgewinnbedingungen. Wir erweitern zahlreiche zen-
trale für reguläre Spiele bekannte Resultate auf die Klasse der Pushdown-
Spiele. Dabei konzentrieren wir uns auf folgende vier Problemstellungen.

Zunächst analysieren wir, wie das Format einer Gewinnstrategie mit dem
Typ der Spezifikation zusammenhängt. Dabei stellen wir für etliche kontext-
freie Fälle eine Verbindung zwischen den Formaten der Spezifikationen und
den Formaten der entsprechenden Gewinnstrategien her, zeigen aber auch
Fälle von kontextfreien Spielen auf, wo diese Übereinstimmung nicht gilt.

Zweitens untersuchen wir Delay-Spiele mit kontextfreien Gewinnbedin-
gungen. In einem Delay-Spiel hat einer der beiden Spieler die Möglichkeit,
seine Züge für eine gewisse Zeit hinauszuzögern, damit wird eine Voraus-
schau auf die Züge des Gegners erzielt. Wir klären, ob der Gewinner eines
deterministisch kontextfreien Delay-Spiels berechnet werden kann, und wie
groß die erforderliche Vorausschau zum Gewinnen solcher Spiele ist.

Drittens untersuchen wir das Synthese-Problem für verteilte Systeme,
welche aus mehreren kooperierenden Komponenten bestehen, die miteinan-
der und mit der Umgebung kommunizieren. Dabei wird die Kommunikati-
onsstruktur durch eine Architektur spezifiziert. Es werden beide Hauptkon-
zepte studiert, das der globalen und das der lokalen Spezifikationen. Wir ge-
ben eine Charakterisierung der entscheidbaren Architekturen für lokale Spe-
zifikationen an, welche regulär oder deterministisch kontextfrei sein können.
Außerdem zeigen wir Unentscheidbarkeit des verteilten Synthese-Problems
für globale deterministisch kontextfreie Spezifikationen.

Schließlich wird das Problem behandelt, ob der Gewinner eines unendli-
chen Spiels bereits nach einem endlichen Partiepräfix bestimmt werden kann.
Aufbauend auf den Resultaten für den Fall der endlichen Spielgraphen füh-
ren wir eine Paritätsspiele endlicher Dauer auf Pushdown-Graphen ein und
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zeigen ihre Vollständigkeit zum Lösen von Paritätsspielen auf Pushdown-
Graphen. Dies ergibt eine neue Reduktionsmethode, mit welcher der Gewin-
ner eines Pushdown-Spiels durch Lösen eines Erreichbarkeitsspiels auf einem
endlichen Spielgraphen bestimmt werden kann.
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Abstract

Infinite two-player games are of interest in computer science since they pro-
vide an algorithmic framework for the study of reactive nonterminating sys-
tems. Usually, an infinite game is specified by an ω-language containing all
winning plays for one of the two players or by a game graph and a winning
condition on infinite paths through this graph. Many algorithmic results are
known for the case of regular specifications and for finite game graphs with
winning conditions like parity or Muller conditions capturing regular objec-
tives. The present thesis offers results that also cover a class of nonregular
specifications as well as a class of infinite game graphs, namely those spec-
ified by pushdown automata, i.e, we consider contextfree specifications and
pushdown game graphs with parity or Muller winning conditions. We ex-
tend various central results known for regular games to the class of pushdown
games. We focus on the following four questions.

Firstly, we analyze how the format of a pushdown winning strategy
matches the type of the pushdown game specification. Here, we establish
a strong connection between the formats of specifications and formats of
corresponding winning strategies for several types of contextfree games, but
we also exhibit cases of contextfree games where this correspondence fails.

Secondly, we investigate delay games with contextfree winning condi-
tions. In such a game one of the players has the possibility to postpone his
moves for some time, thus obtaining a lookahead on the moves of the op-
ponent. We clarify whether the winner of a deterministic contextfree delay
game can be determined effectively as well as what amount of lookahead is
necessary to win such games.

Thirdly, we investigate the synthesis problem for distributed systems
which consist of several cooperating components communicating with each
other and with the environment. A distributed system is specified by an ar-
chitecture comprising the communication structure of the system. Here, we
study both main concepts, that of global and that of local specifications. We
offer a complete characterization of the decidable architectures for local spec-
ifications, which may be deterministic contextfree or regular. Moreover, we
prove that, for global deterministic contextfree specifications, the distributed
synthesis problem is undecidable.

Finally, we address the problem whether the winner of an infinite game
can be already determined after a finite play prefix. Extending results for
the case of finite game graphs, we introduce finite-duration parity pushdown
games and establish their completeness for solving parity pushdown games.
This yields a new reduction method to determine the winner of a pushdown
game by solving a reachability game on a finite game graph.
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Chapter 1

Introduction

For several decades, the theory of finite automata has proved to be a powerful
framework for the development of effective methods for program verification
and program synthesis. A very active branch of research is concerned with
non-terminating reactive systems, i.e., systems which continuously interact
with an environment in contrast to programs that transform data and then
terminate. Such non-terminating reactive systems occur in numerous con-
texts, among them operating systems, control systems, and protocol design.
A versatile conceptual model of non-terminating reactive systems is the no-
tion of infinite games, played between an antagonistic environment and one
or several system controllers, where plays correspond to infinite sequences of
actions performed by the players.

The fundamental problem of this theory is Church’s Problem [Chu57,
Chu63], first proposed in the context of controller synthesis and then trans-
formed to a game theoretical question by McNaughton [McN65]. It asks, for
a given regular specification consisting of all correct behaviors of the consid-
ered system, to decide whether there is a finite-state controller such that all
possible behaviors of the system satisfy the given specification, and further-
more to synthesize such a controller if it exists. In the framework of infinite
games, Church’s Problem is formulated as a slightly modified version of a
Gale-Stewart game [GS53]. So, it is to decide, for a winning condition given
in terms of a logical formula, who is the winner of the game, and to provide
a winning strategy for the winning player.

The first solution of this problem was offered by the pioneering work of
Büchi and Landweber [BL69] who showed that, for specifications formulated
in monadic second-order logic of one successor (over the natural numbers),
the controller synthesis problem is decidable and finite-state solutions can be
constructed effectively. Hence, for regular winning conditions, the winner can
be decided and winning strategies can be implemented by finite automata
with output. Starting from the Büchi-Landweber result, the research area
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1 Introduction

of infinite games has undergone a very active and intensive development, in
particular the study of the synthesis problem, due to the prospect of being
able to construct system controllers automatically from the specifications,
rather than to implement and then to verify already built systems.

Many variants and extensions of the basic setting have been explored
in a multitude of different directions. For example, various specification
formalisms were considered like linear-time temporal logic [MW81, PR89],
branching-time temporal logic [EC82, KV97] or the modal µ-calculus [Koz83,
KV00b]. Or the case of incomplete information was considered [KV97] where
systems have to satisfy specifications which also refer to signals not known
to the controller, in contrary to the basic setting, where both agents have
the entire knowledge about all actions performed so far. Another exten-
sion is to provide the controller with a buffer allowing to store some actions
performed by the environment, in this way the controller gains the possi-
bility to postpone his actions for some time, which leads to so-called delay
games [HL72, HKT10]. A further natural extension where both scenarios,
incomplete information as well as delay, are conceivable is the extension to
distributed systems [PR90, KV01, MT01, FS05] which consist of several com-
ponents which communicate with each other and with the environment via
certain communication channels. Hence, the task of the distributed synthe-
sis is to construct several controllers, one for each process, such that every
overall system behavior satisfies a given specification. In the framework of in-
finite games, distributed synthesis corresponds to multi-player games where
several cooperating controller players play against the antagonistic environ-
ment player [MW03]. The task is then to find a set of winning strategies, one
for each controller player, comprising a joint winning strategy for the sys-
tem. Of course, there are much more extensions like, for instance, stochastic
versions of reactive systems [CJH04, Zie04].

A prerequisite for Büchi-Landweber’s solution was the transformation of
a logically defined game into a graph game, played on a finite game graph,
where the winning condition is just concerned with the requirement that cer-
tain vertices are visited infinitely often and others only finitely often. These
games are known as Muller games over finite graphs. A classical approach
for solving Muller games is the reduction to so-called parity games [Zie98]
where every vertex of the game graph is assigned a natural number and the
winning condition now is concerned with the smallest color visited infinitely
often. A central topic is the extension of this game models to cover infinite
game graphs which emerge when the specification formalisms for the synthe-
sis problem go beyond regular languages. The essential case of games played
on infinite graphs which has been shown to be decidable is the class of parity
games played on pushdown graphs [Wal96]. These are configuration graphs
of pushdown systems which, roughly speaking, are infinite state systems
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1.1 Contribution

obtained from finite state systems by augmenting them with an infinite last-
in-first-out data structure, a pushdown stack. Pushdown systems naturally
occur in the context of program analysis and compiler construction. More-
over, the importance of this model in formal languages also arises from the
equivalence between the corresponding language acceptors, pushdown au-
tomata, and contextfree grammars, which yields definability of contextfree
languages in terms of pushdown automata.

The technique for solving parity games played on pushdown graphs pro-
posed by Walukiewicz [Wal96] is a reduction to a parity game played on
a finite game graph. The core idea is to encode the information stored on
the stack by some finite memory structure. For this, a sophisticated finite
game graph is defined to simulate the pushdown game which intends one
player to make predictions about the future of the play and the opponent
checks correctness of this predictions. Another method is due to Kupferman
and Vardi [KV00a], it uses an infinite tree that represents all possible stack
contents and alternating two-way tree automata operating on this tree to
simulate parity pushdown games. These basic methods will be presented
in detail and adapted appropriately in chapters 3 and 6 to prove the main
results of those chapters.

1.1 Contribution

This thesis investigates several refinements and extensions, which have been
considered within the domain of games over finite game graphs, in the context
of pushdown games. So, we study the possibility of lifting the central results
known for regular games to the class of contextfree games. Let us sketch the
particular contributions informally.

Connecting Game Specifications to Winning Strategies

The Büchi-Elgot-Trakhtenbrot result [Büc60, Elg61, Tra61] establishes a con-
nection between monadic second-order logic and finite automata by show-
ing that both formalisms are expressively equivalent and providing effective
translations from one formalism to another and vice versa. By this corre-
spondence, with the focus on the formats of game specifications and their
solutions, the Büchi-Landweber theorem states that solutions of games with
monadic second-order logic specifications are again definable by monadic sec-
ond order logic. This result has been refined in several works, where a close
conceptual connection between the types of the winning conditions on one
hand and winning strategies on the other hand has been established. Ra-
binovich and Thomas exhibited several fragments L of the monadic second-
order logic, among them first order logic over (N, <) and its extension by
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1 Introduction

modular counting quantifiers, first order logic over (N, S) with successor re-
lation S and the quantifier-free first-order logic over (N, 0,+1), called strictly
bounded logic, for which the mentioned correspondence holds [RT07]. I.e.,
games given by specifications definable in L are determined with winning
strategies which are again definable in L. Selivanov showed an analogous re-
sult for a further regular subclass stating that every game defined by an aperi-
odic regular winning condition is determined by winning strategies which can
be realized by aperiodic transducers [Sel07, Sel08]. Chaturvedi et al. study
this correspondence in the recent paper [COT11] for subclasses of star-free
languages by considering piecewise testable languages and languages from
the dot-depth hierarchy [CB71].

We address this question relating game representations and correspond-
ing solutions for several classes of contextfree games. Thereby, we consider
Gale-Stewart games with various types of contextfree specifications emerg-
ing from the synthesis problem, as well as more general games played on
pushdown game graphs defined by several types of pushdown automata. We
prove the existence of a strong connection between the formats of specifi-
cations and formats of the corresponding winning strategies for plenty of
cases. Among them, games played on configuration graphs of realtime push-
down systems, visibly pushdown systems, and one-counter systems with par-
ity winning conditions, as well as with stair parity winning conditions and
Gale-Stewart games defined by corresponding pushdown automata. Further-
more, we exhibit some cases for which this correspondence between games
and solutions does not hold, namely for visibly and blind one-counter.

The results are partially based on the publication [Fri10].

Delay Games

The generalization of the game model where the strict alternation between
the moves of the environment and the controller is modified by allowing
the controller to postpone his moves for some time has been considered
by Hosch and Landweber in [HL72]. This so called delay games capture
systems provided with first-in-first-out buffers to store inputs coming from
the environment. Using these buffers, the controller obtains a lookahead
on the moves of the environment. Hosch and Landweber showed that it
is decidable, whether a regular game can be won by the controller with
bounded lookahead, i.e., using a finite buffer. This result was improved by
Holtmann et al. [HKT10], who showed that if a regular game is won with
arbitrary lookahead then it is also won with a bounded lookahead, which is
at most doubly-exponential in the size of the parity automaton recognizing
the winning condition.

We study contextfree delay games and give an answer to the questions
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stated in [HKT10] whether the winner of a deterministic contextfree delay
game can be determined effectively and what amount of lookahead is nec-
essary to win such games. We prove that, for fixed bounded lookahead,
determining the winner is decidable. However, the question whether a given
player can win a deterministic contextfree delay game with arbitrary looka-
head is undecidable. Moreover, we characterize classes of delay functions, for
which the problem of determining the winner is decidable, if the lookahead
is restricted to the given class of delay functions. Furthermore, we establish
non-elementary lower bounds on delay functions by showing that there ex-
ist deterministic contextfree delay games such that the controller wins with
some lookahead, however, if the lookahead is bounded by an elementary
function, i.e., a k-fold exponential for some fixed natural number k, then the
environment wins.

The results are partially based on joint work with Christof Löding and
Martin Zimmermann published in [FLZ11].

Distributed Synthesis

Distributed systems are specified by architectures consisting of a set of coop-
erating processes and a set of channels via which the processes communicate
with each other and with the environment. Based on the work of Peterson
and Reif on multi-player games [PR79], Pnueli and Rosner proved that in
general distributed synthesis is undecidable for specifications in linear time
temporal logic, however, for a special class of acyclic architectures, called
pipelines, where the processes are linearly ordered and the information flows
from the environment in direction of the worst informed process, they proved
decidability for linear time temporal logic specifications [PR90]. Kupferman
and Vardi extended this decidability result to some further classes of archi-
tectures which also may contain cycles and to specifications in branching
time temporal logic [KV01]. In [FS05], Finkbeiner and Schewe gave a full
characterization of decidable architectures for specifications given in linear
time, branching time temporal logic as well as in µ-calculus. Moreover, a
uniform tree automata based synthesis algorithm for decidable architectures
was provided. Madhusudan and Thiagarajan introduced the concept of lo-
cal specifications [MT01], where the system specification is given by a set of
local specifications, one for each system process. For regular local specifica-
tions and the class of acyclic architectures, they gave a characterization of
all decidable architectures.

We investigate the distributed synthesis problem for contextfree global
specifications as well as local specifications which are regular or contextfree.
We give a complete characterization of decidable architectures for the case of
local specifications which extends the result of [MT01] in two structural as-
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pects. First, we consider general architectures where also cycles are allowed,
and second, the local specifications may also be deterministic contextfree.
We give an effective criterion which concerns the graph structure of the
given architecture and the assignment of regular and contextfree local speci-
fications to the individual processes. Moreover, for deterministic contextfree
global specifications, we prove undecidability for almost all architectures.
Only the corner cases corresponding to the nondistributed setting or the
case where the environment does not send information, are decidable.

The results were obtained in collaboration with Bernd Puchala and are
partially based on the publication [FP11].

Finite-Time Games

McNaughton introduced a finite-duration variant for Muller games played
on finite game graphs using scoring functions which rate finite play prefixes
of infinite plays [McN00]. The scoring functions1 give a condition on ter-
mination of plays in a finite-time game, i.e., a play is stopped when some
scoring function reaches a given threshold score value. McNaughton proved
equivalence of Muller games and corresponding finite-time Muller games with
factorial threshold score, i.e., both variants have the same winner. Thus, the
winner of a Muller game on a finite game graph can be determined by solving
a reachability game over a game graph, which is doubly-exponential in the
size of the game graph of the original Muller game. This result was improved
by Fearnley and Zimmermann, who showed that the constant threshold score
value of three suffices for the equivalence of the corresponding games [FZ10].
Furthermore, a score-based reduction from Muller games to safety games
evolved from this result which yields non-deterministic winning strategies
called permissive strategies [Zim12, NRZ12]. This extends the work of Ber-
net et al. [BJW02] on permissive strategies for parity games to Muller games.

We introduce a new finite-duration variant for parity pushdown games
which is required since the known results on finite game graphs don’t hold for
infinite game graphs. We define stair-scoring functions by exploiting the in-
trinsic structure of the pushdown graphs and prove the equivalence between
parity pushdown games and corresponding finite-time versions with thresh-
old stair-score which is exponential in the size of the underlying pushdown
system. Moreover, we give an almost matching lower bound on the thresh-
old stair-score such that the equivalence between the corresponding games
holds, which is exponential in the cube root of the size of the underlying
pushdown system. Our result yields a new reduction method to determine
the winner of a pushdown game by solving a reachability game over a finite

1The idea of declaring the winner of a play after a finite number of rounds using scores
was first posed in [McN93].
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game graph.
The results were obtained in collaboration with Martin Zimmermann and

are partially based on [FZ12].

1.2 Organization of the thesis

The thesis is structured as follows. In the subsequent Chapter 2 we introduce
the basic notions like finite automata, pushdown automata, tree automata,
infinite games, strategies and game reductions, and fix our notations used
throughout the thesis.

In Chapter 3 we present our results on the connection between contextfree
specifications and pushdown winning strategies. The considered classes of
contextfree languages are introduced in Section 3.1. We state our main result
in Section 3.2. First, the technique of Kupferman and Vardi is recalled in
Subsection 3.2.1. Subsequently, we prove our main result in Subsection 3.2.2.

Chapter 4 presents our results on contextfree delay games. After delay
games are introduced formally in Section 4.1, we prove our decidability and
undecidability results and give a general criterion characterizing the sets of
delay functions where decidability is guaranteed in Section 4.2. Chapter 4 is
concluded by presenting a lower bound for the lookahead in Section 4.3.

We handle distributed synthesis in Chapter 5. First, we fix our nota-
tions and give some definitions in Section 5.1 which are used throughout
this chapter. Architectures are introduced in Section 5.2. We prove unde-
cidability for architectures with global deterministic contextfree specifica-
tions in Section 5.3. The following Section 5.4 is composed of decidability
and undecidability results for special cases of architectures with local spec-
ifications, presented in Subsection 5.4.1 and Subsection 5.4.2, respectively.
These results are assembled in the subsequent Section 5.5 where a complete
characterization of the decidable architectures with regular or deterministic
contextfree local specifications is presented.

Chapter 6 is concerned with finite-time games which we introduce for-
mally in Section 6.1. There, we also define the new notion of stair-scoring
functions for finite-time games over pushdown game graphs. In Section 6.2,
Walukiewicz’s construction is recalled and adapted as it is needed in the fol-
lowing Section 6.3 where we prove the equivalence between parity pushdown
games and their corresponding finite-duration variants. Section 6.4 presents
a lower bound on the threshold stair-score value for which the equivalence
between parity pushdown games and their finite-duration variants holds.

Finally, we give a conclusion in Chapter 7 where we point out some open
questions for further research.
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Chapter 2

Preliminaries

In this chapter we give the definitions and fix our notations which will be
used throughout this work. After introducing some basic definitions in Sec-
tion 2.1 we present the automata models of finite automata and pushdown
automata over finite and infinte words as well as various kinds of tree au-
tomata operating on infinite trees in Section 2.2. Section 2.3 is concerned
with turn-based infinite two-player games. Gale-Stewart games, games on
graphs as well as notions of winning conditions, winning strategies and game
reductions are introduced.

2.1 Basic Definitions

The set of non-negative integers is denoted by N. For n ∈ N, let Par(n) = 0

if n is even, and Par(n) = 1 if n is odd. Furthermore, we denote the set of
the first n elements of N by [n] = {0, . . . , n− 1}. For a set X, the power set
of X is denoted by P(X) and the cardinally of X is denoted by |X|.

A finite nonempty set Σ of symbols or letters is called alphabet. For an
alphabet Σ, the set of finite words is denoted by Σ∗. The length of a word
w ∈ Σ∗ is denoted by |w|, and ε denotes the empty word, i.e., the word
of length |ε| = 0. For a word w ∈ Σ∗ and a letter a ∈ Σ, the number of
occurrences of a in w is denoted by |w|a. We denote the set of words of
length at most n by Σ≤n, for n ∈ N, and for the set of nonempty words
Σ∗ \ {ε} we also write Σ+. The set of infinite words, also called ω-words, is
denoted by Σω.

For a word w ∈ Σ∗∪Σω and n ∈ N we write w(n) for the n-th letter of w
where the first letter of w is w(0). If w is finite, we denote its last letter by
last(w). The prefix of length n of a word w ∈ Σ∗∪Σω is denoted by prefn(w),
i.e., pref0(w) = ε and prefn(w) = w(0) · · ·w(n − 1), for 0 < n ≤ |w|. For
two words w ∈ Σ∗ and w′ ∈ Σ∗ ∪ Σω, we write w v w′ if w is a prefix of w′,
and w @ w′ if w is a strict prefix of w′, i.e., if in addition w 6= w′ holds. For
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2 Preliminaries

a word w ∈ Σ∗ the reverse of w is denoted by rev(w), i.e., rev(ε) = ε and
rev(ua) = a · rev(u), for u ∈ Σ∗ and a ∈ Σ.

A language over an alphabet Σ is a subset of Σ∗ or a subset of Σω. If it
is not clear from the context whether a language contains finite or infinite
words, we will also refer to languages containing finite word as ∗-languages
and to those containing infinite words as ω-languages.

For a word w ∈ Σ∗ ∪ Σω, we define the occurrence set of w by

Occ(w) = {a ∈ Σ | w(n) = a for some n ∈ N} ,

and the infinity set of w by

Inf(w) = {a ∈ Σ | w(n) = a for infinitely many n ∈ N} .

Let Σ0, . . . ,Σn−1 be alphabets. For a cartesian product Σ =
∏
i∈[n] Σi =

Σ0×· · ·×Σn−1 let dim(Σ) = n. For the cartesian product Σ =
∏
i∈[n] Σi and

a setX ⊆ [n] of indices, let the cartesian product restricted to alphabets with
an index from X be denoted by ΣX =

∏
i∈X Σi (here again, an ascending

order of indices is assumed).
The projection operator PrX : Σ → ΣX is defined by PrX(a) = (ai)i∈X ,

for a = (a0, . . . , an−1) ∈ Σ. If X = {i} is a singleton set we will also write
Pri instead of Pr{i}. Moreover, we will also write PrΣX

instead of PrX if we
do not refer to an explicit ordering of the components of Σ. We extend this
definition in a natural way to words and languages. For a word w ∈ Σ∗∪Σω,
define PrX(w) = PrX(w(0))PrX(w(1)) · · · , and for a language L ⊆ Σ∗ or
L ⊆ Σω, define PrX(L) = {PrX(w) | w ∈ L}.

Moreover, for two ω-words w ∈ Σω and w′ ∈ (Σ′)ω over the alphabets Σ

and Σ′, by w_w′ ∈ (Σ×Σ′)ω we denote the ω-word with (w_w′)(i) =
(w(i)
w′(i)

)
,

for all i ∈ N.

2.2 Automata

2.2.1 Finite Automata

A (nondeterministic) finite automaton (NFA) A = (Q,Σ, Qin,∆, F ) consists
of a finite set of states Q with the set of initial states Qin ⊆ Q, an input
alphabet Σ, a set of final states F ⊆ Q and a transition relation ∆ ⊆
Q × Σ × Q. An NFA is deterministic (DFA) if |Qin| = 1 and for all q ∈ Q
and all a ∈ Σ, |{q′ ∈ Q | (q, a, q′) ∈ ∆}| ≤ 1 is satisfied. In this case, we use
a (partial) function δ : Q × Σ → Q to denote the transition relation ∆ and
we just write qin to denote the set Qin = {qin}.

A run ρ of A on a word w ∈ Σ∗ is a finite sequence of states ρ =

ρ(0) · · · ρ(|w|) such that ρ(0) ∈ Qin, and for every 0 ≤ i < |w|, we have
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2.2 Automata

(ρ(i), w(i), ρ(i+ 1)) ∈ ∆. If A is deterministic then there is a unique run on
every word. A run ρ is accepting if last(ρ) ∈ F . A word w is accepted by A
if there is an accepting run of A on w. The language recognized by A is

L(A) = {w ∈ Σ∗ | w is accepted by A} .

A language L ⊆ Σ∗ is called regular if there exists an NFA A such that
L = L(A). We denote the class of all regular languages by REG.

Remark 2.1. For every L ⊆ Σ∗, the following are equivalent

1. there exists an NFA A such that L = L(A),

2. there exists a DFA A such that L = L(A).

A (nondeterministic) finite ω-automaton (ω-NFA) A = (Q,Σ, Qin,∆,Ω)

consists of a finite set of states Q with the set of initial states Qin ⊆ Q, an
input alphabet Σ, a transition relation ∆ ⊆ Q × Σ × Q and an acceptance
condition Ω ⊆ Qω. As in the case of NFA, A is deterministic (ω-DFA) if
|Qin| = 1 and |{q′ ∈ Q | (q, a, q′) ∈ ∆}| ≤ 1, for all q ∈ Q and all a ∈ Σ.
In this case, we also use a (partial) function δ : Q × Σ → Q to denote the
transition relation ∆ and write qin to denote the set Qin = {qin}.

A run ρ of A on a word w ∈ Σω is an infinite sequence of states
ρ = ρ(0)ρ(1) · · · such that ρ(0) ∈ Qin, and for every i ∈ N, we have
(ρ(i), w(i), ρ(i+ 1)) ∈ ∆. If A is deterministic then there is a unique run on
every word. A run ρ is accepting if ρ ∈ Ω. A word w is accepted by A if
there is an accepting run of A on w. The language recognized by A is

L(A) = {w ∈ Σω | w is accepted by A} .

Let col : Q → [n] be a priority function, also called coloring function,
which assigns to every state in Q a priority, also called color, from [n], for
some n ∈ N. We extend the function col to sequences of states by defining
col(ρ) = col(ρ(0))col(ρ(1)) · · · . A parity acceptance condition is defined by

Ωparity = {ρ ∈ Qω | min{Inf(col(ρ))} is even} ,

i.e., a run ρ of an automaton with a parity acceptance condition, denoted by
parity-NFA (parity-DFA), is accepting if the minimal priority seen infinitely
often in ρ is even.

Let F ⊆ P(Q) be a set of subsets of Q. A Muller acceptance condition
is defined by

ΩMuller = {ρ ∈ Qω | Inf(ρ) ∈ F} .

11
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i.e., a run ρ of an automaton with a Muller acceptance condition, denoted
by Muller-NFA (Muller-DFA), is accepting if the set of states seen infinitely
often in ρ is contained in F .

A language L ⊆ Σω is called ω-regular if there exists a parity-NFA A such
that L = L(A). The class of all ω-regular languages is denoted by REGω.

Remark 2.2. For every L ⊆ Σω, the following are equivalent

1. there exists a parity-NFA A such that L = L(A),

2. there exists a parity-DFA A such that L = L(A),

3. there exists a Muller-NFA A such that L = L(A),

4. there exists a Muller-DFA A such that L = L(A),

We call the parity and Muller acceptance conditions, which depend on
the infinity set of a run, strong acceptance conditions. However, we also
consider acceptance conditions which depend on the occurrence set of a run
which are called weak. A weak-parity acceptance condition is defined by

Ωweak-parity = {ρ ∈ Qω | min{Occ(col(ρ))} is even} ,

i.e., a run ρ of an automaton with a weak-parity acceptance condition, de-
noted by weak-parity-NFA (weak-parity-DFA), is accepting if the minimal
priority occurring in ρ is even.

We call a weak-parity acceptance condition E-acceptance condition if
col(q) ∈ {0, 1} for every q ∈ Q, and it is called A-acceptance condition
if col(q) ∈ {1, 2} for every q ∈ Q. Thus, a run ρ of an automaton with
an E-acceptance condition, denoted by E-NFA (E-DFA), is accepting if ρ
visits a state with priority 0 at least once, and for an automaton with an
A-acceptance condition, denoted by A-NFA (A-DFA), a run is accepting if
it never visits a state with priority 1.

In the remainder of this work we will also write col or F for the acceptance
condition instead of Ω.

2.2.2 Pushdown Systems, Pushdown Automata

A pushdown system (PDS) S = (Q,Γ,∆, qin) consists of a finite set of states
Q with the initial state qin ∈ Q, a stack alphabet Γ with an initial stack
symbol ⊥ /∈ Γ, and a transition relation

∆ ⊆ Q× Γ⊥ ×Q× Γ≤2
⊥ ,

where by Γ⊥ we denote the set Γ∪ {⊥}. Moreover, the transition relation ∆

satisfies the following requirement. For every transition δ = (q, A, p, α) ∈ ∆,
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if A = ⊥ then α = γ⊥ with γ ∈ Γ≤1, otherwise α ∈ Γ≤2, i.e., the initial
stack symbol ⊥ can neither be written nor deleted from the stack.

A transition δ = (q, A, p, α) ∈ ∆ is called a push-transition if |α| = 2, it
is called a skip-transition if |α| = 1, and δ is a pop-transition if α = ε. We
say that S is deadlock-free if for every q ∈ Q and every A ∈ Γ⊥ there exist
p ∈ Q and α ∈ Γ≤2

⊥ such that (q,A, p, α) ∈ ∆.
A stack content is a word from Γ∗⊥ where we assume the leftmost symbol

to be the top of the stack. A configuration is a pair (q, γ) consisting of a
state q ∈ Q and a stack content γ ∈ Γ∗⊥. We define the stack height of a
configuration (q, γ) by

sh(q, γ) = |γ| − 1 .

Moreover, we write (q, γ) 7−S (q′, γ′) if there exists (q, γ(0), q′, α) ∈ ∆ and
γ′ = αγ(1) · · · γ(|γ| − 1).

We extend the notion of PDS to pushdown machines, pushdown au-
tomata and pushdown transducers. A pushdown machine is a pushdown
system augmented by an input alphabet. For pushdown automata, input
alphabets and acceptance conditions are attached, and for pushdown trans-
ducers, input and output alphabets, and output functions are provided.

A (nondeterministic) pushdown machine (PDM) M = (Q,Σ,Γ,∆, qin)

consists of a finite set of states Q with the initial state qin ∈ Q, an input
alphabet Σ, a stack alphabet Γ with the initial stack symbol ⊥ /∈ Γ, and a
transition relation

∆ ⊆ Q× Γ⊥ × Σε ×Q× Γ≤2
⊥ ,

where Γ⊥ = Γ ∪ {⊥} and Σε = Σ ∪ {ε}. Analogously to PDS, the initial
stack symbol ⊥ marks the bottom of the stack and can neither be written
nor deleted from the stack. For a transition δ = (q, A, a, p, α), we call δ
a push-, skip- or pop-transition depending on the length of α as for PDS.
Furthermore, δ is an ε-transition if a = ε and it is called non-ε-transition
otherwise. A PDMM is deterministic (DPDM) if the transition relation ∆

satisfies∣∣{(q′, α) | (q, A, a, q′, α) ∈ ∆}
∣∣+
∣∣{(q′, α) | (q, A, ε, q′, α) ∈ ∆}

∣∣ ≤ 1

for all q ∈ Q, all a ∈ Σ, and all A ∈ Γ⊥. In this case we use a (partial)
function δ : Q× Γ⊥ × Σε → Q× Γ≤2

⊥ to denote the transition relation ∆.
For two configurations (q, γ), (q′, γ′) ∈ Q × Γ∗⊥, we write (q, γ)

a7−M
(q′, γ′) if there exists (q, γ(0), a, q′, α) ∈ ∆ and γ′ = αγ(1) · · · γ(|γ| − 1).

A run ρ ofM on a finite word w ∈ Σ∗ is a finite sequence of configurations
ρ = (q0, γ0) · · · (qr, γr) such that
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1. (q0, γ0) = (qin,⊥), and

2. for every i ∈ [r], there exists ai ∈ Σε such that (qi, γi)
ai7−M (qi+1, γi+1)

and a0 · · · ar = w, and

3. {(q, α) | (qr, γr(0), ε, q, α) ∈ ∆} = ∅.

The last item of this definition requires that no execution of an ε-transition
is possible from the last configuration of a run ofM on a finite word.

A run ρ ofM on an infinite word w ∈ Σω is defined as an infinite sequence
of configurations ρ = (q0, γ0)(q1, γ1) · · · such that

1. (q0, γ0) = (qin,⊥), and

2. for every i ∈ N, there exists ai ∈ Σε such that (qi, γi)
ai7−M (qi+1, γi+1)

and a0a1 · · · = w.

Notice, that ifM is deterministic then, for every word w ∈ Σ∗ ∪Σω, if there
exists a run ofM on w then there is exactly one unique run. We say that a
PDMM has the continuity property if for every word w ∈ Σω there exists a
run ofM on w.

A pushdown automaton (PDA) P = (Q,Σ,Γ,∆, qin, F ) consists of a
PDMMP = (Q,Σ,Γ,∆, qin) and a set of final states F ⊆ Q. A PDA P is
deterministic (DPDA) if MP is deterministic. We say that a PDA P has
the continuity property ifMP has the continuity property.

For two configurations c, c′ ∈ Q × Γ∗⊥, we write c a7−P c′ if c
a7−MP c′. A

run ρ of P on a word w ∈ Σ∗ is a run of MP on w. A run ρ is accepting
if last(ρ) ∈ F . A word w is accepted by P if there is an accepting run of P
on w. The language recognized by P is

L(P) = {w ∈ Σ∗ | w is accepted by A} .

A language L ⊆ Σ∗ is called (nondeterministic) contextfree if there exists
a PDA P such that L = L(P), and it is called deterministic contextfree if
there exists a DPDA P such that L = L(P). We denote the class of all
contextfree languages by CFL and the class of all deterministic contextfree
languages by DCFL. It is well-known that REG ( DCFL ( CFL [GG66].

Lemma 2.3.

1. For every PDA P, a PDA P ′ can be constructed such that L(P) =

L(P ′) and P ′ has the continuity property.

2. For every DPDA P, a DPDA P ′ can be constructed such that L(P) =

L(P ′) and P ′ has the continuity property.
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The first statement of Lemma 2.3, can easily be established by extend-
ing the PDA by just one non-accepting sink state which is reached from
every configuration via an ε-transition and where every further computa-
tion remains forever. The construction for the deterministic case, the second
statement of this lemma, involves elimination of loops consisting solely of
ε-transitions (cf. [GG66]).

Now, we define pushdown automata on infinite words. An ω-pushdown
automaton (ω-PDA) P = (Q,Σ,Γ,∆, qin,Ω) consists of a PDM MP =

(Q,Σ,Γ,∆, qin) and an acceptance condition Ω ⊆ (Q × Γ∗⊥)ω. Again, P
is deterministic (ω-DPDA) ifMP is deterministic.

A run ρ of P on a word w ∈ Σω is a run of MP on w. A run ρ is
accepting if ρ ∈ Ω. A word w is accepted by A if there is an accepting run
of A on w. The language recognized by A is

L(A) = {w ∈ Σω | w is accepted by A} .

Let col : Q→ [n] be a coloring function, for some n ∈ N. We extend the
function col to configurations by defining col(q, γ) = col(q) for every state
q ∈ Q and every stack content γ ∈ Γ∗⊥, i.e., the color of a configuration
depends only on the state and not on the stack content of the configuration.

Now, we consider the acceptance conditions presented in the previous
subsection and define the corresponding ω-pushdown automata. A run ρ of
a parity-PDA (parity-DPDA) P = (Q,Σ,Γ,∆, qin, col) is accepting if

min{Inf(col(ρ))} is even .

A run ρ of a Muller-PDA (Muller-DPDA) P = (Q,Σ,Γ,∆, qin,F) is accept-
ing if the set of states seen infinitely often in ρ is contained in F , i.e.,

Inf(Pr0(ρ)) ∈ F .

A language L ⊆ Σω is called (nondeterministic) ω-contextfree if there
exists an parity-PDA P such that L = L(P), and it is called deterministic
ω-contextfree if there exists an parity-DPDA P such that L = L(P). We
denote the class of all ω-contextfree languages by CFLω, and the class of
all deterministic ω-contextfree languages by DCFLω. For these classes the
proper inclusion holds as well, REGω ( DCFLω ( CFLω [CG78].

Remark 2.4. For every L ⊆ Σω, the following are equivalent

1. there exist parity-PDA P such that L = L(P).

2. there exist Muller-PDA P such that L = L(P).

Remark 2.5. For every L ⊆ Σω, the following are equivalent
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1. there exist parity-DPDA P such that L = L(P).

2. there exist Muller-DPDA P such that L = L(P).

Lemma 2.6.

1. For every parity-PDA P, a parity-PDA P ′ can be constructed such that
L(P) = L(P ′) and P ′ has the continuity property.

2. For every parity-DPDA P, a parity-DPDA P ′ can be constructed such
that L(P) = L(P ′) and P ′ has the continuity property.

Analogously to Lemma 2.3, the construction for parity-PDA utilizes non-
determinism and for parity-DPDA the crucial point is again the elimination
of loops consisting of ε-transitions (cf. [GG66] and [CG78]). Unless oth-
erwise stipulated in the remainder of this work we assume every PDA and
every ω-PDA to have the continuity property.

We continue by defining weak ω-pushdown automata. A run ρ of a weak-
parity-PDA (weak-parity-DPDA) P = (Q,Σ,Γ,∆, qin, col) is accepting if

min{Occ(col(ρ))} is even .

For E-acceptance and A-acceptance conditions we abbreviate the correspond-
ing pushdown automata by E-PDA (E-DPDA) and A-PDA (A-DPDA), re-
spectively.

We complete by defining pushdown transducers, PDM provided by out-
put. A pushdown transducer (PDT) T = (Q,ΣI ,ΣO,Γ,∆, qin, λ) consists
of a PDM MT = (Q,ΣI ,Γ,∆, qin), an output alphabet ΣO and a partial
output function λ : Q → ΣO. A pushdown transducer T is deterministic
(DPDT) ifMT is deterministic. A PDT T is a nondeterministic transducer
(NFT) if Γ = ∅, i.e.,MT can be seen as a finite automaton, since it has no
access to the stack. An NFT is deterministic (DFT) ifMT is deterministic.
We will omit Γ in the description of NFT and DFT.

A run ρ of T on a word w ∈ (ΣI)
∗ is a run of MT on w. A DPDT T

defines a partial function fT : (ΣI)
∗ → ΣO as follows. For a word w ∈ (ΣI)

∗,
let ρ be the unique run of T on w and last(ρ) = (q, γ), for some state
q ∈ Q and some stack content γ ∈ Γ∗⊥, then fT (w) = λ(q). We will also
use another definition of DPDT where the output function is of the form
λ : Q × Γ⊥ → ΣO. In this case the output symbol not only depends on the
state but also on the top stack symbol of the last configuration of the run
of the DPDT T , i.e., for a word w ∈ (ΣI)

∗, and the unique run ρ of T
on w with last(ρ) = (q, γ), fT (w) = λ(q, γ(0)). Note, that the definitions are
equivalent, as the current top stack symbol can be stored in the current state.
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2.2.3 Trees and Tree Automata

For a set X, an X-tree is a prefix closed set T ⊆ X∗, i.e., for w ∈ X∗ and
x ∈ X if wx ∈ T then also w ∈ T . The elements of T are called nodes and
the node ε is called root of T . For a node wx ∈ T with w ∈ X∗ and x ∈ X,
wx is called child or successor of w, and w is the parent or predecessor of wx.
If T = X∗ then it is called full infinite X-tree.

For an alphabet Σ, a Σ-labeled X-tree is a pair (T, t) where T is an
X-tree and t : T → Σ is a function assigning to each node from T a symbol
from Σ. We call a labeled tree (T, t) full if T is full. By XΣ we denote the
set of all full infinite Σ-labeled X-trees. To simplify our notation we will
sometimes write t instead of (X∗, t) for a tree in XΣ.

For a tree t ∈ XΣ and a set Y we define the Y -widening of t as a Σ-
labeled (X × Y )-tree wideY (t) = t′ such that t′(z) = t(PrX(z)), for every
node z ∈ (X×Y )∗. Furthermore, we say that a tree t ∈ XΣ is regular if it is
generated by a finite transducer, i.e., if there is a DFT T = (Q,X,Σ, δ, qin, λ)

such that for every node w ∈ X∗, fT (w) = t(w).
For a finite set S, we denote the set of all positive Boolean formulas over

propositional variables from S (where the formulas true and false are also
allowed) by B+(S). For Boolean formulas we assume, that ∧ has precedence
over ∨. Notice that with this definition, every formula from B+(S) is in
disjunctive normal form (DNF). We denote such formulas ϕ in DNF also as
sets ϕ = {ψ1, . . . , ψk} of conjuncts where we denote the conjuncts ψi also
as sets ψi ⊆ S of propositional variables. A set S′ ⊆ S satisfies a formula
ϕ ∈ B+(S) if and only if ϕ is true when assigned true to all elements in S′

and false to all elements in S \ S′.
To be able to navigate through a tree we define sets of directions. For

a finite set X, let Dir = {↓x| x ∈ X}, Dir↑ = Dir ∪ {↑}, Dir	 = Dir ∪ {	},
and Dir↑,	 = Dir ∪ {↑,	}. For all w ∈ X∗ and x ∈ X, we define w·	 = w,
w·↓x = wx, and wx·↑ = w.

Let X be a finite set. An alternating parity two-way tree automaton
(parity-A2TA) A = (Q,Σ, δ, qin, col) consists of a finite set of states Q with
the initial state qin, a labeling alphabet Σ, a coloring function col : Q→ [n],
for some n ∈ N, and a transition function δ : Q× Σ→ B+(Dir↑,	 ×Q).

A run of A on a full infinite Σ-labeled X-tree t ∈ XΣ is a not necessarily
full (Q×X∗)-labeled N-tree (T, ρ) such that the following conditions hold.

1. ε ∈ T and ρ(ε) = (qin, ε).

2. If y ∈ T with ρ(y) = (q, w) and δ(q, t(w)) = ϕ then there is a conjunct
ψ = {(d0, q0), . . . , (dk−1, qk−1)} ⊆ Dir↑,	 ×Q in ϕ such that the set of
successors of y in T is precisely {y · i | i ∈ [k]} and ρ(y · i) = (qi, w · di).
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A run (T, ρ) is accepting if all its paths satisfy the parity condition col, i.e.,
for each path π through T (starting in ε) min{Inf(col(ρ(π)))} is even, where
ρ(π) is the infinite sequence of labelings of π and col is extended to labelings
(q, w) ∈ Q×X∗ such that col(q, w) = col(q) for every q ∈ Q and w ∈ X∗.

A tree t ∈ XΣ is accepted by A if there is an accepting run (T, ρ) of A
on t. The tree language recognized by A is

L(A) = {t ∈ XΣ | t is accepted by A} .

We call a parity-A2TA A an alternating parity one-way tree automaton
or just alternating parity tree automaton, denoted by parity-A1TA or parity-
ATA, if the transition function δ does not use the directions ↑ and 	, i.e.,
it is of the form δ : Q × Σ → B+(Dir × Q). We call a parity-ATA A over
Σ-labeled an alternating parity finite automaton, denoted by parity-AFA if
|X| = 1, in this case we omit the Dir component in the transition function,
i.e., for parity-AFA the transition function is of the form δ : Q×Σ→ B+(Q).

Let X = {x0, . . . , xk} for some k ∈ N. A parity-ATA is called nondeter-
ministic, denoted by parity-NTA or parity-N1TA, if the transition function
is of the following form. For all q ∈ Q and all a ∈ Σ, δ(q, a) has the form

n∨
j=0

(↓x0 , q
j
0) ∧ . . . ∧ (↓xk , q

j
k) for some n ∈ N.

Notice that for every parity-ATA there is an equivalent parity-NTA, in par-
ticular for every parity-AFA there is also an equivalent parity-NFA.

Theorem 2.7 ([MS95]). For every parity-ATA A over Σ-labeled X-trees
there is a parity-NTA N over Σ-labeled X-trees such that L(A) = L(N ).

Remark 2.8 ([KV99]). For every parity-NTA A over Σ-labeled (X × Y )-
trees there is a parity-NTA B over Σ-labeled X-trees such that t ∈ L(B) if
and only if wideY (t) ∈ L(A).

An alternating (one-way) pushdown tree automaton (APDTA) P =

(Q,Σ,Γ, qin, δ,Ω) over Σ-labeled X-trees consists of a finite set Q of states
with the initial state qin, a labeling alphabet Σ, a stack alphabet Γ with the
initial stack symbol ⊥ /∈ Γ, a transition function

δ : Q× Σε × Γ⊥ → B+(Dir	 ×Q× Γ≤2
⊥ ) ,

where Γ⊥ = Γ∪{⊥} and Σε = Σ∪{ε}, and an acceptance component Ω which
is either a parity acceptance condition col : Q→ [n], for some n ∈ N, (in this
case the automaton is denoted by parity-APDTA) or a Muller acceptance
condition F ⊆ P(Q) (Muller-APDTA). As for pushdown word automata we
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2.2 Automata

assume that the initial stack symbol ⊥ neither can be written to nor be
deleted from the stack.

A run of a APDTA P on a Σ-labeled X-tree t ∈ XΣ is a not necessarily
full (X∗×Q×Γ∗⊥)-labeled N-tree (T, ρ) such that the following conditions
hold.

1. ε ∈ T and ρ(ε) = (ε, qin,⊥).

2. If y ∈ T with ρ(y) = (w, q, γ) and δ(q, t(w), γ(0)) = ϕ then there is a
conjunct ψ = {(d0, q0, α0), . . . , (dk−1, qk−1, αk−1)} ⊆ Dir	 × Q × Γ≤2

⊥
in ϕ such that the set of successors of y in T is precisely {y · i | i ∈ [k]}
and ρ(y · i) = (w · di, qi, αiγ(1) · · · γ(|γ| − 1)) .

A run (T, ρ) is accepting, if all its paths satisfy the acceptance condition Ω.
That means, that for each infinite path π through T (starting in ε), in
case of a parity acceptance condition min{Inf(col(ρ(π)))} has to be even,
and Inf(Pr1(ρ(π))) ∈ F has to be satisfied in case of a Muller acceptance
condition. Here ρ(π) is the infinite sequence of labelings of π, the coloring
function col is extended to labelings (w, q, γ) ∈ X∗ × Q × Γ∗⊥ such that
col(w, q, γ) = col(q) for every w ∈ X∗ and every configuration (q, γ) ∈
Q×Γ∗⊥. Notice that Pr1 projects to the set of states Q, i.e., Pr1(w, q, γ) = q

for every w ∈ X∗ and every configuration (q, γ) ∈ Q× Γ∗⊥..
A tree t ∈ XΣ is accepted by P if there is an accepting run (T, ρ) of P

on t. The tree language recognized by P is

L(P) = {t ∈ XΣ | t is accepted by P} .

Let X = {x0, . . . , xk} for some k ∈ N. An APDTA P is called nondeter-
ministic (NPDTA) if, for every q ∈ Q and every A ∈ Γ⊥, either for all a ∈ Σ

there is some (q′, α) ∈ Q × Γ≤2
⊥ such that δ(q, a,A) = (	, q′, α) or, for all

a ∈ Σ, δ(q, a, A) has the form

n∨
j=0

(↓x0 , q
j
0, α

j
0) ∧ . . . ∧ (↓xk , q

j
k, α

j
k)

for some n ∈ N. We denote an NPDTA with a parity (Muller) acceptance
condition by parity-NPDTA (Muller-NPDTA). Notice, that like for parity-
NTA, the nonemptiness problem for parity-NPDTA, which is to decide, given
a parity-NPDTA P over Σ-labeled X-trees whether L(P) 6= ∅, is shown to
be decidable.

Theorem 2.9 ([KPV02]). The nonemptiness problem for parity-NPDTA is
decidable.
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2 Preliminaries

2.3 Infinite Games

2.3.1 Gale-Stewart Games

We consider so called Gale-Stewart games, turn-based infinite two-player
games of perfect information, which were introduced in [GS53]. We present
here a slightly modified version of the original definition.

Let ΣI and ΣO be two alphabets and let Σ = ΣI × ΣO. We call ΣI

input alphabet and ΣO output alphabet. An ω-language L ⊆ Σω defines the
Gale-Stewart game Γ(L). The game Γ(L) is played by two players, Player I
(the input player which will also be denoted by Player 1) and Player O (the
output player, also denoted by Player 0) in rounds i ∈ N. The two players
pick letters from their respective alphabets in alternation. In every round i,
first Player I picks a letter ai from ΣI and then Player O (being aware of
the choice ai of Player I) picks a letter bi from ΣO.

A play of Γ(L) is a sequence a0, b0, a1, b1, a2, b2, . . . of letters which yields
two ω-words, the input word α = a0a1a2 · · · constructed by Player I and the
output word β = b0b1b2 · · · produced by Player O. The language L is used
to determine the winner of the play, i.e., it provides the winning condition.
Player O wins the play if and only if the ω-word α_β =

(α(0)
β(0)

)(α(1)
β(1)

)(α(2)
β(2)

)
· · ·

induced by the play is contained in L.
A strategy for Player I is a function σI : (ΣO)∗ → ΣI , and a strategy for

Player O is a function σO : (ΣI)
∗ → ΣO. Consider a play a0, b0, a1, b1, . . .

and its induced ω-word α_β. The play is consistent with a strategy σI if
α(n) = σI(prefn(β)), for all n ∈ N. The play is consistent with a strategy σO

if β(n) = σO(prefn+1(α)), for all n ∈ N. A strategy σ is winning for Player i,
for i ∈ {0, 1}, if every play which is consistent with σ is won by Player i.
We say that Player i wins Γ(L) if there is a winning strategy for Player i. A
game Γ(L) is determined if it is won by either of the two players.

Consider Σω as a topological space. Open sets are languages of the form
W ·Σω whereW ⊆ Σ∗ and closed sets are complements of open sets. The class
of open sets is denoted by Σ1 and the class of closed sets is denoted by Π1.
A language L ⊆ Σω is a Borel set if it is obtained from open and closed sets
by repeatedly applying countable unions and countable intersections. Based
on the classes Σ1 and Π1 the finite levels of the Borel Hierarchy are defined
inductively, Σn+1 is the class of countable unions of Πn-sets, and Πn+1 is
the class of countable intersections of Σn-sets, for n > 0. Let B(Σn) denote
the boolean closure of the n-th level of the Borel Hierarchy. The full Borel
hierarchy is obtained by including the classes Σα, for countable ordinals α.
Figure 2.1 illustrates how the classes are related.

Theorem 2.10 ([Mar75]). Γ(L) is determined, for every Borel set L ⊆ Σω.

We will also represent strategies by functions which take into account the
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Figure 2.1: Finite Borel hierarchy

whole history of a play and not only sequences produced by the opponent,
i.e., of the form σI : (ΣI × ΣO)∗ → ΣI and σO : (ΣI × ΣO)∗ΣI → ΣO. Let
a0, b0, a1, b1, . . . be a play and α_β its induced ω-word. The play is con-
sistent with σI if α(n) = σI(prefn(α_β)), for all n ∈ N. It is consistent
with σO if β(n) = σO(prefn(α_β)α(n)), for all n ∈ N. Notice, that both
representations can be converted into each other.

For a class L of ω-languages, we refer to a Gale-Stewart game Γ(L) as an
L-game if L ∈ L.

2.3.2 Games on Graphs

A game graph G = (V, V0, V1, E, vin) consists of a (possibly countably infi-
nite) directed graph (V,E) with set V of vertices and set E ⊆ V ×V of edges,
a partition V0 ∪ V1 of the set of vertices V and the initial vertex vin ∈ V .
A vertex v ∈ V is called reachable if there is a path from vin to v. We
say that a game graph G is deadlock-free if for every vertex v ∈ V there
is a vertex v′ ∈ V such that (v, v′) ∈ E, i.e., every vertex has at least one
outgoing edge. For the reason of convenience, in the following, we assume
deadlock-free game graphs.

A game G = (G,Ω) consists of a game graph G and a winning condi-
tion Ω ⊆ V ω. A play in G is built up by moving a token on the game
graph G. Initially, the token is placed on vin. If the vertex v where the
token is currently located is in Vi, then Player i has to choose an outgoing
edge (v, v′) ∈ E and the token is moved to the vertex v′. Thus, a play
in G is an infinite sequence of vertices ρ ∈ V ω such that ρ(0) = vin and
(ρ(n), ρ(n+ 1)) ∈ E, for all n ∈ N. The winning condition Ω consists of all
plays winning for Player O. A play ρ is winning for Player I if ρ ∈ V ω \ Ω.

Let col : V → [n] be a coloring function assigning to every vertex in V

a color from [n], for some n ∈ N. Analogously to acceptance conditions for
automata (cf. 2.2), we call a winning condition Ω parity winning condition
if Ω = {ρ ∈ V ω | min{Inf(col(ρ))} is even}, it is called weak-parity winning
condition if Ω = {ρ ∈ V ω | min{Occ(col(ρ))} is even}. Moreover, reach-
ability winning conditions corresponds to E-acceptance and safety winning
conditions to A-acceptance conditions. We denote a parity (weak-parity,
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2 Preliminaries

reachability or safety) game by G = (G, col). Furthermore, for F ⊆ P(V ),
A Muller winning condition is defined by Ω = {ρ ∈ V ω | Inf(ρ) ∈ F} and a
Muller game is denoted by G = (G,F).

A strategy for Player i is a function σ : V ∗Vi → V such that for every
w ∈ V ∗Vi, we have (last(w), σ(w)) ∈ E. A strategy σ is called positional
if σ(w) = σ(w′) holds for all w,w′ ∈ V ∗Vi with last(w) = last(w′), i.e., the
choice of the next move does not depend on the whole play prefix but only
on the current vertex. A play ρ is consistent with a strategy σ for Player i
if ρ(n + 1) = σ(prefn+1(ρ)) for every n ∈ N with ρ(n) ∈ Vi. A strategy σ

is winning for Player i if every play ρ which is consistent with σ is winning
for Player i. We say that Player i wins a game G if there exists a winning
strategy for Player i in G. A game G is determined if it is won by either of
the two players.

Theorem 2.11 ([EJ91], [Mos91]). Parity games are determined with posi-
tional winning strategies.

We will also use the following representations for strategies. Notice,
that every play prefix can be described by a sequence of edges instead of
a sequence of vertices. Hence, a strategy for Player i can be defined by
σ : E∗ → V such that for every η ∈ E+ with last(η) = (v, v′), for some v ∈ V
and v′ ∈ Vi, we have (v′, σ(η)) ∈ E, and if vin ∈ Vi, then (vin, σ(ε)) ∈ E.
Moreover, a strategy for Player i can also be defined by σ : E∗ → E such
that for every η ∈ E+ with last(η) = (v, v′), for some v ∈ V and v′ ∈ Vi, we
have σ(η) = (v′, v′′), for some v′′ ∈ V , and if vin ∈ Vi, then σ(ε) = (vin, v

′′),
for some v′′ ∈ V . Finally, one can define a strategy for Player i by a function
σ : V ∗Vi → E such that for every w ∈ V ∗Vi, we have σ(w) = (last(w), v),
for some v ∈ V . Notice that all these representations can be converted into
each other.

Pushdown Game Graphs

Let S = (Q,Γ,∆, qin) be a PDS. The induced pushdown graph G(S) =

(V,E), also called configuration graph, is an infinite directed graph where
the set of vertices V = {(q, γ) | q ∈ Q, γ ∈ Γ∗⊥} is the set of configurations,
and for two configurations v, v′ ∈ V , there exists the edge (v, v′) ∈ E if and
only if v 7−S v′. Notice that G(S) is deadlock-free if S is deadlock-free.

Now, a partition Q0 ∪Q1 of the set of states Q induces the game graph
G = (V, V0, V1, E, vin) which is called pushdown game graph, where (V,E) =

G(S), the partition V0 ∪ V1 of the set of configurations V is defined by
Vi = {(q, γ) ∈ V | q ∈ Qi}, for i ∈ {0, 1}, and vin = (qin,⊥).

A pushdown game G = (G,Ω) consists of a pushdown game graph G =

(V, V0, V1, E, vin) and a winning condition Ω ⊆ V ω. In the most cases we
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2.3 Infinite Games

will consider winning conditions which do not depend on the stack contents
but only on the states of configurations, i.e., winning conditions Ω of the
following form. For every ρ ∈ V ω, if ρ ∈ Ω then every ρ′ ∈ V ω with
Pr0(ρ) = Pr0(ρ′) is also contained in Ω. In such cases, we will also write
Pr0(Ω) for the winning condition instead of Ω. Pushdown games with more
general winning conditions (which also depend on the stack contents) are
studied e.g. in [CDT02], [Ser04] and [Fin05]. In Chapter 3, we will introduce
a winning condition which also depends on the stack contents, more precisely
on the stack heights.

For a PDS S = (Q,Γ,∆, qin) and its induced pushdown game graph
G = (V, V0, V1, E, vin), let col : Q → [n] be a coloring function extended to
configurations via col(v) = col(Pr0(v)), for every configuration v ∈ V . We
refer to a pushdown game G = (G, col) with a parity (weak-parity, reachabil-
ity, or safety) winning condition col as a parity (weak-parity, reachability, or
safety) pushdown game. Moreover, we refer to a pushdown game G = (G,F)

with a Muller winning condition F ⊆ P(Q) as a Muller pushdown game.

2.3.3 Game Reduction, Game Simulation

Let G = (G,Ω) and G′ = (G′,Ω′) be games on graphs G = (V, V0, V1, E, vin)

and G′ = (V ′, V ′0 , V
′

1 , E
′, v′in) with winning conditions Ω and Ω′, respectively.

We say that G = (G,Ω) is reducible to G′ = (G′,Ω′) if there exists a
memory structureM = (Q, δ, qin) consisting of a finite set Q of states with
initial state qin and an update function δ : Q× V → Q such that

1. V ′ = V ×Q, V ′0 = V0 ×Q, V ′1 = V1 ×Q and v′in = (vin, qin)

2. ((v, q), (v, q)) ∈ E′ if and only if (v, v) ∈ E and δ(q, v) = q

3. Player i wins a play ρ in G if and only if Player i wins the play
ρ′ = (v0, q0)(v1, q1) · · · in G′ induced by ρ such that (v0, q0) = v′in
and (vn, qn) = (ρ(n), δ(ρ(n), qn−1), for all n > 0.

Game reduction is used to transfer games with complex winning con-
ditions which are hard to handle to games with possibly simpler winning
conditions. The drawback which has to be accepted is the growth of the size
of the game graphs which get larger by taking the cartesian product with the
memory structure. A prominent example is the reduction of Muller games
to parity games using the latest appearance record [Tho95].

Now, we formulate a more general notion of game simulation. We say
that G = (G,Ω) is simulated by G′ = (G′,Ω′) if there exist two functions
f : V ∗Vi → (V ′)∗V ′i and g : E′ × V → V such that

1. Player i wins G if and only if Player i wins G′
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2. if σ
′ : (V ′)∗V ′i → E′ is a winning strategy for Player i in G′ then

σ : V ∗Vi → V with σ(w) = g(σ′(f(w)), last(w)), for every play pre-
fix w ∈ V ∗Vi, is a winning strategy for Player i in G.

The function f transfers a play prefix w ∈ V ∗Vi in G into a play prefix
w′ ∈ (V ′)∗V ′i in G′. To deduce a winning strategy σ in G from a winning
strategy σ

′ in G′ the function g is used which maps an edge in E′ (the next
move given by σ

′) and the current vertex from Vi to the vertex which has to
be chosen next.

In contrast to game reduction where the size of the game graph increases
in the reduction process, the more general game simulation allows to transfer
games on large (infinite) game graphs to games on smaller (finite) game
graphs. A game simulation transferring parity pushdown games (on infinite
pushdown graphs) to parity games on finite game graphs [Wal96, Wal01] will
be used in Section 6.
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Chapter 3

Pushdown Games and
Pushdown Winning Strategies

From the Büchi-Landweber result and the known correspondence between
finite automata and monadic second-order logic it follows that Gale-Stewart
games with specifications definable in monadic second-order logic can be
solved with winning strategies which are again definable in monadic second-
order logic. This fact raises the question concerning the conceptual con-
nection between formats of game specifications and corresponding solutions.
This problem can be viewed as the following reformulation of Church’s Prob-
lem focusing on the formats of the game specifications and their solutions.
Given a winning condition L in a specific format, i.e., L is an ω-language
from a particular class recognizable by a certain type of automata or de-
finable in some specific logic, it is to decide whether there exist a winning
strategy σ for the winner such that σ can be implemented in the same format
as the specification L, i.e., σ is definable in the same logic or realizable by
a transducer of the same type. This relation between formats of game spec-
ifications and corresponding solutions has been analyzed for several regular
classes. Selivanov established a tight connection for the class of aperiodic
regular languages [Sel07]. He showed that games with aperiodic regular win-
ning conditions are determined with winning strategies realizable by aperi-
odic transducers. Rabinovich and Thomas established analogous result for a
number of sublogics of the monadic second-order logic [RT07], among them
first-order logic over (N, <), the extension of first-order logic over (N, <) by
modular counting quantifiers, first order logic over (N, S) with successor re-
lation S and the quantifier-free first-order logic over (N, 0,+1) called strictly
bounded logic. Moreover, examples of logics where winning strategies of the
same format don’t suffice were exhibited. Chaturvedi et al. studied sub-
classes of star-free regular languages in [COT11] where piecewise testable
languages and languages from the dot-depth hierarchy are considered.
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In this chapter, we extend these results to contextfree specifications,
hence, we address the relation between the formats of winning conditions
and corresponding winning strategies for contextfree Gale-Stewart games as
well as parity games played over pushdown game graphs. We consider sev-
eral classes of contextfree specifications which we introduce in Section 3.1.
We establish a tight connection between the formats of specifications and
their solutions for a number of cases. Furthermore, we also present some
cases where this correspondence fails. To prove this results, which we state
in Section 3.2, we first recall the technique of Kupferman and Vardi [KV00a]
in Subsection 3.2.1. The proofs are presented in Subsection 3.2.2.

3.1 Classes of Contextfree Languages

In this section we define several classes of contextfree ∗-languages and con-
textfree ω-languages. Various number of such classes is conceivable which
can be defined by different kinds of pushdown automata recognizing those
classes. We distinguish the types of pushdown automata by several prop-
erties of the underlying pushdown machine on the one hand and by the
underlying acceptance conditions on the other hand.

For pushdown automata on finite words we consider acceptance by fi-
nal states, and for those on infinite words we consider parity acceptance,
as defined in Section 2.2.2. Beyond that, we introduce a new kind of ac-
ceptance conditions for ω-pushdown automata, so-called stair acceptance
conditions [LMS04]. Notice that this notion is also naturally carried over to
winning conditions for games on pushdown game graphs, called stair winning
conditions.

Intuitively, for a finite or infinite path through a configuration graph, a
configuration is said to be a stair configuration if no subsequent configuration
of smaller stack height exists in this path.

Definition 3.1 (Stairs). Let V = Q × Γ∗⊥ be a set of configurations over
some set Q of states and a pushdown alphabet Γ. Define the functions
StairPositions : V + ∪ V ω → 2N and Stairs : V + ∪ V ω → V + ∪ V ω by

StairPositions(w) = {n ∈ N | ∀m ≥ n : sh(w(m)) ≥ sh(w(n))},

and Stairs(w) = w(n0)w(n1) · · · , where n0 < n1 < · · · is the ascending
enumeration of StairPositions(w), for w ∈ V + ∪ V ω.

Using this notion we now define stair acceptance conditions for push-
down automata (and stair winning conditions for games on pushdown game
graphs). Let M = (Q,Σ,Γ,∆, qin) be a PDM. A stair parity acceptance
condition is given by a coloring function col : Q → [n], for some n ∈ N. A
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run ρ of the stair parity pushdown automaton (parity-StPDA) P = (M, col)

on a word w ∈ Σω is accepting if Stairs(ρ) satisfies the parity condition given
by col, i.e., if the minimal color seen infinitely often in Stairs(ρ) is even.

Analogously, a pushdown game G = (G, col) over a pushdown game graph
G = (V, V0, V1, E, vin) with a stair parity winning condition given by the
coloring function col is called stair parity pushdown game. A play ρ ∈
V ω of G is winning for Player O if and only if Stairs(ρ) satisfies the parity
condition given by col.

Now, we define several types of pushdown machines by considering dif-
ferent restrictions of the general model of (nondeterministic) PDM. In the
previous chapter we already introduced one restriction, namely deterministic
pushdown machines (DPDM) where the transition relation is restricted such
that it is a (partial) transition function.

We continue by defining input driven PDM where the input symbol deter-
mines whether a push-, pop- or skip-transition is performed. Such PDM are
called visibly pushdown machines (VPM) [AM04]. Intuitively, the transition
relation is restricted such that for every input letter a ∈ Σ, all transitions in
the transition relation processing a are either push-, pop- or skip-transitions.

Definition 3.2 (Visibly PDM). A PDM M = (Q,Σ,Γ,∆, qin) is visibly
(VPM) if there are a partition Σpush∪Σpop∪Σskip of Σ and relations ∆push ⊆
Q × Σpush × Q × Γ, ∆pop ⊆ Q × Σpop × Γ × Q and ∆skip ⊆ Q × Σskip × Q
such that the transition relation ∆ is of the following form. For all X ∈ Γ⊥,

• (q,X, a, q′, AX) ∈ ∆ if and only if (q, a, q′, A) ∈ ∆push,

• (q, A, a, q′, ε), (q,⊥, a, q′,⊥) ∈ ∆ if and only if (q, a, A, q′) ∈ ∆pop, and

• (q,X, a, q′, X) ∈ ∆ if and only if (q, a, q′) ∈ ∆skip.

We call such an alphabet Σ = Σpush ∪ Σpop ∪ Σskip, which is partitioned
into three disjoint alphabets, a visibly pushdown alphabet. Symbols from
Σpush are called call -symbols, symbols from Σpop are called return-symbols,
and Σskip contains internal actions. This notions originate from the context
of program analysis which was the first motivation for the introduction of
VPM to model recursive procedure calls.

When reading a call -symbol a ∈ Σpush, a VPM has to push a stack
symbol A ∈ Γ onto the stack which depends only on the input symbol a
and the current state q ∈ Q, i.e., regardless of which symbol is on the top of
the stack. Internal actions a ∈ Σskip do not affect the stack which remains
untouched. When processing a return-symbol a ∈ Σpop, a VPM has to pop
the top stack symbol from the stack if the stack is not empty. In case of an
empty stack, a return-symbol a ∈ Σpop is treated as an internal action.
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Definition 3.3 (Realtime PDM). A PDM M = (Q,Σ,Γ,∆, qin) is called
realtime (rt-PDM) if ∆ ⊆ Q× Γ⊥ × Σ×Q× Γ≤2

⊥ .

That means, the transition relation of a rt-PDM is restricted such that it
contains no ε-transitions. Notice that every VPM is realtime. For the next
definitions, the pushdown alphabet of a PDM is restricted.

Definition 3.4 (One-Counter PDM). A PDM M = (Q,Σ,Γ,∆, qin) is a
one-counter machine (1CM) if |Γ| = 1.

Definition 3.5 (Blind 1CM). A 1CMM = (Q,Σ,Γ,∆, qin) is called blind
one-counter (B1CM) if the following statement holds. For all q, q′ ∈ Q and all
a ∈ Σε, if (q,⊥, a, q′, An⊥) ∈ ∆, for 0 ≤ n ≤ 1, then (q, A, a, q′, AnA) ∈ ∆.

That means, that for B1CM every transition that is enabled with empty
stack is also enabled with nonempty stack. Thus, a B1CM cannot check
whether or not its stack is empty. In the literature this type of 1CM is
sometimes also referred to as partially blind one-counter.

Now, using these definitions of PDM, several types of corresponding push-
down automata can be defined. A PDA P = (MP , F ) is a

• DPDA ifMP is a DPDM,

• rt-DPDA ifMP is a rt-DPDM,

• VPA ifMP is a VPM,

• DVPA ifMP is a DPDM and VPM,

• 1CA ifMP is a 1CM,

• D1CA ifMP is a DPDM and 1CM,

• V1CA ifMP is a VPM and 1CM,

• DV1CA ifMP is a DPDM, VPM and 1CM,

• B1CA ifMP is a B1CM,

• DB1CA ifMP is a DPDM and B1CM.

Analogously, for ω-pushdown automata, a parity-PDA (parity-StPDA) P =

(MP , col) is a

• parity-DPDA (parity-StDPDA) ifMP is a DPDM,

• parity-rt-DPDA (parity-rt-StDPDA) ifMP is a rt-DPDM,

• parity-VPA (parity-StVPA) ifMP is a VPM,
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• parity-DVPA (parity-StDVPA) ifMP is a DPDM and VPM,

• parity-1CA (parity-St1CA) ifMP is a 1CM,

• parity-D1CA (parity-StD1CA) ifMP is a DPDM and 1CM,

• parity-V1CA (parity-StV1CA) ifMP is a VPM and 1CM,

• parity-DV1CA (parity-StDV1CA) ifMP is a DPDM, VPM and 1CM,

• parity-B1CA (parity-StB1CA) ifMP is a B1CM,

• parity-DB1CA (parity-StDB1CA) ifMP is a DPDM and B1CM.

Notice that for all these types of pushdown automata except determin-
istic blind one-counter, an equivalent non-blocking pushdown automaton of
the same type can be constructed. This can be shown analogously as in
Lemma 2.3 and Lemma 2.6. For deterministic blind one-counter the abil-
ity to block computations with an empty stack is essential for rejecting in-
put words. This cannot be resolved by adding a new rejecting sink state,
since a deterministic blind one-counter cannot distinguish between empty
and nonempty stack, hence configurations with stack heights greater zero
might also lead to the rejecting sink state.

Remark 3.6.

1. For every PDA (parity-PDA, parity-StPDA) P of one of the above
types except DB1CA (parity-DB1CA, parity-StDB1CA), there is a
PDA (parity-PDA, parity-StPDA) P ′ of the same type as P, having
the continuity property, such that L(P) = L(P ′).

2. There is a DB1CA (parity-DB1CA, parity-StDB1CA) P such that for
every DB1CA (parity-DB1CA, parity-StDB1CA) P ′ with continuity
property L(P) 6= L(P ′).

Now, we fix our notation for classes of languages of finite and infinite
words, respectively, recognized by pushdown automata of particular types
presented above and state some results concerning their inclusion relations.
In Chapter 2 we already introduced the classes of (nondeterministic) con-
textfree and deterministic contextfree languages of finite words CFL and
DCFL, as well as for infinite words CFLω and DCFLω. We denote the class of
languages recognized by parity-StPDA by StCFLω and those recognized by
parity-StDPDA by StDCFLω.

The following two lemmata show that for nondeterministic pushdown
automata, stair parity acceptance condition does not increase the power of
the automata compared to parity acceptance condition. However, this is not
the case for deterministic pushdown automata.
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3 Pushdown Games and Pushdown Winning Strategies

Lemma 3.7.

1. For each parity-PDA P one can construct a parity-StPDA P ′ such that
L(P) = L(P ′).

2. For each parity-StPDA P one can construct a parity-PDA P ′ such that
L(P) = L(P ′).

Proof. We prove only the second statement, the first statement can be
shown similar to Lemma 3.9.

Let P = (Q,Σ,Γ,∆, qin, col) be a parity-StPDA with the coloring func-
tion col : Q → [n] where we assume Par(n) = 0, without loss of generality.
The idea for the construction of an equivalent parity-PDA P ′ is as follows.
For a run ρ of P, an equivalent parity-PDA P ′ guesses (and verifies) the
positions from StairPositions(ρ). Moreover, the parity condition col′ has to
be defined such that exactly the colors of the stair positions contribute to
the evaluation, i.e., a run ρ′ of P ′ satisfies the parity condition col′ if its stair
positions are guessed correctly and the corresponding run ρ of P satisfies the
stair parity condition col.

Formally, P ′ = (Q′,Σ,Γ′,∆′, qin, col′) with Q′ = Q ∪ Q ∪ {qrej} where
Q = {q | q ∈ Q} and Γ′ = Γ ∪ Γ where Γ = {A | A ∈ Γ}. A configuration
(q, γ) ∈ Q′ × (Γ′)∗⊥ is intended to indicate a stair configuration if q ∈ Q

and γ(0) ∈ Γ⊥, whereas if q ∈ Q and γ(0) ∈ Γ it shall indicate a non-
stair configuration. For this purpose, we define the following transitions to
be contained in ∆′. For every push-transition (q,X, a, p, Y Z) ∈ ∆, where
X,Y, Z ∈ Γ⊥ and a ∈ Σε, ∆′ contains transitions

(q,X, a, p, Y Z), (q,X, a, p, Y Z) and (q,X, a, p, Y Z).

That means, being in a stair configuration the automaton can decide either
to proceed to a stair configuration or to a non-stair configuration. And being
in a non-stair configuration, the only possibility is to proceed to a further
non-stair configuration. For every skip-transition (q,X, a, p, Y ) ∈ ∆, where
X,Y ∈ Γ⊥ and a ∈ Σε, transitions

(q,X, a, p, Y ) and (q,X, a, p, Y )

are contained in ∆′, which means that the successor configuration is a stair
configuration if and only if the current configuration is a stair configuration.
Moreover, for every pop-transition (q,X, a, p, ε) ∈ ∆, where X ∈ Γ⊥ and
a ∈ Σε, we define

(q,X, a, p, ε) and (q,X, a, p, ε)

to be contained in ∆′. A pop-transition can only be performed from a
non-stair configuration, where the automaton has to decide whether it will
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proceed to a stair or a non-stair configuration. If this decision turns out to
be incorrect the automaton proceeds to the rejecting state qrej. Hence, for
every q ∈ Q, a ∈ Σε, X ∈ Γ⊥ and X ′ ∈ Γ′⊥, ∆′ contains transitions

(q,X, a, qrej, X), (q,X, a, qrej, X) and (qrej, X
′, a, qrej, X

′).

Finally, we define the coloring function col′ : Q′ → [n] by

col(q′) =

{
col(q′) if q′ ∈ Q,
n− 1 otherwise,

for q′ ∈ Q′, which ensures that only stair configurations contribute to the
acceptance. By this construction, for every word w ∈ Σω, we have the
existence of an accepting run ρ of P on w implies the existence of an accepting
run ρ′ of P ′ on w.

Corollary 3.8. CFLω = StCFLω.

Lemma 3.9. For each parity-DPDA P, a parity-StDPDA P ′ can be con-
structed such that L(P) = L(P ′).

Proof. The idea is to pass the minimal color occurring between two consec-
utive stair positions to the following stair configuration. For this, we extend
the stack symbols by a further component to store the minimal color seen
since the last position of a smaller stack height. Moreover, to be able to
recolor states we also introduce a further component for the states.

Let P = (Q,Σ,Γ, δ, qin, col) be a parity-DPDA with col : Q → [n], for
some n > 0. Define the parity-StDPDA P ′ = (Q′,Σ,Γ′, δ′, q′in, col′) as fol-
lows. The stack alphabet is defined by Γ′ = Γ × [n], and the set of states
by Q′ = S ∪ S where S = Q × [n] and S = {s | s ∈ S}, the initial state
is q′in = (qin, col(qin)). States from S are auxiliary, and serve to update
the top of the stack after a pop-transition. We define the coloring function
col′ : Q′ → [n] by col′(q′) = Pr[n](q

′), for every q′ ∈ Q′.
The transition function δ′ is defined as follows. For every q, p ∈ Q,

X,Y, Z ∈ Γ⊥, and a ∈ Σε, if δ(q,X, a) = (p, Y Z) then for every c, d ∈ [n],

δ′(〈q, c〉 , 〈X, d〉 , a) = (〈p, col(p)〉 , 〈Y, col(p)〉 〈Z, d〉),

i.e., a push-transition is performed by updating the first component of the top
of the stack (while the second component remains untouched) and by pushing
a new symbol onto the stack where the second component is initialized by
the color of the reached state. Obviously, this state is not recolored. If
δ(q,X, a) = (p, Y ) then for every c, d ∈ [n],

δ′(〈q, c〉 , 〈X, d〉 , a) = (〈p, col(p)〉 , 〈Y,min{d, col(p)}〉),
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i.e., when performing a skip-transition the second component of the top
stack symbol has to be updated to the minimum of the color stored so far
and the color of the reached state. Finally, if δ(q,X, a) = (p, ε) then for
every c, d, e ∈ [n],

δ′(〈q, c〉 , 〈X, d〉 , a) = (〈p, d〉, ε) and

δ′(〈p, d〉, 〈Z, e〉 , ε) = (〈p,min{d, col(p)}〉 , 〈Z,min{d, e, col(p)}〉).

That means, that in case of a pop-transition, the top stack symbol is deleted
from the stack while its color (stored in the second component) is passed
down to the reached state which is appropriately recolored. The new top
stack symbol also has to be updated such that it comprises the minimal
color seen since the last position of a smaller stack height. This is done using
auxiliary states from S. By this construction we have for every word w ∈ Σω,
the unique runs ρ of P on w and ρ′ of P ′ on w satisfy min{Inf(col(ρ))} =

min{Inf(col(Stairs(ρ′)))}.

Corollary 3.10. DCFLω ⊆ StDCFLω.

Now, we consider visibly pushdown languages. Visibly pushdown lan-
guages of finite words are denoted by VPL and DVPL recognized by VPA or
DVPA respectively, and classes of visibly pushdown ω-languages are denoted
by VPLω, DVPLω, StVPLω, StDVPLω which are recognized by parity-VPA,
parity-DVPA, parity-StVPA or parity-StDVPA, respectively. In contrast to
general pushdown automata on finite words, visibly pushdown automata on
finite words can be determinized.

Lemma 3.11 ([AM04]). For each VPA P over a partitioned alphabet Σ =

Σpush ∪ Σpop ∪ Σskip one can construct a DVPA P ′ over Σ with the same
partition Σpush ∪ Σpop ∪ Σskip such that L(P) = L(P ′).

Corollary 3.12. DVPL = VPL.

However, the above lemma does not hold for visibly pushdown automata
on infinite words with parity acceptance conditions. The expressive power
of parity-VPA exceeds the expressive power of parity-DVPA.

Lemma 3.13 ([AM04]). DVPLω ( VPLω.

Nevertheless, a determinization procedure is presented in [LMS04] which
takes advantage of stair acceptance.

Lemma 3.14 ([LMS04]). For each parity-VPA P over a partitioned alphabet
Σ = Σpush ∪Σpop ∪Σskip one can construct a parity-StDVPA P ′ over Σ with
the same partition Σpush ∪ Σpop ∪ Σskip such that L(P) = L(P ′).
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CFLω = StCFLω

StDCFLω

DCFLω

VPLω = StVPLω = StDVPLω

DVPLω

Figure 3.1: Classes of visibly and non-visibly pushdown languages

Proposition 3.15. VPLω = StDVPLω = StVPLω.

Proof. Inclusion VPLω ⊆ StDVPLω follows from Lemma 3.14. Moreover,
inclusion StDVPLω ⊆ StVPLω obviously holds, and StVPLω ⊆ VPLω is shown
in exactly the same way as Lemma 3.7 by exploiting nondeterminism.

Finally, the following remark clarifies the relationship between visibly
and non-visibly pushdown languages of infinite words. The complete picture
is depicted in Figure 3.1.

Remark 3.16.

(i) DCFLω \ VPLω 6= ∅,

(ii) VPLω \ DCFLω 6= ∅,

(iii) VPLω ∪ DCFLω ( StDCFLω.

Proof. (i) Consider the language L1 = {anbanbw | n > 0, w ∈ {a, b}ω} over
the alphabet Σ = {a, b}. Obviously, there is a parity-DPDA recognizing
L1, hence, L1 ∈ DCFLω. However, for any partition of Σ into Σpush ∪
Σpop ∪ Σskip, there is no parity-VPA recognizing L1. If a ∈ Σpush then
the information stored on the stack after processing a prefix anb cannot be
used while counting the number of the following a’s, as the automaton is
required to perform push-transitions. Otherwise, if a ∈ Σpop ∪ Σskip, then
after processing a prefix anb, there is not enough information on the stack
for being able to compare the numbers of a’s.

(ii) Consider the following language L2 ⊆ {a, b}ω with w ∈ L2 if and
only if there exists k ∈ N such that |prefn(w)|a − |prefn(w)|b = k, for in-
finitely many n ∈ N, and |prefn(w)|a ≥ |prefn(w)|b, for every n ∈ N. A
parity-StDVPA over the alphabet Σ = {a, b} with Σpush = {a}, Σpop = {b}
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qin q

p

col(qin) = 1

col(q) = 2

col(p) = 1

A, b

a,A

a,A A, b

⊥, b ⊥, b

a, A
A, b

⊥, b

Figure 3.2: Parity-StDVPA recognizing L2 ∈ VPLω \ DCFLω

and Σskip = ∅ recognizing L2 (which can be converted into a parity-VPA
according to Proposition 3.15) is depicted in Figure 3.2. The automaton
pushes the pushdown symbol A onto the stack whenever it reads a and it
pops A if it reads b. When reading b with an empty stack the automaton
goes to the rejecting sink state p, since in this case |prefn(w)|a < |prefn(w)|b.
Otherwise, every time the automaton reads a it proceeds to qin and it pro-
ceeds to q if it reads b. A run ρ on a word w is accepting if there are only
finitely many stair configurations in state qin in ρ. This happens if there is
a k ∈ N such that the stack height drops down to k again and again during
the run, i.e. sh(ρ(n)) = k for infinitely many n ∈ N. Which means that
|prefn(w)|a − |prefn(w)|b = k, for infinitely many n ∈ N.

On the other hand, one can show that the language L2 is on a higher
Borel level than every deterministic contextfree ω-language. More precisely,
L2 is a true Σ3-set, i.e., L2 is in Σ3 but not in Π3 [CDT02]. However, any
deterministic contextfree language L ∈ DCFLω is contained in B(Σ2) [CG77a,
CG77b], which implies L2 /∈ DCFLω, since B(Σ2) ( Π3.

(iii) Let L3 = L1 ∩ L2. Obviously, L3 /∈ DCFLω as well as L3 /∈ VPLω.
However, it is easy to construct a parity-StDPDA recognizing L3. First, the
automaton checks whether a word starts with a prefix anbanb, for some n > 0.
If this is not the case it proceeds to a rejecting sink state. Otherwise, it
continues in exactly the same way as the parity-StDVPA recognizing L2.

We define further subclasses of DCFLω and StDCFLω by considering de-
terministic one-counter and realtime pushdown automata. We will fix our
notation only for deterministic classes. By D1CL we denote deterministic
one-counter languages recognized by D1CA and by D1CLω and StD1CLω
one-counter ω-languages are denoted, which are recognized by parity-D1CA
and parity-StD1CA. Visibly one-counter languages recognized by DV1CA
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are denoted by DV1CL, and languages recognized by parity-DV1CA, parity-
StDV1CA are denoted by DV1CLω and StDV1CLω, respectively. Finally, we
denote blind one-counter languages recognized by DB1CA by DB1CL, and
languages recognized by parity-DB1CA, parity-StDB1CA are denoted by
DB1CLω and StDB1CLω, respectively. Classes of languages recognized by re-
altime deterministic pushdown automata are denoted by rt-DCFL, rt-DCFLω
and rt-StDCFLω.

3.2 Formats of Contextfree Winning Conditions
and of Corresponding Winning Strategies

After we presented various number of classes of contextfree languages, we
consider contextfree games defined by those classes and study the connection
between the formats of winning conditions and the corresponding winning
strategies. We consider both Gale-Stewart games with contextfree winning
conditions as well as games on pushdown game graphs. For the former
only deterministic winning conditions are considered, as in general Gale-
Stewart games with (nondeterministic) contextfree winning conditions can-
not be solved.

Theorem 3.17 ([Fin01]). For contextfree languages L ∈ CFLω, it is unde-
cidable to determine which player has a winning strategy in Γ(L).

The proof uses the known undecidability of the universality problem for
contextfree languages, which is to decide, given a parity-PDA P over an
alphabet Σ, whether L(P) = Σω.

On the other hand Walukiewicz showed that parity pushdown games
played on pushdown game graphs can be simulated by parity games on finite
game graphs from which deterministic pushdown winning strategies can be
deduced. We will use this construction in Chapter 6.

Theorem 3.18 ([Wal96]). Parity pushdown games are determined with de-
terministic pushdown winning strategies.

This result directly implies the solvability of deterministic contextfree
Gale-Stewart games since they can be modeled by pushdown games on (la-
beled) pushdown game graphs. Let P = (Q,Σ,Γ, δ, qin, col) be a parity-
DPDA having the continuity property over an alphabet Σ = ΣI × ΣO with
the coloring function col : Q → [n], for some n ∈ N, and Γ(L(P)) be the
Gale-Stewart game defined by the language recognized by P. The corre-
sponding pushdown game on a pushdown game graph is obtained as follows.
Define DPDM MP = (Q′,Σ ∪ ΣI ,Γ, δ

′, qin) where Q′ = Q ∪ (Q × ΣI) and
for all a ∈ ΣI , b ∈ ΣO, q, p ∈ Q, A ∈ Γ⊥ and α ∈ Γ≤2

⊥ ,
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• if δ(q, A,
(
a
b

)
) = (p, α) then

δ′(q, A, a) = (〈q, a〉 , A) and δ′(〈q, a〉 , A,
(
a
b

)
) = (p, α), and

• if δ(q, A, ε) = (p, α) then δ′(q,A, ε) = (p, α).

Moreover, let PDS SP = (Q′,Γ,∆, qin) and the labeling function λ : ∆→
P(Σ ∪ ΣI) be as follows. A transition (q, A, p, α) is contained in ∆ if and
only if there is a ∈ Σε ∪ ΣI such that δ′(q, A, a) = (p, α). Furthermore, for
every transition t = (q, A, p, α) ∈ ∆, a ∈ λ(t) if δ′(q,A, a) = (p, α). This
means that SP is obtained from the DPDM MP by outsourcing the input
alphabet ofMP to the labeling function.

This construction subdivides the processing of a pair
(
a
b

)
∈ Σ into two

steps where in the first step Player I can choose a ∈ ΣI and in the second
step Player O completes the pair by choosing b ∈ ΣO. Hence, we define
the partition of the set of states Q′ such that Q0 = Q × ΣI and Q1 = Q.
Notice, that since P has the continuity property, the pushdown game graph
G(SP) is of the following form. For each configuration (q, γ) ∈ Q1 × Γ∗⊥,
either there is exactly one outgoing edge labeled by ε or there are |ΣI | many
outgoing edges, namely one outgoing edge labeled by a for each a ∈ ΣI .
Furthermore, for each configuration (〈q, a〉 , γ) ∈ Q0 × Γ∗⊥, there exists
exactly one outgoing edge containing

(
a
b

)
in its labeling, for every b ∈ ΣO.

Finally, we define the coloring function col′ : Q′ → [n] by col′(q) = col(q)

if q ∈ Q1 and col′(q) = n − 1 if q ∈ Q0. Thus, we obtain a parity push-
down game (G(SP), col′) such that Γ(L(P)) is simulated by (G(SP), col′)

and a winning strategy σ
′ in (G(SP), col′) instantly implements a winning

strategy σ in Γ(L(P)).

Corollary 3.19. Deterministic contextfree Gale-Stewart games are deter-
mined with deterministic pushdown winning strategies.

We extend this result and establish a tight connection between the for-
mats of contextfree winning conditions on the one hand and of the corre-
sponding contextfree winning strategies on the other hand. To state the
notion of a format of a winning strategy more precisely, recall that we
use pushdown transducers as defined in Section 2.2.2 to define pushdown
strategies. Analogously, as for pushdown automata, we define the format
of a pushdown transducer by the format of its underlying PDM. Notice
that a pushdown transducer T = (Q,ΣI ,ΣO,Γ,∆, qin, λ) can also be rep-
resented by a collection of PDA (Aa)a∈ΣO

of the same format as T where
Aa = (Q,ΣI ,Γ,∆, qin, Fa) with Fa = {q ∈ Q | λ(q) = a}. Therefore, we
associate classes of contextfree ∗-languages with pushdown transducers ac-
cording to their formats.

Theorem 3.20. Let G be a parity or a stair parity pushdown game played
on the (labeled) pushdown game graph defined by a PDM P.
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1. G is determined with DCFL winning strategies if P is DPDM,

2. G is determined with DVPL winning strategies if P is DVPM,

3. G is determined with rt-DCFL winning strategies if P is rt-DPDM,

4. G is determined with D1CL winning strategies if P is D1CM.

Notice that for deterministic contextfree Gale-Stewart games the follow-
ing directly follows from this result.

Corollary 3.21.

1. DCFLω- and StDCFLω-games are determined with winning strategies
from DCFL,

2. DVPLω- and StDVPLω-games are determined with winning strategies
from DVPL,

3. rt-DCFLω- and rt-StDCFLω-games are determined with winning strate-
gies from rt-DCFL,

4. D1CLω- and StD1CLω-games are determined with winning strategies
from D1CL.

This is due to the fact that by the above construction a Gale-Stewart
game given by a pushdown automaton P (of one of the formats mentioned
in the corollary) can easily be reduced to a pushdown game on a pushdown
game graph defined by a pushdown machine MP of the same format as
P. In the first step of this reduction, P is transformed to an equivalent
pushdown automaton of the same format that has the continuity property,
which is possible according to Remark 3.6. Notice that for this approach
the continuity property is essential since it guarantees that the obtained
pushdown game graph is such that in each round every letter a ∈ ΣI can be
chosen by Player I and Player O can respond by any letter b ∈ ΣO.

Theorem 3.20 is proved in Subsection 3.2.2 by a uniform proof method
that uses the technique proposed by Kupferman and Vardi [KV00a], which
we recall in the next subsection. It comprises a reduction to the emptiness
problem for alternating parity two-way tree automata which is to decide,
given a parity-A2TA A, whether L(A) = ∅. The crucial points for the proof
of the theorem are the treatment of the stair condition and the construction
of one-counter winning strategies for one-counter games.

Besides this four positive cases of pushdown games which turn out to be
solvable by pushdown winning strategies of the same format as the winning
conditions, for two further cases we prove that this correspondence fails, i.e.,
strategies of the same format are not sufficient.
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Theorem 3.22. DV1CLω-games and StDV1CLω-games are determined, how-
ever, DV1CL winning strategies do not suffice.

Again, by the above construction it follows that this result also holds
for pushdown games played on configuration graphs of deterministic visibly
one-counter machines.

Corollary 3.23. Parity and stair parity pushdown games played on (labeled)
pushdown game graphs defined by DV1CM are determined, however, DV1CL

winning strategies do not suffice.

Moreover, pushdown games on configuration graphs of blind one-counter
machines turn out to be not solvable by blind one-counter strategies. How-
ever, for blind one-counter Gale-Stewart games the question whether DB1CL

winning strategies suffice is still open.

Theorem 3.24. Parity and stair parity pushdown games played on (labeled)
pushdown game graphs defined by DB1CM are determined, however, DB1CL

winning strategies do not suffice.

The proofs of Theorem 3.20, Theorem 3.22, and Theorem 3.24 are pre-
sented in Subsection 3.2.2.

3.2.1 Solving Pushdown Games using A2TA

A technique which uses alternating two-way tree automata to solve push-
down games was proposed by Kupferman and Vardi [KV00a]. The idea is to
simulate a parity pushdown game by a parity-A2TA operating on an infinite
tree which represents all possible stack contents. Formally, for a pushdown
alphabet Γ, define the full Γ⊥-labeled Γ-tree (Γ∗, tΓ) by tΓ(ε) = ⊥ and for
every γ ∈ Γ+, tΓ(γ) = last(γ). The root of tΓ represents the empty stack,
hence, it is labeled by ⊥. A node γ ∈ Γ+ corresponds to the stack content
rev(γ)⊥ and is labeled by the top stack symbol last(γ).

The technique comprises three essential steps. The first step is to con-
struct a parity-A2TA which simulates the parity pushdown game. In the
second step the obtained parity-A2TA is translated into an equivalent parity-
N1TA. Finally, a pushdown winning strategy is deduced by solving the empti-
ness problem. We recall here the crucial points of the construction which is
similarly presented in [Cac01].

From pushdown game G to parity-A2TA A. Let P = (Q,Γ,∆, qin)

be a PDS with a partition Q0 ∪ Q1 of the set Q of states. For the sake
of convenience, we assume ∆ to be of the following form. For every push-
transition (q, A, q′, BC) ∈ ∆ we assume A = C, and for every skip-transition
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(q, A, q′, B) ∈ ∆ we assume A = B, i.e., the top stack symbol is not modified
when performing a skip- or a push-transition, hence to modify a top stack
symbol it has first to be deleted using a pop-transition and then a new
symbol is pushed. Moreover, let λ : ∆ → P(Σ) be a labeling function for
some alphabet Σ which deterministically labels the pushdown graph G(P),
i.e., for all a ∈ Σ, all q ∈ Q and all A ∈ Γ⊥,∣∣{(q′, α) | (q, A, q′, α) ∈ ∆ and a ∈ λ(q, A, q′, α)}

∣∣+∣∣{(q′, α) | (q, A, q′, α) ∈ ∆ and λ(q, A, q′, α) = ∅}
∣∣ ≤ 1.

Let col : Q→ [n] be a coloring function, for some n ∈ N. Consider the parity
pushdown game G = (G(P), col) on the labeled pushdown game graph G(P)

with the parity condition col. Moreover, let δ be the following function. For
every q ∈ Q and every A ∈ Γ⊥,

δ(q,A) =



∨
(q,A,q′,A′A)∈∆

(↓A′ , q′) ∨
∨

(q,A,q′,A)∈∆

(	, q′) ∨
∨

(q,A,q′,ε)∈∆

(↑, q′),

if q ∈ Q0,

∧
(q,A,q′,A′A)∈∆

(↓A′ , q′) ∧
∧

(q,A,q′,A)∈∆

(	, q′) ∧
∧

(q,A,q′,ε)∈∆

(↑, q′),

if q ∈ Q1.

The parity-A2TA A = (QA,Γ⊥, δ
A, qAin, colA) simulating G is defined by

• QA = Q∪P ∪ {qAin} where P = {pA | A ∈ Γ} such that Q∩P = ∅ and
qAin /∈ Q ∪ P ,

• colA(q) =

{
col(q) if q ∈ Q,
0 otherwise.

• for q ∈ Q, p ∈ P and A ∈ Γ,

δA(qAin,⊥) = (	, qin) ∧
∧
B∈Γ

(↓B, pB),

δA(q,A) = δ(q, A),

δA(q,⊥) = δ(q,⊥),

δA(p,A) =

{∧
B∈Γ(↓B, pB), if p = pA,

false, if p 6= pA.
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3 Pushdown Games and Pushdown Winning Strategies

The parity-A2TA A operates on the tree tΓ which is used instead of the
stack. The states from P are used to verify that the input tree is indeed tΓ.
For this, auxiliary computations are initiated starting in the initial state qAin
on the root node which pass down the states from P to the respective child
nodes (for every A ∈ Γ, state pA is send in direction A). These computations
succeed if every node γ ∈ Γ+ is labeled by last(γ).

To simulate the pushdown game G alternation is used. Being in a state
q ∈ Q0 the parity-A2TA A guesses a transition from the disjunction over all
possible pushdown transitions which should be chosen by Player O. On the
other hand, being in some state q ∈ Q1, we have to follow each pushdown
transition, due to the conjunction over all possible pushdown transitions that
can be chosen by Player I.

By this construction, there is an accepting run of A on tΓ if and only
if there exists a winning strategy for Player O in G. Notice that, due to
the auxiliary computations using the states from P , the only tree which can
be accepted by A is tΓ. Hence, in order to solve G, A has to be tested for
emptiness.

Theorem 3.25 ([KV00a]). Player O wins G if and only if L(A) 6= ∅.

The emptiness problem for parity-A2TA is solved in [Var98] by a reduc-
tion to the emptiness problem for parity-N1TA. We recall the construction of
an equivalent parity-N1TA from a parity-A2TA in the following paragraph.

From parity-A2TA A to parity-N1TA B. Consider a parity-A2TA
A = (QA,Γ⊥, δ

A, qAin, colA) with the coloring function colA : QA → [n] ob-
tained from a parity pushdown game G as described above. The idea for the
construction of an equivalent one-way tree automaton is to guess a strat-
egy for A that determines which copies to send at every node. In case of a
conjunction, of course, all copies have to be sent, and for a disjunction, the
strategy can choose one copy. The automaton has to verify the consistency
of the guessed strategy in a one-way manner and furthermore a run of A has
to be accepting if it accounts for this strategy.

We use the set Str = P(QA × Dir↑,	 ×QA) to represent strategies for A
and the set Ann = P(QA × [n]×QA), called the set of annotations, will be
used to check whether a strategy yields an accepting run of A on tΓ.

Consider a (Γ⊥ × Str × Ann)-labeled full Γ-tree (Γ∗, t) with Pr0(t(γ)) =

tΓ(γ) for every γ ∈ Γ∗, i.e., t can be regarded as tΓ where every labeling is
augmented by some element from Str and an element from Ann. By tStr we
denote the Str-labeled Γ-tree obtained from t by projecting to the second
component of the labelings, i.e., tStr(γ) = Pr1(t(γ)) for every γ ∈ Γ∗, and
tAnn denotes the Ann-labeled Γ-tree containing only the last component of
the labeling of t, i.e., tAnn(γ) = Pr2(t(γ)) for every γ ∈ Γ∗.
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3.2 Formats of Winning Conditions and Winning Strategies

A strategy is encoded in t, if tStr is consistent, i.e., if tStr satisfies the
following conditions. For every node γ ∈ Γ∗,

(i) if (q, d, r) ∈ tStr(γ) then {(d′, r′) | (q, d′, r′) ∈ tStr(γ)} ⊆ Dir↑,	 × QA
satisfies δA(q, tΓ(γ)),

(ii) if (q, d, r) ∈ tStr(γ) then there are d′ ∈ Dir↑,	 and q′ ∈ QA such that
(r, d′, q′) ∈ tStr(γ · d) or ∅ satisfies δA(q, tΓ(γ · d)),

(iii) if γ = ε then there are d ∈ Dir↑,	 and q ∈ QA such that (qAin, d, q) ∈
tStr(γ) or ∅ satisfies δA(qAin, tΓ(γ)).

The first condition requires that at every node the strategy satisfies the
transition function δA. The second condition ensures that the strategy en-
coded in t can always be followed, i.e., being in node γ in some state q if the
strategy tStr(γ) contains (q, d, r) then at node γ · d a strategy for state r has
also to be defined. The last condition states that at the root a strategy for
the initial state has to be defined.

Notice that all three requirements can be checked locally, i.e., by inspect-
ing the neighborhood of a node. Thus, a deterministic parity-D1TA BStr over
(Γ⊥ × Str × Ann)-labeled Γ-trees can be constructed such that it accepts an
input tree t if Pr0(t(γ)) = tΓ(γ), for every γ ∈ Γ∗, and the corresponding
tree tStr is consistent, i.e., the above conditions are satisfied.

Next, it is to verify that the strategy encoded in t also induces an ac-
cepting run of A. To be able to do this in a one-way manner we use anno-
tations to store information about finite detours (paths which go down from
a node and come back to the same node) induced by the strategy. A tuple
(q,m, r) ∈ QA× [n]×QA contained in an annotation of some node indicates
the existence of a detour induced by the strategy which starts in state q and
comes back to the same node in state r with c being the minimal color seen
along this detour.

An annotation tAnn encoded in t, is correct for tStr if the following con-
ditions are satisfied. For every node γ ∈ Γ∗,

(i) if (q,	, r) ∈ tStr(γ) then (q, colA(r), r) ∈ tAnn(γ),

(ii) if (q, ↓A, r) ∈ tStr(γ) and (r, ↑, q′) ∈ tStr(γA) then (q,min{cr, cq′}, q′) ∈
tAnn(γ) where cr = colA(r) and cq′ = colA(q′),

(iii) if (q, c, r), (r, c′, q′) ∈ tAnn(γ) then (q,min{c, c′}, q′) ∈ tAnn(γ),

(iv) if (q, ↓A, r) ∈ tStr(γ) and (r, c, r′) ∈ tAnn(γA) and (r′, ↑, q′) ∈ tStr(γA)

then (q,min{cr, c, cq′}, q′) ∈ tAnn(γ) where cr = colA(r), cq′ = colA(q′).
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3 Pushdown Games and Pushdown Winning Strategies

Again, all conditions can be checked locally. Hence, a deterministic
parity-D1TA BAnn over (Γ⊥ × Str × Ann)-labeled Γ-trees can be constructed
such that a tree t is accepted if the corresponding tree tAnn is correct for tStr.

Finally, a parity-D1TA BcolA over (Γ⊥×Str×Ann)-labeled Γ-trees can be
constructed which evaluates the parity condition colA of the run induced by
tStr and tAnn. The colors stored in the annotations are used to avoid detours.

Consider a parity-D1TA B′ over (Γ⊥ × Str × Ann)-labeled Γ-trees which
is the product of BStr, BAnn and BcolA . Clearly, B′ accepts those trees t
which represent accepting runs of A on tΓ, i.e., in the first component of the
labelings of t the tree tΓ is encoded, the corresponding trees tStr and tAnn are
such that tStr encodes a consistent strategy and tAnn is correct for tStr, and
the run of A induced by tStr satisfies the parity condition colA.

Now, we can construct a parity-N1TA B over Γ⊥-labeled Γ-trees which is
equivalent to A. The automaton B nondeterministically guesses the trees tStr
and tAnn and verifies consistency of tStr and correctness of tAnn for tStr as well
as it evaluates the parity condition of the induced run of A using B′.

Theorem 3.26 ([Var98]). For every parity-A2TA A there exists a parity-
N1TA B such that L(A) = L(B).

Notice, that due to decidability of the emptiness problem for parity-
N1TA (cf. e.g. [EJ88, GTW02]) the winner of the pushdown game G can be
determined applying Theorem 3.25 and Theorem 3.26.

Corollary 3.27. Player O wins G if and only if L(A) = L(B) 6= ∅ if and
only if L(B′) 6= ∅.

In the following paragraph, we show how a pushdown winning strategy
for Player O can be deduced from B′ in case L(B′) is nonempty. Note that
if L(B′) is empty then a pushdown winning strategy for Player I can be
deduced by swapping the roles of the players for the construction of the
parity-A2TA simulating G.

From parity-D1TA B′ to Pushdown Strategy S. Let B′ be the parity-
D1TA as defined in the previous paragraph. Moreover, we assume L(B′) 6= ∅.
It is well known that every nonempty tree language recognized by a parity
tree automaton contains a regular tree and furthermore, a DFT generating
such a tree can be constructed effectively from the parity tree automaton
(see e.g. [Tho97, GTW02]). Let R = (QR,Γ,Γ⊥ × Str× Ann, δR, qRin , λ

R) be
a DFT obtained from B′ generating a regular (Γ⊥×Str×Ann)-labeled Γ-tree
treg ∈ L(B′).

We define a DPDT S = (Q,∆,∆, QR, δS , qin, λ
S) implementing a push-

down strategy for Player O in G using R as follows. The pushdown trans-
ducer S reads transitions from ∆ corresponding to the edges chosen by the
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3.2 Formats of Winning Conditions and Winning Strategies

two players in G and outputs transitions from ∆ corresponding to the next
choice of Player O. For the set of states, states from G are utilized, and
states from R are used as the stack alphabet.

The idea is to keep track of the labeling of the current node of treg

corresponding to the stack content of the current configuration to be able to
deduce the next choice for Player O from the strategy encoded in the labeling
of the node. For this, we store the appropriate states of R on the stack of S.
By inspecting the top stack symbol, the labeling (A,S,H) ∈ Γ⊥ × Str× Ann

is then easily deduced by applying λR. Formally, for q, q′ ∈ Q, r ∈ QR and
A,B ∈ Γ, define the transition function δS by

δS(q,⊥, (q,⊥, q′,⊥)) = (q′,⊥),

δS(q, r, (q, A, q′, A)) = (q′, r),

δS(q,⊥, (q,⊥, q′, A⊥)) = (q′, r′⊥) where r′ = δR(qRin , A),

δS(q, r, (q, A, q′, BA)) = (q′, r′r) where r′ = δR(r,B),

δS(q, r, (q, A, q′, ε)) = (q′, ε).

Now, it remains to define the output function λS . Clearly, there might be
several possible transitions encoded in a strategy S ∈ Str which can be chosen
by Player O in order to win a play. Hence, to define a deterministic output
function, let f : (Str ×Q) → (Q × Dir↑,	 ×Q) be some choice function such
that for every S ∈ Str and every q ∈ Q, f(S, q) ∈ {s ∈ S | Pr0(s) = q}, i.e.,
for a strategy S and a state q the choice function f selects an element s from
S containing q in its first component. So, we define λS : Q×(QR∪{⊥})→ ∆

for q ∈ Q0 and r ∈ QR by

λS(q,⊥) =



(q,⊥, q′,⊥), if λR(qRin) = (⊥, S,H) and
f(S, q) = (q,	, q′),

(q,⊥, q′, A⊥), if λR(qRin) = (⊥, S,H) and
f(S, q) = (q, ↓A, q′),

λS(q, r) =



(q, A, q′, A), if λR(r) = (A,S,H) and
f(S, q) = (q,	, q′),

(q, A, q′, BA), if λR(r) = (A,S,H) and
f(S, q) = (q, ↓B, q′),

(q, A, q′, ε), if λR(r) = (A,S,H) and
f(S, q) = (q, ↑, q′).
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3 Pushdown Games and Pushdown Winning Strategies

Notice, that a pushdown strategy which reads the labelings of the tran-
sitions in G instead of the transitions themselves can be defined in a sim-
ilar way. In particular, this is reasonable in case where the labeled push-
down graph models a Gale-Stewart game, since for Gale-Stewart games
the winning strategy has to produce output letters. We define a DPDT
S ′ = (Q,Σ,Σ, QR, δS

′
, qin, λ

S′) implementing such a winning strategy as fol-
lows. The transition function δS′ is defined by

δS
′
(q, r, a) = δS(q, r, t) where t ∈ ∆ with a ∈ λ(t),

δS
′
(q, r, ε) = δS(q, r, t) where t ∈ ∆ with ∅ = λ(t),

for q,∈ Q, r ∈ QR, and a ∈ Σ. This means, the input letter is mapped to the
corresponding transition, which is possible as the labeling λ deterministically
labels the pushdown graph, and the transition function δS is applied. To
define the output function λS

′ , again we use the output function λS . Let
f ′ : P(Σ) → Σε be a choice function such that f ′(∅) = ε and f ′(Ξ) ∈ Ξ for
every Ξ ∈ P(Σ). For q ∈ Q and r ∈ QR⊥ , we define

λS
′
(q, r) = f ′(λ(t)) where t = λS(q, r).

3.2.2 Proof of Theorems

In this subsection we present the proofs of Theorems 3.20, 3.22 and 3.24.
We show how the technique presented in the previous subsection can be
adapted to solve parity pushdown games and stair parity pushdown games
played on labeled pushdown graphs defined by deterministic, visibly, real-
time, and one-counter machines such that the obtained pushdown transduc-
ers implementing winning strategies are of corresponding formats. Moreover,
we present winning conditions which show that visibly one-counter strategies
do not suffice to solve visibly one-counter games as well as blind one-counter
strategies do not suffice to solve blind one-counter games.

Stair Parity Games

We begin by showing how to handle stair parity winning conditions. The
idea is to use alternating two-way tree automata to simulate stair parity
pushdown games. For this, we define alternating two-way tree automata
which evaluate stair parity conditions.

Definition 3.28. Let Γ be a finite alphabet. An alternating stair parity two-
way tree automaton (parity-StA2TA) A = (Q,Σ, δ, qin, col) over Σ-labeled
Γ-trees consists of a finite set of states Q with the initial state qin, a label-
ing alphabet Σ, a coloring function col : Q → [n], for some n ∈ N, and a
transition function δ : Q× Σ→ B+(Dir↑,	 ×Q). Just as for parity-A2TA, a
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3.2 Formats of Winning Conditions and Winning Strategies

run of A on a tree t ∈ ΓΣ is a (Q × Γ∗)-labeled N-tree (T, ρ) satisfying the
following conditions.

1. ε ∈ T and ρ(ε) = (qin, ε).

2. If y ∈ T with ρ(y) = (q, γ) and δ(q, t(γ)) = ϕ then there is a conjunct
ψ = {(d0, q0), . . . , (dk−1, qk−1)} ⊆ Dir↑,	 ×Q in ϕ such that the set of
successors of y in T is precisely {y · i | i ∈ [k]} and ρ(y · i) = (qi, γ · di).

For a path π through T starting in ε, let ρ(π) ∈ (Q × Γ∗)ω denote the
sequence of labelings of π. Extending each labeling of ρ(π) by the ⊥-symbol
yields a sequence of configurations ρ′(π) ∈ (Q × Γ∗⊥)ω with (ρ′(π))(i) =

(ρ(π))(i)⊥, for i ∈ N. Moreover, let col be extended to configurations such
that col(q, γ⊥) = col(q) for every q ∈ Q and every γ ∈ Γ∗. A run (T, ρ) is
accepting if all its paths satisfy the stair parity condition col, i.e., for each
path π through T , min{Inf(col(Stairs(ρ′(π))))} is even. A tree t ∈ ΓΣ is
accepted by A if there is an accepting run (T, ρ) of A on t.

Now, given a stair parity pushdown game G on a deterministically labeled
pushdown game graph, a parity-StA2TA A simulating G is defined in exactly
the same manner as parity-A2TA for parity pushdown games as described
in the previous subsection. Notice, that the auxiliary computations which
check whether the input tree is tΓ are not bidirectional, since only directions
from Dir = {↓A| A ∈ Γ} are used. This means, that there is no difference
between the evaluation of the stair parity condition and the evaluation of
the parity condition for those paths in a run (T, ρ) of A, i.e., this auxiliary
computations check whether the input tree is tΓ, now evaluating the stair
parity condition. All other paths π in T correspond to plays ρ′(π) in G (by
ρ′(π) we denote the sequence of configurations for a path π as above). Hence,
Theorem 3.25 can be lifted to stair pushdown games.

Theorem 3.29. Player O wins G if and only if L(A) 6= ∅.

In order to solve the emptiness problem for parity-StA2TA, we again use
a reduction to the emptiness problem for parity-N1TA. For this, a parity-
StA2TA is transformed into an equivalent parity-N1TA. This is done by
adapting the construction presented in the previous subsection.

From parity-StA2TA A to parity-N1TA B. Let parity-StA2TA A =

(QA,Γ⊥, δ
A, qAin, colA) with the coloring function colA : QA → [n] be obtained

from a stair parity pushdown game G according to the construction described
on page 38. Again, an equivalent parity-N1TA will guess a strategy for A,
verify its consistency, and, using annotations, evaluate the stair parity con-
dition for the run of A induced by the guessed strategy.
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3 Pushdown Games and Pushdown Winning Strategies

We use the set Str to represent strategies. Notice, that the only colors
relevant for the evaluation of a stair condition seen during a finite detour
starting in a node γ ∈ Γ∗ are those seen at the node γ itself. All other
colors can be ignored, since they are seen at nodes corresponding to non-stair
configurations, as there is a subsequent configuration of smaller stack height,
namely when the detour returns to node γ. Hence, to keep track of the
colors at the stair configurations of a run, we add an additional annotation
component. Let Ann′ = P(QA ×QA).

For a (Γ⊥×Str×Ann×Ann′)-labeled full Γ-tree (Γ∗, t), we denote by tStr
the Str-labeled full Γ-tree with tStr(γ) = Pr1(t(γ)), for every node γ ∈ Γ∗.
By tAnn we denote the Ann-labeled full Γ-tree with tAnn(γ) = Pr2(t(γ)), and
by tAnn′ the Ann′-labeled full Γ-tree with tAnn′(γ) = Pr3(tAnn′(γ)) is denoted,
for γ ∈ Γ∗. The idea is to store the information about finite detours which
return to the current node only once in tAnn′ , the information about all
possible finite detours and the minimal color of the states seen at the current
node during the detour is enclosed in tAnn. Hence, for a node γ ∈ Γ∗, the
meaning of (q, q′) ∈ tAnn′(γ) is that there is a finite detour induced by tStr
which starts in state q and ends in state q′ and which returns to γ exactly
once, whereas (q, c, q′) ∈ tAnn(γ) means that there is a finite detour that
starts in q and ends in q′ with c being the minimal color of the states seen
at node γ during this detour.

Consider a (Γ⊥×Str×Ann×Ann′)-labeled Γ-tree (Γ∗, t) with Pr0(t(γ)) =

tΓ(γ) for every γ ∈ Γ∗. The consistency of tStr is checked by a deterministic
parity-D1TA obtained from BStr from the previous subsection now operating
on (Γ⊥ × Str × Ann × Ann′)-labeled Γ-trees. To verify the correctness of
the annotation tAnn′ for the strategy tStr the following conditions have to be
checked. For every node γ ∈ Γ∗,

(i) if (q,	, r) ∈ tStr(γ) then (q, r) ∈ tAnn′(γ),

(ii) if (q, ↓A, r) ∈ tStr(γ) and (r, ↑, q′) ∈ tStr(γA) then (q, q′) ∈ tAnn′(γ),

(iii) if (q, r) ∈ tAnn′(γ) then (q, colA(r), r) ∈ tAnn,

(iv) if (q, c, r), (r, c′, q′) ∈ tAnn(γ) then (q,min{c, c′}, q′) ∈ tAnn(γ),

(v) if (q, ↓A, r) ∈ tStr(γ) and (r, c, r′) ∈ tAnn(γA) and (r′, ↑, q′) ∈ tStr(γA)

then (q, q′) ∈ tAnn′(γ).

All conditions can be checked locally. Hence, a parity-D1TA over (Γ⊥×Str×
Ann × Ann′)-labeled Γ-trees can be constructed that checks the correctness
of an annotation tAnn′ for a strategy tStr. Finally, to evaluate the stair parity
condition colA of a run induced by tStr and tAnn the parity-D1TA BcolA from
the previous subsection is used which now ignores the Ann′-components.
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Corollary 3.30. For every parity-StA2TA A there exists a parity-N1TA B
such that L(A) = L(B).

Hence, a pushdown transducer implementing a winning strategy can be
deduced as described in the previous subsection. Clearly, by this construction
the underlying PDM of the transducer is deterministic if the underlying PDM
of the game is deterministic.

One-Counter Games

Now, we consider parity and stair parity pushdown games played on la-
beled configuration graphs of deterministic one-counter machines. Let C =

(Q,Σ,Γ, δC , qin) be a D1CM with Γ = {A}, a partition Q = Q0 ∪ Q1,
and P = (Q,Γ,∆, qin) be the corresponding PDS with the labeling func-
tion λ : ∆ → P(Σ). Moreover, let col : Q → [n] be a coloring function and
G = (G(P), col) the parity or stair parity one-counter game.

Notice, that since the stack alphabet is a singleton, the tree tΓ repre-
senting all possible stack contents consists of a single branch with the root
labeled by ⊥ and all other nodes are labeled by A. Thus, in this case tΓ can
be considered as the word ⊥Aω. Moreover, since the set Dir is a singleton
as well, the parity-A2TA (parity-StA2TA) A simulating G can be viewed as
an alternating two-way parity word automaton.

Clearly, G can be solved using the presented technique. However, the
PDMMS of the obtained pushdown transducer S implementing a winning
strategy is not a one-counter. We show how a one-counter strategy can be
constructed nevertheless.

Assume that L(A) 6= ∅ and let R = (QR,Γ,Γ′, δR, qRin , λ
R) be the DFT

obtained by the above construction that generates a regular (Γ′)-labeled Γ-
tree treg with Γ′ = Γ⊥ × Str × Ann in case of G being a parity game and
Γ′ = Γ⊥ × Str × Ann × Ann′ in case of a stair parity game. As |Γ| = 1, we
can consider the regular tree treg as an ultimately periodic word wreg ∈ (Γ′)ω

with treg(Ai) = wreg(i), for i ∈ N. Hence, for some k, l ∈ N with l < k,

wreg =
(
wreg(0) · · ·wreg(l − 1)

)(
wreg(l) · · ·wreg(k)

)ω
.

and R is of the following form. The set of states is QR = {r0, . . . , rk} with
r0 = rRin . The transition function is such that δR(ri, A) = ri+1, for all i ∈ [k],
and δR(rk, A) = rl. The output function is λR(ri) = wreg(i), for i ∈ [k + 1].

To construct a one-counter winning strategy from R, we store the re-
quired information in the states of the one-counter strategy instead of its
stack. However, the stack is used to count the number of times R goes into
its loop. Formally, we define the DPDT S implementing a winning strategy
for Player O by S = (QS ,∆,∆, {A}, δS , (qin, r0), λS) with QS = Q×QR. For
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q, q′ ∈ Q, i ∈ [k] and X,Y ∈ {A,⊥}, the transition function δS is defined by

δS((q, ri), Y, (q,X, q
′, X)) = ((q′, ri), Y ),

δS((q, ri), Y, (q,X, q
′, AX)) =

{
((q′, ri+1), Y ) if i < k,

((q′, rl), AY ) if i = k,

δS((q, ri), Y, (q,X, q
′, ε)) =

{
((q′, ri−1), Y ) if i 6= l or Y = ⊥,
((q′, rk), ε) if i = l and Y = A.

Essentially, the stack is used to appropriately update the second component
of QS . In particular, the stack is increased every time the loop in R is
completed, i.e., when S proceeds from rk to rl. Hence, when reading a pop-
transition in a state with rl in its second component, the top stack symbol
determines whether the second component is updated to rl−1 or to rk. If
the stack is empty then rl was reached from rl−1 while a matching push-
transition was read, otherwise if the top stack symbol is A then the loop was
already completed and the predecessor of rl is rk.

The output function λS can be adopted as defined in the previous sub-
section. Notice, that here the output depends only on the state and not on
the top of the stack. However, since the states from QR are moved to the
second component of QS , we have the appropriate domain Q×QR for λS .

Visibly and Realtime Games

For parity or stair parity pushdown games played on configuration graphs of
DVPM, consider the pushdown strategies S as well as S ′ (which consumes
and outputs letters from Σ rather than transitions from ∆) obtained by the
above technique. Notice that if a push-transition or respectively a letter
from Σpush is processed then S and S ′ perform a push-transition as well.
For a pop-transition or respectively a letter from Σpop, a pop-transition
is performed by S and S ′. Furthermore, skip-transitions or, respectively,
letters from Σskip induce also skip-transitions of the transducers. However,
a VPM has no access to the top of the stack when performing skip- and
push-transitions. Therefore, we modify S and S ′, respectively, by extending
the stack alphabet and the set of states by shifting the top stack symbol
to the current state to obtain a DVPT Svis implementing a visibly winning
strategy. We give the construction for Svis from S ′. Formally,

Svis = (Q×QR,Σ,Σ, QR ×QR,∆vis, (qin, q
R
in), λvis),

such that for every q, q′ ∈ Q, a ∈ Σ, and X,Y ∈ QR⊥ ,

((q,X), a, (q′, X)) ∈ ∆vis
skip if δS

′
(q,X, a) = (q′, X),
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3.2 Formats of Winning Conditions and Winning Strategies

((q,X), a, (X,Y ), (q′, Y )) ∈ ∆vis
pop if δS

′
(q,X, a) = (q′, ε),

((q,X), a, (q′, Y ), (Y,X)) ∈ ∆vis
push if δS

′
(q,X, a) = (q′, Y X).

Hence, by this simple modification, we obtain a transducer implementing a
winning strategy of the same format as the pushdown machine defining the
pushdown game.

Now, consider a parity or stair parity pushdown game played on a con-
figuration graph of rt-DPDM, and the corresponding pushdown strategies S
and S ′. By definition of S, the corresponding DPDM MS is realtime, as
no ε-transition are contained in the transition function. Notice, that since
the game graph is a configuration graph of a rt-DPDM there is no transition
t ∈ ∆ with λ(t) = ∅. Hence, the transition function of S ′ contains only
non-ε-transitions, as well.

Visibly and Blind One-Counter Games

First, we show that visibly one-counter strategies do not suffice to solve
visibly one-counter Gale-Stewart games. Let Σ = ΣI × ΣO where ΣI =

{a, c} and ΣO = {a, r}. Consider the following DV1CLω-game Γ(Lvc) with
Lvc ⊆ Σω such that w ∈ Lvc if and only if

• Pr0(w) 6= cnaω, for some n > 1, or

• w =
(
c
r

)n(a
r

)n−1(a
a

)(
a
r

)ω, for some n > 1.

A parity-DV1CA recognizing Lvc for the visibly pushdown alphabet Σ

with Σpush = {
(
c
a

)
,
(
c
r

)
}, Σpop = {

(
a
r

)
} and Σskip = {

(
a
a

)
} is depicted in

Figure 3.3 where the symbol asterisk stands for any symbol from ΣO. To
facilitate readability the stack symbol A is omitted in the labelings of the
push-transitions, since it is the only symbol which can be pushed onto the
stack. Moreover, if the stack symbol is omitted in the labeling of an

(
a
r

)
-

transition then this transition is defined for both stack symbols ⊥ and A.
The automaton checks whether an input word w satisfies Pr0(w) = cnaω,

for some n > 1. If this is violated then the automaton proceeds to the
accepting sink state q7 and remains in the loop forever. In case where
Pr0(w) = cnaω, for some n > 1, the stack is used to check the second
condition of the definition. Being in state q2 the length n of the prefix

(
c
r

)n
of the input word is stored on the stack. State q6 can only be reached from
a configuration (q2, A

n⊥) if the infix
(
a
r

)n−1(a
a

)(
a
r

)2 is read. There the au-
tomaton remains as long as letters

(
a
r

)
are processed. The coloring ensures

that an input word w is accepted if the unique run on w eventually remains
in q7 or in q6 forever corresponding to the both conditions of the definitions.

Clearly, a winning strategy σO : (ΣI × ΣO)∗ΣI → ΣO for Player O in
Γ(Lvc) has to respond by letter a at the appropriate position, if the input
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Figure 3.3: Parity-DV1CA recognizing L

produced by Player I is cnaω for n > 1, i.e., σO(
(
c
r

)n(a
r

)n−1
a) = a, for every

n > 1. We use a language theoretic argument to show that this cannot
be implemented by any DV1CT. We use the representation of a pushdown
transducer given by a collection of pushdown automata (cf. Section 3.2).

Lemma 3.31. The language L = {
(
c
r

)n(a
r

)n−1
a | n > 1} is not accepted by

any DV1CA.

Proof. Assume L is recognizable by DV1CA Aa = (Q,Σ, {A}, δ, qin, Fa).
Moreover, let |Q| = k. Consider a word wm =

(
c
r

)m+1(a
r

)m
a with m > k.

In case
(
c
r

)
∈ Σpop ∪ Σskip, there exist 0 < i < j ≤ m + 1 such that for

some state q ∈ Q the run of Aa on prefi(wm) =
(
c
r

)i as well as the run
on prefj(wm) =

(
c
r

)j ends in the configuration (q,⊥). Since wm ∈ L, i.e.,
the run of Aa on wm ends in a final state q′ ∈ Fa, the run of Aa on the
word

(
c
r

)m+1−(j−i)(a
r

)m
a /∈ L also ends in the final state q′ which yields the

contradiction. If
(
c
r

)
∈ Σpush, there exist 0 < i < j ≤ m+1 such that for some

state q ∈ Q the run of Aa on prefi(wm) ends in the configuration (q,Ai⊥) and
the run on prefj(wm) ends in (q, Aj⊥). Now, a similar pumping argument
can be applied. Since the run of Aa on wm ends in some final state q′ ∈ Fa
and the stack height of every configuration of the run (except the initial one)
is greater than zero, we can pump the infix wm(i + 1) · · ·wm(j) such that
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3.2 Formats of Winning Conditions and Winning Strategies

the new word is accepted by Aa as the empty stack is never reached. For
instance, the word

(
c
r

)m+1+(j−i)(a
r

)m
a /∈ L is accepted by Aa which yields

the contradiction.

We conclude this section by presenting a parity pushdown game which
is played on a labeled configuration graph of a deterministic blind one-
counter machine which is not solvable by deterministic blind one-counter
strategies. Consider the following DB1CM M = (Q,Σ, {A}, δ, qin) with
Q = {qin, q1, q2, q3, q4}, Σ = {a, b, c, d} and the transition function defined
by

• δ(qin, a,X) = (qin, AX), δ(qin, b, A) = (q1, ε),

• δ(q1, b, A) = (q1, ε), δ(q1, c,X) = (q2, X),

• δ(q2, a,X) = (q3, X), δ(q2, b,X) = (q4, X),

• δ(q3, c,X) = (q4, AX), δ(q3, d, A) = (q3, A),

• δ(q4, c,X) = (q3, AX), δ(q4, d, A) = (q4, A)

where X ∈ {A,⊥}. Furthermore, let Q0 = {q2, q3} and Q1 = Q \ Q0 and
the coloring function

col(q) =

{
1, if q = q4,

0, otherwise.

The parity pushdown game G = (G(M), col) is depicted in Figure 3.4 where
Player I configurations are represented by rectangle nodes and Player O
configurations are rounded.

Player I begins a play by building up a finite prefix anbmc withm ≤ n. If
he picks an infinite number of a’s by remaining in the initial state qin forever,
he loses, since col(qin) = 0. After a prefix anbmc is provided, Player O has to
decide whether to pick letter a or b. Player O wins if he can force to reach
a loop in state q3. On the other hand, he loses if a loop in q4 is reached
where Player I can stay forever by choosing d. Hence, a winning strategy
for Player O has to pick letter a from a configuration (q2, A

i⊥) for i > 0,
this is the case, if the prefix constructed by Player I contains more letters
a than b. On the other hand, in order to win Player O has to pick letter b
being in configuration (q2,⊥) which is the case if the prefix constructed by
Player I contains equal number of a’s and b’s.

Notice, that such a winning strategy can easily be realized by a deter-
ministic pushdown transducer. However, a winning strategy cannot be im-
plemented by any DB1CT. To show this, we again use a language theoretic
argument.

51



3 Pushdown Games and Pushdown Winning Strategies

(qin,⊥) (qin, A⊥) (qin, AA⊥) · · ·

(q1,⊥) (q1, A⊥) (q1, AA⊥) · · ·

(q2,⊥) (q2, A⊥) (q2, AA⊥) · · ·

(q3,⊥) (q3, A⊥) (q3, AA⊥) · · ·

(q4,⊥) (q4, A⊥) (q4, AA⊥) · · ·

a a a

b b b

b b b

c c c

a a a
b b b

c c c

c c c
d d

d d

Figure 3.4: Parity blind one-counter game

Lemma 3.32. The language L = {anbnc | n > 0} is not accepted by any
DB1CA.

Proof. Assume L is recognizable by DB1CA Ab = (Q,Σ, {A}, δ, qin, Fb).
Consider a word w = ambmc ∈ L with m > |Q|. Moreover, let ρ be
the accepting run of Ab on w. Clearly, there exist two positions 0 ≤ i <

j ≤ m + 1 such that ρ(i) = (q, Asi⊥) and ρ(j) = (q, Asj⊥), for some
q ∈ Q and si, sj ∈ N. Let ρ1 = ρ(0) · · · ρ(i), ρ2 = ρ(i + 1) · · · ρ(j) and
ρ3 = ρ(j + 1) · · · ρ(|w|). We distinguish two cases. First, let si < sj . Con-
sider ρ = ρ1ρ2ρ

′
2ρ
′
3 where Pr0(ρ′2) = Pr0(ρ2), Pr0(ρ′3) = Pr0(ρ3), sh(ρ′2(k)) =

sh(ρ2(k))+ |sj−si| and sh(ρ′3(k)) = sh(ρ3(k))+ |sj−si|, for k ∈ N. Since Ab
is blind, i.e., every transition enabled with empty stack is also enabled
with nonempty stack, we have ρ is an accepting run of Ab on the word
am+(j−i)bmc /∈ L. Otherwise, if si ≥ sj , then with the same argument ρ1ρ

′
3

is an accepting run of Ab on the word am−(j−i)bmc /∈ L. Contradiction.

3.3 Summary of Results

We investigated Gale-Stewart games defined by several types of contextfree
winning conditions as well as games played on pushdown game graphs defined
by several types of pushdown machines. In particular, the relation between
the formats of the underlying pushdown machines of those games and the
formats of their winning strategies was addressed.
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3.3 Summary of Results

By a uniform proof method we have shown that parity and stair parity
pushdown games played on configuration graphs of deterministic, determin-
istic visibly, deterministic realtime and deterministic one-counter machines
are determined with pushdown strategies of corresponding format. This di-
rectly implies the corresponding result for Gale-Stewart games defined by
deterministic, deterministic visibly, deterministic realtime and deterministic
one-counter parity and stair parity pushdown automata, since they can be
modeled by pushdown games on corresponding configuration graphs.

On the contrary, besides these positive cases where the correspondence
between the formats could be established, we showed that there are cases
where strategies of the same format do not suffice. There are Gale-Stewart
games with deterministic visibly one-counter winning conditions which are
not determined with deterministic visibly one-counter strategies. Thus, this
also holds for parity and stair parity pushdown games on visibly one-counter
configuration graphs. Furthermore, we showed that deterministic blind one-
counter strategies are not sufficient to solve pushdown games on configura-
tion graphs of deterministic blind one-counter machines.
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Chapter 4

Pushdown Delay Games

Delay games are used to model systems where an agent is allowed or even
forced to defer the delivery of his actions for an arbitrary finite number of
rounds. Such situations occur when, for instance, transmission of data in
networks or processes equipped with buffers are modeled. Delay games can
be viewed as a generalization of Gale-Stewart games where the strict alter-
nation between the moves of the players is modified by allowing one of the
players to postpone his moves for some time, thus obtaining a lookahead on
the moves of the other player. Alternatively, one can require the other player
to produce words of appropriate lengths instead of producing single symbols.
For this purpose, so-called delay functions are provided that determine the
lengths of the words to be produced in the individual rounds.

Hosch and Landweber proved for regular winning conditions that it is
decidable whether the corresponding delay game can be won with bounded
lookahead [HL72], i.e., from some round on both players produce single sym-
bols in a strict alternation. This result was improved by Holtmann et al.
in [HKT10], the authors showed that if a player wins a regular delay game
with arbitrary lookahead, then he also can win with bounded lookahead
which is doubly-exponential in the size of the parity automaton recognizing
the winning condition. Moreover, the authors observe that this does not
hold for deterministic contextfree delay games, i.e., there is a deterministic
contextfree winning condition which can be won with arbitrary, but not with
bounded lookahead.

Besides the application of delay games for modeling different scenarios
where delay occurs, the study of delay games is also of basic theoretical
interest. Given a binary relation R ⊆ A × B, for sets A and B, a function
f : A→ B is called uniformization of R if (a, f(a)) ∈ R, for every a ∈ A. The
uniformization problem asks, for a given class of relationsR and a given class
of functions F , whether for every relation R ∈ R there exists a function fR ∈
F which uniformizes R. Notice that a strategy of a Gale-Stewart game Γ(L)
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4 Pushdown Delay Games

with the winning condition L ⊆ Σω × Σω induces a mapping σ : Σω → Σω

such that it is winning for Player O if (α, σ(α)) ∈ L, i.e., if σ uniformizes L.
Since in the classical setting of strict alternation of the symbols picked by
the players, the n-th symbol of σ(α) depends only on the first n letters of α,
strategies in the classical setting give special kinds of functions. By means of
delay games uniformization is studied for more general functions. Arbitrary
finite lookahead, corresponding to the case where the n-th symbol of σ(α)

depends on a finite prefix α, induces a continuous function in the Cantor
topology over Σω. Bounded lookahead, where there is some value which is
not exceeded by the lookahead, i.e., eventually both players produce single
symbols in a strict alternation, induces a Lipschitz-continuous function in
the Cantor topology over Σω.

Stated in terms of uniformization of binary relations, Hosch and Landwe-
ber proved that the uniformization problem is decidable for regular relations
with Lipschitz-continuous functions. Holtmann et al. showed the equivalence
of the existence of a continuous uniformization function and the existence of a
Lipschitz-continuous uniformization function for regular relations. However,
this equivalence does not hold for deterministic contextfree relations.

In this chapter we investigate contextfree delay games. We answer the
following questions stated in [HKT10]:

1. Can the winner of a deterministic contextfree delay game be deter-
mined effectively, and

2. what amount of lookahead is necessary to win deterministic contextfree
delay games?

We introduce delay games formally in Section 4.1. Then, in Section 4.2, the
first question is answered. First, we show that for a fixed bounded lookahead
determining the winner of a deterministic contextfree delay game is decid-
able. However, it is undecidable to determine whether a given player wins
a deterministic contextfree game with arbitrary lookahead. Hence, we show
undecidability of the uniformization problem for deterministic contextfree
relations with continuous functions. Finally, we characterize sets of func-
tions for which it is decidable whether a given player wins a deterministic
contextfree delay game if the lookahead is restricted to one of this functions.
In Section 6.4 the second question is answered. We present a deterministic
contextfree delay game which is won if arbitrary lookahead is available, how-
ever, lookahead that is bounded by an elementary function does not suffice.
Thus, a non-elementary lower bound is established.
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4.1 Games with Delay

4.1 Games with Delay

In this section, we introduce our notation for delay games. Let ΣI be an
input alphabet, ΣO an output alphabet and Σ = ΣI × ΣO. An ω-language
L ⊆ Σω and a so called delay function

f : N→ N \ {0}

define the delay game Γf (L). The game Γf (L) is played by the two players,
Player I and Player O, in rounds i ∈ N as follows. In every round i, first
Player I picks a word

ui ∈ (ΣI)
∗ with |ui| = f(i),

then Player O (being aware of the choice ui of Player I) picks a letter bi ∈ ΣO.
A play of Γf (L) is a sequence u0, b0, u1, b1, u2, b2, . . . which yields two

ω-words, the input word α = u0u1u2 · · · constructed by Player I and the
output word β = b0b1b2 · · · produced by Player O. As for Gale-Stewart
games, the language L provides the winning condition. Player O wins the
play if and only if the ω-word α_β induced by the play is contained in L.

A strategy for Player I is a function

σI : (ΣO)∗ → (ΣI)
∗ such that |σI(w)| = f(|w|),

for every w ∈ (ΣO)∗. A strategy for Player O is a function σO : (ΣI)
∗ → ΣO.

Consider a play u0, b0, u1, b1, . . . of Γf (L). The play is consistent with a
strategy σI for Player I if un = σI(b0 · · · bn−1), for all n ∈ N. The play
is consistent with a strategy σO for Player O if bn = σO(u0 · · ·un), for all
n ∈ N. Accordingly, a strategy σ is winning for Player i, for i ∈ {0, 1}, if
every play which is consistent with σ is won by Player i, and in this case we
say that Player i wins Γf (L).

For a delay function f : N→ N \ {0}, we define the distance function df
which we also refer to as lookahead function by

df (i) =
(∑i

j=0 f(j)
)
− (i+ 1),

i.e., df (i) is the lookahead attained by Player O after choosing letter bi in
the i-th round. We classify delay functions according to their lookahead
functions (and not to the kind of a delay function itself). Hence, for a delay
function f , we say that f is a constant-delay function with delay d if

df (i) = d, for all i ∈ N,

which is the case if f(0) = d+1 and f(n) = 1 for all n > 0. We say that f is
a bounded-delay function if the corresponding distance function is bounded,
i.e., there exists N ∈ N such that

|df (i)| ≤ N for all i ∈ N.
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4 Pushdown Delay Games

This is the case, if {i ∈ N | f(i) 6= 1} is finite. Notice, that every constant-
delay function is also a bounded-delay function. We say that f is a linear-
delay function with delay k > 0 if

df (i) = (k − 1)(i+ 1), for all i ∈ N,

i.e., if f(n) = k for all n ∈ N. Finally, f is an elementary-delay function if

df ∈ O(expk), for some fixed k ∈ N,

where expk denotes the k-fold exponential function expk : N → N which is
inductively defined by exp0(n) = n and expk+1(n) = 2expk(n).

Example 4.1. Let Σ = ΣI × ΣO with ΣI = {a, ]} and ΣO = {a, b, ]}.
Consider the following language L ⊆ Σω with w ∈ L if and only if

• Pr0(w) = aω, or

• Pr0(w) contains an infix ]] or an infix ]a2n+1] for some n ∈ N, or

• w =
(
a
a

)n0
(
a
b

)n0
(
]
]

)(
a
a

)n1
(
a
b

)n1
(
]
]

)(
a
a

)n2
(
a
b

)n2
(
]
]

)
· · · with ni ∈ N, for all

i ∈ N.

Notice, that a parity-DPDA recognizing L can easily be constructed. Con-
sider the game Γ(L). Clearly, Player I has a winning strategy in Γ(L) by
first producing two a’s. If Player O responds by outputting ab then Player I
continues by aa(]aa)ω and wins. Otherwise, if the first two output letters
produced by Player O are not ab then Player I continues by (]aa)ω and wins.

However, Player O wins the delay game Γf (L) with linear-delay function
f(n) = 2 for all n ∈ N. This is because in every round i, according to the
delay function f , Player O is already informed about the prefix of the input
word produced by Player I of length 2(i + 1). Clearly, this lookahead is
sufficient to determine whether to respond by the output letter a or b. 3

We conclude this section by briefly discussing determinacy of delay games
with deterministic contextfree winning conditions. We show that determin-
istic contextfree delay games can be modeled as parity games on countable
game graphs with finitely many colors. Then, determinacy of such games
follows by Theorem 2.11. For this, we use the queue structure. For an al-
phabet Σ let the function deq : Σ∗ → Σ∗ be defined by deq(aw) = w and
deq(ε) = ε, for w ∈ Σ∗ and a ∈ Σ.

Theorem 4.2. Let L ∈ DCFLω and f : N → N \ {0} be a delay function.
Then, Γf (L) is determined.
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Proof. Let P = (Q,Σ,Γ, δ, qin, col) with Σ = ΣI × ΣO be a parity-DPDA
with continuity property such that L(P) = L. Consider the following parity
game (G, col′) where G = (V, V0, V1, E, vin) is defined as follows. The set of
vertices is given by

V = Q× Γ∗⊥× (ΣI)
∗ × N× N.

The first two components of a vertex are used to store the current configura-
tion, the third component stores the content of the current lookahead, and
the last two components are used to keep track of the current round and the
length of the word to be chosen by Player I given by the delay function. The
initial vertex is defined by

vin = (qin,⊥, ε, 0, f(0)).

We define the edge relation E as follows. For every (q, γ, w, i, j) ∈ V , if j > 0

then for all a ∈ ΣI(
(q, γ, w, i, j), (q, γ, wa, i, j − 1)

)
∈ E,

otherwise, in case j = 0, if an ε-transition is defined from (q, γ), then(
(q, γ, w, i, j), (q′, γ′, w, i, j)

)
∈ E,

where (q, γ)
ε7−P (q′, γ′), or else, for all b ∈ ΣO,(

(q, γ, w, i, j), (q′, γ′, deq(w), i+ 1, f(i+ 1))
)
∈ E,

where (q, γ)
σ7−P (q′, γ′) with σ =

(w(0)
b

)
. Define the partition of the set V of

vertices by V0 = {(q, γ, w, i, j) ∈ V | j = 0}, and V1 = V \ V0, accordingly.
And let the coloring function be defined by col′(v) = col(Pr0(v)). Clearly, by
this construction Player p wins Γf (L) if and only if Player p wins the parity
game (G, col′), for p ∈ {0, 1}.

4.2 Decision Problems

In this section, we consider various decision problems regarding delay games
with contextfree winning conditions. One type of questions that we address
is concerned with the existence of delay functions such that for a given de-
terministic contextfree winning condition Player O has a winning strategy in
the corresponding delay games. The second kind of decision problems that
we tackle ask whether Player O can win a delay game for a given winning
condition and a given delay function. Here, we analyze for which classes of
delay functions this problem is decidable.
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4 Pushdown Delay Games

We begin by showing that for a fixed bounded-delay function the winner
can be determined effectively. It turns out that this result is the most gen-
eral decidability result. Hence, relaxing the boundedness condition on the
distance function makes the problem undecidable (see Theorem 4.6).

Theorem 4.3. The following problem is decidable.

Given: Parity-DPDA P and a bounded-delay function f .

Question: Does Player O win the delay game Γf (L(P))?

Proof. Using the construction of the proof of Theorem 4.2 we show that
Γf (L(P)) can be reduced to a parity game played on a configuration graph
of a deterministic pushdown machine. We exploit the fact that in case of
bounded-delay functions, the queue which stores the content of the lookahead
is bounded, as well as the number of rounds in which Player I picks a word
containing more than one letter is finite.

Let P = (Q,Σ,Γ, δ, qin, col) with Σ = ΣI × ΣO and let N ∈ N be the
bound of the distance function, i.e., df (i) ≤ N for all i ∈ N. Moreover, let
M ∈ N such that f(i) = 1 for all i ≥ M , which exists as {i ∈ N | f(i) 6= 1}
is finite. Furthermore, let F = max{f(i) | i ∈ N}.

Consider the following DPDMM = (QM,Σ ∪ ΣI ,Γ, δ
M, qMin ) where

QM = Q× (ΣI)
≤N × [M + 1]× [F + 1],

qMin = (qin, ε, 0, f(0)),

and for every s = (q, w, i, j) ∈ QM, if j > 0, then for every A ∈ Γ⊥, a ∈ ΣI

δM(s,A, a) =
(
(q, wa, i, j − 1), A

)
,

otherwise, if j = 0, then for every A ∈ Γ⊥ and b ∈ ΣO

δM(s,A, ε) =
(
(q′, w, i, j), γ

)
if δ(q, A, ε) = (q′, γ),

δM(s,A, b) =
(
(q′, deq(w), succ(i), f(succ(i))), γ

)
if δ(q, A, σ) = (q′, γ),

where σ =
(w(0)

b

)
and succ(i) = i + 1 for i ∈ [M ] and succ(M) = M .

Clearly, with partition of QM given by Q0 = {(q, w, i, j) ∈ QM | j = 0}
and Q1 = QM \ V0 and coloring col′(s) = col(Pr0(s)), for s ∈ QM, a parity
game (G(M), col′) is obtained such that Player p wins Γf (L(P)) if and only
if Player p wins (G(M), col′), for p ∈ {0, 1}.

We continue with the undecidability results which are obtained by a
reduction from the halting problem for 2-register machines. Such a machine
comprises two registers, each holding a non-negative integer, and a finite
control which can increment or decrement the value of a register, furthermore
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it can be tested whether the content of a register equals zero. Formally, a
2-register machine R is a list of pairs

R =
(
(0 : I0), . . . , (k : Ik)

)
where I` ∈ {INC(Xi), DEC(Xi), IF Xi=0 GOTO m | i ∈ {0, 1} and m ∈ [k+1]},
for every ` ∈ [k], and Ik = HALT. The first component of a pair is called line
number and the second one is the instruction.

The computation of R starts in the initial pair (0 : I0). For a pair (` : I`)

with ` ∈ [k + 1], if I` = INC(Xi) then the value of register i, for i ∈ {0, 1},
is incremented by 1, and R proceeds to the next pair with the line number
` + 1. if I` = DEC(Xi) then the value of register i is decremented by 1 in
case it holds a nonzero value, else the decrease operation has no effect, i.e.,
the value remains zero, accordingly the register machine proceeds to the next
pair with the line number `+1. If I` = IF Xi=0 GOTO m, form ∈ [k+1], then
the next line number is determined by examining the content of register i, if
it holds value 0 thenR proceeds to line numberm, else if the value is nonzero
the computation continues with line number `+1. Finally, if I` = HALT then
the computation halts.

A configuration of R is a tuple (`, n0, n1) where ` ∈ [k + 1] is a line
number and ni ∈ N is the value of register i, for i ∈ {0, 1}. Configuration
cin = (0, 0, 0) is the initial configuration. Moreover, we call a configuration c
halting configuration if Pr0(c) = k, i.e., c contains line number k for which
the corresponding instruction is Ik = HALT. For two configurations c, c′ ∈
[k+ 1]×N×N, we write c 7−R c′ if c′ is the successor configuration of c, i.e.,
for all ` ∈ [k + 1], n0, n1 ∈ N and i ∈ {0, 1}

(`, n0, n1) 7−R (`+ 1, n0 + 1, n1) if Il = INC(X0),

(`, n0, n1) 7−R (`+ 1, n0, n1 + 1) if Il = INC(X1),

(`, n0, n1) 7−R (`+ 1, n0 − 1, n1) if Il = DEC(X0) and n0 6= 0,

(`, n0, n1) 7−R (`+ 1, n0, n1 − 1) if Il = DEC(X1) and n1 6= 0,

(`, n0, n1) 7−R (`+ 1, n0, n1) if Il = DEC(Xi) and ni = 0,

(`, n0, n1) 7−R (`+ 1, n0, n1) if Il = IF Xi=0 GOTO m and ni 6= 0,

(`, n0, n1) 7−R (m,n0, n1) if Il = IF Xi=0 GOTO m and ni = 0.

The run of R is either a finite sequence ρ = ρ(0) · · · ρ(r) of configurations
such that ρ(0) = cin, ρ(r) is halting and ρ(n) 7−R ρ(n + 1) for all n ∈ [r]

or it is an infinite sequence ρ = ρ(0)ρ(1) · · · of configurations such that
ρ(0) = cin and ρ(n) 7−R ρ(n + 1) for all n ∈ N. We say that R halts if the
run of R is finite. It is well-known that the halting problem for 2-register
machines (which is to decide, given a 2-register machine R, whether R halts)
is undecidable [SS63].
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4 Pushdown Delay Games

Now, we show that for deterministic contextfree winning conditions de-
termining whether there is an arbitrary delay function such that Player O
has a winning strategy in the corresponding delay game is undecidable.

Theorem 4.4. The following problem is undecidable.

Given: Parity-DPDA P.

Question: Does there exist a delay function f such that Player O wins
the delay game Γf (L(P))?

Proof. We proceed by a reduction from the halting problem for 2-register
machines. For such a machineR =

(
(0 : I0), . . . , (k−1: Ik−1), (k : HALT)

)
, we

encode configurations by words over {r0, r1}∪[k+1] such that a configuration
(`, n0, n1) is encoded by `rn0

0 rn1
1 . Define

Conf = {`rn0
0 rn1

1 | ` ∈ [k + 1], n0, n1 ∈ N}

and Conf in = 0, i.e., Conf is the set of all encodings of configurations and
Conf in is the encoding of the initial configuration. For two encodings of
configurations c = `rn0

0 rn1
1 and c′ = `′ r

n′0
0 r

n′1
1 we write c 7−R c′ if for the

corresponding configurations (`, n0, n1) 7−R (`′, n′0, n
′
1) holds. Notice, that

for two encodings c, c′ ∈ Conf, if c 7−R c′ then we have |c′| ≤ |c|+ 1.
Now, consider the following winning condition LR over Σ = ΣI × ΣO,

where ΣI = {], r0, r1} ∪ [k+ 1] and ΣO = {N,E0, E1, L}. A word w ∈ Σω is
contained in LR if

• Pr0(w) 6= ]c0 ]c1 ]c2 · · · where ci ∈ Conf, for i ∈ N, and c0 = Conf in, or

• there exists exactly one n ∈ N such that w(n) ∈ {]}× {E0, E1, L} and
there is an infix v of w such that

– Pr0(v) = ] ` rn0
0 rn1

1 ] `′ r
n′0
0 r

n′1
1 ], for some n0, n1, n

′
0, n
′
1 ∈ N, and

– Pr1(v) = XN |v|−1 where X ∈ {E0, E1, L}, and
– if X = Ei then n′i 6= mi, for i ∈ {0, 1}, else if X = L then `′ 6= `s

where ` rn0
0 rn1

1 7−R `s r
m0
0 rm1

1 .

According to the first condition, Player I loses if he does not build up a
word of the form ]Conf in(]Conf)ω. So, consider such a word ]c0 ]c1 ]c2 ] · · ·
with ci ∈ Conf for all i ∈ N and c0 = Conf in. In order to win, Player O has
to find an infix ]cj ]cj+1 such that cj 7−R cj+1 does not hold. Furthermore,
he has to state why it does not hold. So, at each position where Player I has
picked a ] symbol Player O indicates whether he believes that the following
two encodings indeed encode successive configurations or not. By choosing
the letter N Player O states that he believes that the following two encodings
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· · ·
] 7 r0 r0 r0 r1 ] 8 r0 r0 r0 r1 r1 ] 9 r0 r0 r1 r1 ]

N N N N N N E0 N N N N N N N N N N N N N
· · ·

(7, 3, 1) (8, 3, 2) (9, 2, 2)

(
. . . , (7 : INC(X1)), (8 : DEC(X1)), . . .

)

Figure 4.1: Part of a play encoding three configurations

adhere to the successor relation 7−R. On the other hand, if Player O believes
that the successor relation 7−R is violated the error which occurs is indicated
by a letter from {E0, E1, L}. Letter E0 is used to declare that the first
register is not updated correctly, accordingly E1 indicates that the second
register is updated incorrectly. An incorrect update of the line number is
indicated by letter L. At any other position, letter N has to be chosen.

Figure 4.1 shows an example of a play infix with the encoding of three
configurations. The first update is correct, since (7, 3, 1) 7−R (8, 3, 2), while
the second one is not, since (8, 3, 2) 7−R (9, 3, 1). Both registers are updated
incorrectly, letter E0 claims the violation of the successor relation for the first
register in front of the the encodings of configurations (8, 3, 2) and (9, 2, 2).

We show, that LR is recognized by a parity-DPDA PR. Notice, that
the first condition of the definition of LR, whether the first component is
a word in ]Conf in(]Conf)ω, is regular. Moreover, the existence of exactly
one letter from {]} × {E0, E1, L} can also be checked in terms of a finite
automaton. Furthermore, if a letter from {]} × {E0, E1, L} is encountered
while reading an input word, PR has to check whether the following infix
v which consists of the next two encodings of configurations satisfies the
above requirements. Let Pr0(v) = ] ` rn0

0 rn1
1 ] `′ r

n′0
0 r

n′1
1 ], and ` rn0

0 rn1
1 7−R

`s r
m0
0 rm1

1 for n0, n1, n
′
0, n
′
1,m0,m1 ∈ N and `, `′, `s ∈ [k+ 1]. if Pr1(v(0)) =

Ei for i ∈ {0, 1}, then n′i 6= mi if and only if n′i 6= ni + s, where

s =


1 if I` = INC(Xi),

−1 if I` = DEC(Xi) and ni > 0,

0 otherwise.

which can be checked using the pushdown stack by pushing a symbol onto
the stack while rni

i is read. The stack content is then used to check whether
n′i = ni + s. Otherwise, if Pr1(v(0)) = L then `′ 6= `s if and only if

• I` ∈ {INC(Xi), DEC(Xi)} and `′ 6= `+ 1, or
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• I` = IF Xi=0 GOTO m and ni > 0 and `′ 6= `+ 1, or

• I` = IF Xi=0 GOTO m and ni = 0 and `′ 6= m.

for i ∈ {0, 1},m ∈ [k+1]. This can be checked in terms of a finite automaton.
It remains to show that R halts if and only if there exists a delay func-

tion f such that Player O wins the game Γf (LR).
Suppose R halts and consider the linear-delay function with delay 6, i.e.,

f(i) = 6 for all i ∈ N. We claim that Player O has a winning strategy for
Γf (LR) which finds the first violation of the successor relation introduced
by Player I. In round 0 Player I picks 6 letters which are sufficient for
Player O to check whether Player I has encoded the initial configuration
and its successor configuration, as the length of such an encoding is bounded
by 6. Now consider a round i > 0. If the i-th input letter is not a ],
then Player O chooses an N as the output letter in this round. So suppose
that the i-th input letter is a ] and that Player O has not yet signaled a
violation of the successor relation by choosing a letter from {E0, E1, L} up
to this position. Player I has produced a word ]x]y of length 6(i+ 1) where
|x| = i− 1 and hence, |y| = 5(i+ 1). Note that both x and y might contain
the letter ]. Let c denote the last encoding of a configuration in x and c′

the first encoding of a configuration in y. As Player O has not signaled
an violation of the successor relation at the previous ], we know that c′ is
well-defined and that c 7−R c′ holds. We have |c| ≤ |x| = i − 1 and hence
|c′| ≤ i. Thus, the successor configuration of c′ is encoded by at most i + 1

letters. As i + (i + 1) + 2 < 5(i + 1) for all i > 0, in every round Player O
has enough information to detect a violation of the successor relation if one
is introduced. This strategy is indeed winning for Player O as Player I has
eventually to violate the successor relation, since a halting configuration has
no successor.

Now suppose R does not halt. For any delay function f , Player I
has a winning strategy in the delay game Γf (LR) by producing the word
]c0 ]c1 ]c2] · · · where c0 = Conf in, ci ∈ Conf and ci 7−R ci+1 for all i ∈ N.
This means, Player I builds up the encoding of the infinite run of R. Hence,
due to determinacy, Player O does not win Γf (LR).

Notice, that if Player O wins Γf (LR) for some delay function f then
there is also a constant-delay function g such that Player O wins Γg(LR).
The reason is the following. Player O wins Γf (LR) if and only if R halts.
So let ρ = ρ(0) · · · ρ(r) be the run of R and let ci denote the corresponding
encoding of the configuration ρ(i), for i ∈ [r + 1]. Clearly, since the length
of every encoding ci is bounded by |ci| ≤ i + 1 for i ∈ [r + 1], we have
|]c0 ] · · · ]cr]| ≤ r+ 2 + (r+ 1)(r+ 2)/2 = dR. Hence, for Player O it suffices
to be informed about the first dR letters of the input produced by Player I
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to be able to react in a proper manner. Thus, Player O wins Γg(LR) for the
constant-delay function g with g(0) = dR and g(n) = 1 for all n > 0.

Corollary 4.5. The following problems are undecidable.

Given: Parity-DPDA P.

Question: Does there exist a constant-delay function f such that Player O
wins the delay game Γf (L(P))?

Given: Parity-DPDA P.

Question: Does there exist a linear-delay function f such that Player O
wins the delay game Γf (L(P))?

Given: Parity-DPDA P and k > 0.

Question: Does Player O win the delay game Γf (L(P)) where f is the
linear-delay function f(i) = k for all i ∈ N?

By slightly modifying the winning condition LR described above, we
show that all undecidability results hold even for a very restricted class of
deterministic contextfree winning conditions, namely winning conditions rec-
ognizable by E-DV1CA. The idea for defining a visibly winning condition L′R
is to let Player O control the behavior of the stack. To do this, Player O
is supplied with additional letters to indicate which kind of a transition has
to be performed, push-, pop- or a skip-transition, respectively. We define
ΣO = {Push,Pop, N, L,E0, E1, C}, the input alphabet remains unchanged
ΣI = {], r0, r1} × [k + 1] and let Σpush = ΣI × {Push}, Σpop = ΣI × {Pop},
and Σskip = ΣI × {N,L,E0, E1}, i.e., the membership of a letter to one of
the alphabets depends only on the second component of the letter.

Furthermore, in order L′R to be E-recognizable, we have to relax the
requirement on the input word constructed by Player I such that it is no
longer required to be of the form ]Conf in(]Conf)ω. To compensate this, we
require that Player I starts with the encoding of the initial configuration ]0].
Furthermore, Player O is provided with an additional symbol C. At any ]
position Player O can signal that the subsequent input word produced by
Player I is not of the form c]c′] · · · where c, c′ ∈ Conf such that |c′| ≤ |c|+ 1

by answering this ] by the letter C. If Player I does not produce a valid
sequence of encodings of configurations, then Player 0 can claim this by
indicating the appropriate position.

Finally, as soon as a ] symbol is answered by one of the letters E0, E1, L

or C for the first time, letters Push,Pop andN are used to enable the automa-
ton to perform the corresponding tests. All of them involve only comparison
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of the lengths of two appropriate infixes. Hence, all necessary tests can be
implemented using a single stack symbol.

We conclude this section by characterizing sets F of delay functions for
which it is decidable whether Player O wins a given delay game with some
delay function from F . To give a general criterion, we define bounded sets
of delay functions. We say that a set F of delay functions f : N → N \ {0}
is bounded, if there exists a bound N ∈ N such that for every f ∈ F and
every i ∈ N we have df (i) ≤ N , i.e., there is a global bound on the lookahead
for Player O given by the functions in F . Notice, that every bounded set of
delay function consists of bounded-delay functions. However, the converse
does not hold, e.g. the set of all bounded-delay functions is unbounded.

Theorem 4.6. Let F be a set of delay functions. The following problem is
decidable if and only if F is bounded.

Given: Parity-DPDA P.

Question: Does there exist an f ∈ F such that Player O wins the delay
game Γf (L(P))?

Proof. Consider a bounded set F of delay functions. We define a partial
order on delay functions as follows. Let f and g be delay functions, define
f ≤ g if and only if df (i) ≤ dg(i) for all i ∈ N, i.e., the delay function g

allows in any round at least as much lookahead as the delay function f does.
Moreover, we say that a delay function f ∈ F is maximal if for all g ∈ F ,
f ≤ g implies f = g. Let

Fmax = {f ∈ F | f is maximal}

denote the set of all maximal delay functions from F . Applying Dickson’s
Lemma [Dic13] and the boundedness of F it follows that Fmax is finite.

We claim that there exists a delay function f ∈ F such that Player O
wins the delay game Γf (L(P)) if and only if there exists a delay function
g ∈ Fmax such that Player O wins the delay game Γg(L(P)). As Fmax

is finite and every g ∈ Fmax is also a bounded-delay function, the latter
property can be decided by Theorem 4.3.

The implication from right to left is trivially true, so assume there exists
an f ∈ F\Fmax such that Player O wins Γf (L(A)). Then, there is a function
g ∈ Fmax such that f ≤ g, i.e., the function g admits Player O at least as
much lookahead as f . Hence, a winning strategy for Player O in Γf (L(P))

can easily be turned into a winning strategy for her in Γg(L(P)).
Now consider an unbounded set F of delay functions, i.e., for everyN ∈ N

there exists a delay function f ∈ F and i ∈ N such that df (i) > N . We adapt
the winning condition LR described in the proof of Theorem 4.4 by allowing
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Player O to postpone the beginning of the simulation of the computation
of the 2-register machine R until enough lookahead is attained for Player O
to inspect the complete halting computation of R, in case there exists one,
before potential violations of the successor relation have to be indicated.

Given a 2-register machine R =
(
(0 : I0), . . . , (k : Ik)

)
, define Conf in and

Conf as in the proof of Theorem 4.4, and consider the following winning
condition L′R over Σ = ΣI × ΣO, where ΣI = {], r0, r1, N} ∪ [k + 1] and
ΣO = {N,E0, E1, L, S}. A word w ∈ Σω is contained in L′R if

• Pr0(w) 6= uv with u = N∗ and v is either Nω or ]c0 ]c1 ]c2 · · · where
ci ∈ Conf, for i ∈ N, and c0 = Conf in, or

• Pr1(w) = Nω and Pr0(w) 6= Nω, or

• w = uv with u =
(
N
N

)∗(N
S

)(
N
N

)∗
and either v ∈ LR or Pr0(v) = Nω

Player I has to build a word of the form N∗]Conf in(]Conf)ω or Nω.
If he does not adhere to the format, he loses. Furthermore, in order to win
Player I may produce the word Nω if and only if Player O never plays letters
E0, E1, L, S. Letter S is used to indicate that the simulation eventually has
to start. Thus, if Player O plays the letter S, then Player I has to play
a word of the form N∗]c0 ]c1 ]c2 · · · with ci ∈ Conf for every i > 0, and
c0 = Conf in.

Again, in order to win, Player O has to find a pair cj , cj+1 such that
cj 7−R cj+1 does not hold. The mechanism to do so is the same as the one
described in the proof of Theorem 4.4.

Suppose R halts after r computation steps. Then, as mentioned above,
the finite run of R is encoded by at most dR letters. Let f ∈ F and i ∈ N
such that df (i) ≥ dR. Player O has a winning strategy in Γf (L′R). In the
first i rounds, she chooses N . If Player I has picked in a round j ≤ i + 1 a
word uj 6= Nf(j), then Player O wins by playing N ad infinitum. Otherwise,
Player O plays S in round i+ 1. Hence, in order to win Player I eventually
has to start simulating R, say at position j > i. As df is non-decreasing,
Player O has at least dR letters lookahead when picking her letter in any
round j′ ≥ j. As the machine halts, this lookahead enables Player O to
detect a position where the successor relation 7−R is violated which Player I
has to introduce, since a halting configuration does not have a successor
configuration.

If R does not halt, then Player I has a winning strategy in Γf (L′R) for
every delay function f ∈ F . As long as Player O has not played S, Player I
picks Nf(i) in round i. As soon as letter S is picked by Player O, he starts
producing the word ]c0 ]c1 ]c2 · · · , where c0, c1, c2, . . . are encodings of the
infinite run of R starting in the initial configuration.
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We conclude by giving two remarks concerning the above theorem. First,
notice that F is not part of the input of the decision problem considered
above. Hence, Theorem 4.6 is stated for any set F of delay functions without
having to represent F effectively. Moreover, Using the ideas presented above,
one can show that Theorem 4.6 holds even for weak-parity-DV1CA. However,
E-acceptance and A-acceptance are not sufficient in this case, because of the
modified interplay between the two players. On the one hand, Player O has
to be forced to play letter S and on the other hand Player I has to be forced
to start the simulation after Player O picked letter S.

4.3 Lower Bounds on Delays

In this section we analyze the extent of the lookahead necessary to win de-
lay games with deterministic contextfree winning conditions. We show that
there exists a deterministic contextfree winning condition L and a delay func-
tion f such that Player O wins the game Γf (L), but for any elementary-delay
function g Γg(L) is won by Player I. To this end, the idea of the previous
section is adapted. We define an infinite set of finite words and a succes-
sor relation on this set such that a successor word is exponentially longer
than its predecessor. Again, the task of Player I is to produces an infinite
sequence of such words and Player O has to find and indicate a violation
of the successor relation. In contrast to the specifications of the previous
section, first, Player I is required to eventually introduce a violation of the
successor relation and second, Player O does not indicate a potential viola-
tion in front of the i-th word, but with her i-th bit. Due to the exponential
growth of the successive words our result is obtained.

Theorem 4.7. There exists a parity-DPDA P and a delay function f such
that Player O wins the delay game Γf (L(P)), but Player I wins Γg(L(P))

for every elementary-delay function g.

Proof. Let Σ] = {
(
]
N

)
,
(
]
D

)
,
(
]
C

)
} and Σ[ = {

(
[
N

)
,
(
[
H

)
} be two alphabets.

We define the language LB ⊆ (Σ[ ∪ {0})∗ as follows. A word w is contained
in LB if and only if w is of the form

w = [0 0n0 [1 0n1 [2 · · · [k−1 0nk−1 ,

where k > 0, n0 = 1, ni > 0 and [i ∈ Σ[, for all i ∈ [k]. We call a word w ∈
LB block. Moreover, we say that a block w = [0 0n0 [1 0n1 [2 · · · [k−1 0nk−1

consists of k [-blocks [i0ni . Moreover, a block w ∈ LB consisting of only
one [-block is called initial block, we denote the set of initial blocks by
LBin = {[0 | [ ∈ Σ[}.
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(
]
N

) (
[
N

)
0
(
]
C

) (
[
N

)
0
(
[
N

)
0
(
]
N

) (
[
N

)
0
(
[
N

)
0 0
(
[
N

)
0 0 0 0

(
]
N

)
· · ·

w0 w1 w2

Figure 4.2: A prefix containing three blocks w0, w1 and w2

Now, we define a successor relation 7− on LB. For two blocks

w = [0 0n0 [1 0n1 [2 · · · [k−1 0nk−1 and
v = [′0 0m0 [′1 0m1 [′2 · · · [′l−1 0ml−1 ,

where k, l, ni,mj > 0, n0 = m0 = 1, and [i, [′j ∈ Σ[, for all i ∈ [k] and j ∈ [l],
define w 7− v if

• l = |w|, i.e., v consists of |w| many [-blocks, and

• mj+1 = 2mj for all j ∈ [l − 1], i.e., for every [-block [′j 0mj in v the
consecutive [-block [′j+1 0mj+1 contains twice as much letters 0.

Consider a word ]0w0 ]1w1 ]2w2 ]3 · · · ∈ (Σ]∪Σ[∪{0})ω, where w0 ∈ LBin

and wi ∈ LB, ]i ∈ Σ] for all i ∈ N. For two consecutive blocks

wi = [i,0 0ni,0 [i,1 0ni,1 [i,2 · · · [i,ki−1 0ni,ki−1 and
wj = [j,0 0nj,0 [j,1 0nj,1 [j,2 · · · [j,kj−1 0

nj,kj−1 ,

with j = i + 1, for i ∈ N, we say that the block wj has a doubling error at
position p in the range 0 ≤ p < kj − 1 if nj,p+1 6= 2nj,p. The doubling error
at position p in block wj is signaled, if ]j =

(
]
D

)
, [j,p =

(
[
H

)
, and [j,p′ =

(
[
N

)
for all p′ < p. Furthermore, we say that wi and wj constitute a copy error, if
|wi| 6= kj . The copy error for wi and wj is signaled if ]i =

(
]
C

)
. Clearly, for

two blocks w, v ∈ LB, v constitutes a doubling error or w and v constitute
a copy error if and only if w 7− v does not hold.

Consider the prefix of such a word ]0w0 ]1w1 ]2w2 ]3 · · · depicted in Fig-
ure 4.2. The blocks w1 and w2 constitute a copy error, as w2 contains only
three [-blocks, and not the required 4 = |w1|. This error is signaled by the
letter

(
]
C

)
in front of w1. Furthermore, the block w1 contains a doubling

error at position 0 which is not signaled.
Now, consider the following winning condition L over Σ = ΣI×ΣO where

ΣI = Σ] ∪ Σ[ ∪ {0} and ΣO = {N,D,C,H}. A word w ∈ Σω is contained
in L if at least one of the following conditions is satisfied,

• Pr0(w) 6= ]0w0 ]1w1 ]2w2 ]3 · · · where w0 ∈ LBin , wi ∈ LB and ]i ∈ Σ]

for all i ∈ N, or
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• Pr0(w) = ]0w0 ]1w1 ]2w2 ]3 · · · where w0 ∈ LBin , ]i ∈ Σ] and

wi = [i,0 0ni,0 [i,1 0ni,1 [i,2 · · · [i,ki−1 0ni,ki−1 ∈ LB

for all i ∈ N, and there exists j ∈ N such that

– (Pr1(w))(j) = D and (Pr1(w))(j′) = N for all j′ < j, and

– ]j′ =
(
]
N

)
for all j′ < j, and

– wj constitutes a doubling error at position 0 ≤ p ≤ kj − 1, and

– the second component in wj corresponding to [j,p is H, and for
all p′ < p, the second component in w corresponding to [j,p′ is N .

• Pr0(w) = ]0w0 ]1w1 ]2w2 ]3 · · · where w0 ∈ LBin , ]i ∈ Σ] and

wi = [i,0 0ni,0 [i,1 0ni,1 [i,2 · · · [i,ki−1 0ni,ki−1 ∈ LB

for all i ∈ N, and there exists j ∈ N such that

– (Pr1(w))(j) = C and (Pr1(w))(j′) = N for all j′ < j, and

– ]j′ =
(
]
N

)
for all j′ < j, and

– the pair wj and wj+1 constitutes a copy error.

• Pr0(w) = ]0w0 ]1w1 ]2w2 ]3 · · · where w0 ∈ LBin , ]i ∈ Σ] and

wi = [i,0 0ni,0 [i,1 0ni,1 [i,2 · · · [i,ki−1 0ni,ki−1 ∈ LB

for all i ∈ N, and there exists j ∈ N such that

– ]j =
(
]
D

)
and ]j′ =

(
]
N

)
for all j′ < j, and

– (Pr1(w))(j′) = N for all j′ ≤ j, and
– [j,p 6=

(
[
H

)
for all p ∈ [kj −1] or wj does not constitute a doubling

error at position p satisfying [j,p =
(
[
H

)
and [j,p′ 6=

(
[
H

)
for p′ < p.

• Pr0(w) = ]0w0 ]1w1 ]2w2 ]3 · · · where w0 ∈ LBin , ]i ∈ Σ] and

wi = [i,0 0ni,0 [i,1 0ni,1 [i,2 · · · [i,ki−1 0ni,ki−1 ∈ LB

for all i ∈ N, and there exists j ∈ N such that

– ]j =
(
]
C

)
and ]j′ =

(
]
N

)
for all j′ < j, and

– (Pr1(w))(j′) = N for all j′ ≤ j, and
– the pair wj and wj+1 does not constitute a copy error.

• (Pr0(w))(i) 6=
(
]
C

)
and (Pr0(w))(i) 6=

(
]
D

)
, for all i ∈ N.
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Figure 4.3: A play prefix containing violations of the successor relation 7−
indicated by the players

According to the first condition, in order to win a play, Player I has to pro-
duce an input word of the form α = ]0w0 ]1w1 ]2w2 ]3 · · · where w0 ∈ LBin ,
wi ∈ LB and ]i ∈ Σ] for all i ∈ N, if he does not he loses. Player O produces
an output word β ∈ Σω

O where the letters from ΣO are used to indicate
violations of the successor relation 7− in the input word α by announcing
the corresponding errors. If β(j) = D, then Player O claims that block wj
constitutes a doubling error at some position p which Player O also has to
indicate by answering [j,p by letter H. According to the second condition of
the definition of L, Player O wins a play if his first claim indicates an exist-
ing doubling error in a block wj and furthermore identifies the appropriate
position p in wj , and for all preceding blocks wj′ with j′ < j there are no
errors signaled by Player I. If β(j) = C, then Player O claims that blocks
wj and wj+1 constitute a copy error. According to the third condition of
the definition of L, Player O wins a play if his first claim indicates an exist-
ing copy error in blocks wj and wj+1, and for all preceding blocks wj′ with
j′ < j there are no errors signaled by Player I. The next two conditions of
the definition of L require that the first error signaled by Player I indeed
occurs, i.e., if Player I signals a doubling error in block wj and Player O did
not claim any error for any preceding block wj′ with j′ ≤ j, but Player I
does not indicate the position of this doubling error correctly, Player I loses.
Analogously, if Player I signals a copy error in blocks wj and wj+1 and
Player O did not claim any error for any preceding block wj′ with j′ ≤ j,
but Player I does not produce this error, he loses. Finally, the last condition
forces Player I eventually to signal some error.

Consider the play prefix depicted in Figure 4.3 obtained by extending the
example of Figure 4.2. Player O claims the doubling error in w1 by choosing
β(1) = D and identifying its position by answering [1,0 with letterH. Notice,
that although Player I correctly signals a copy error in front of w1, this play
is nevertheless winning for Player O, since the claim of Player O is correct
as well. Moreover, according to the definition of L, if the first claim of
Player O and the first signal of Player I refer to the same block wj the claim
of Player O prevails.

Now, we show that L can be recognized by a parity-DPDA P. No-
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tice, that the first and the last conditions of the definition of L are regu-
lar. Hence, words satisfying these conditions can be recognized by means
of a parity-DFA. So, we explain how P processes words w ∈ Σω with
Pr0(w) = ]0w0 ]1w1 ]2w2 ]3 · · · where w0 ∈ LBin , wi ∈ LB and ]i ∈ Σ]

for all i ∈ N, and ]i ∈ {
(
]
C

)
,
(
]
D

)
} for some i ∈ N. The parity-DPDA P

proceeds in four phases

1. The stack is prepared to be able to find the beginning of block wi in w
when starting at letter w(i) as required in the second phase. To do so,
P counts the number of letters processed so far minus the number of
letters

(
]
N

)
in the first component and stores it on the stack, i.e., after a

prefix u @ w is precessed the stack height of the reached configuration is

|u| − |Pr0(u)|( ]
N

).
This phase stops as soon as a letter w(i) with Pr0(w(i)) ∈ {

(
]
C

)
,
(
]
D

)
}

or Pr1(w(i)) ∈ {C,D} is read. If the first component of w(i) is
(
]
C

)
or
(
]
D

)
, then P goes to phase four. On the other hand, if the second

component of w(i) is C or D and Pr0(w(i)) /∈ {
(
]
C

)
,
(
]
D

)
}, P proceeds

to phase two.

2. This phase starts if Pr1(w(i)) = C or Pr1(w(i)) = D, for some i ∈ N,
Pr0(w(j)) /∈ {

(
]
C

)
,
(
]
D

)
} for j ≤ i, and Pr1(w(j)) /∈ {C,D} for j < i.

The letter Pr1(w(i)) is held in the states during this phase for the
later use in phase three. Now, P uses the information stored on the
stack to find the beginning of wi by decreasing the stack every time a
letter from {

(
]
N

)
}×ΣO is processed. If a letter from {

(
]
C

)
,
(
]
D

)
}×ΣO is

processed before the stack is empty, i.e., ]j =
(
]
C

)
or ]j =

(
]
D

)
for j < i,

then P jumps to phase four. Otherwise, if the empty stack is reached,
then certainly the beginning of block wi is found, and P continues with
phase three.

3. In this phase, P checks whether the error indicated by Pr1(w(i)) oc-
curs. Notice, that Pr1(w(i)) is available at the beginning of wi, as
this letter is carried through the whole computation of phase two. If
Pr1(w(i)) = C, then P checks whether wi and wi+1 constitute a copy
error. This can be easily implemented by means of a parity-DPDA, as
the length of wi and the number of [-blocks in wi+1 have to be tested
for equality. If the length of wi and the number of [-blocks in wi+1 are
equal, then the copy error is detected. If Pr1(w(i)) = D, then P checks
whether wi contains a doubling error, which has to be indicated in the
second component by an H at the appropriate position. Again, this
can be implemented by means of a parity-DPDA which compares the
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lengths of two consecutive [-blocks, namely whether the first [-block
contains half as much letters 0 as the second [-block. If there is an
H in the second component of wi and the first occurrence of H in the
second component of wi indicates an error correctly, then the doubling
error is detected. The automaton P accepts w if and only if the error
indicated by Pr1(w(i)) is detected.

4. In this phase, P checks whether the error signaled in ]j occurs. If
]j =

(
]
C

)
, then it checks whether wj and wj+1 constitute a copy error.

This is done by means of a parity-DPDA in the same manner as in
phase three. Again, if the length of wi and the number of [-blocks
in wi+1 are equal, then the copy error is detected. If ]j =

(
]
D

)
, then

P checks whether wj contains a doubling error, which is indicated
properly by a

(
[
H

)
in the first component at the appropriate position.

If the first component of wj contains a
(
[
H

)
and the first occurrence of(

[
H

)
in the first component of wj indicates an error correctly, then the

doubling error is detected. The automaton P accepts w if and only if
the error indicated by ]j is not detected.

We continue by showing that there exists a delay function f such that
Player O wins the delay game Γf (L). To this end, consider two blocks
u, v ∈ LB such that u 7− v. Clearly, v = [0 0n0 [1 0n1 [2 · · · [m−1 0nm−1 where
m = |u|, ni = 2i and [i ∈ Σ[ for i ∈ [m]. Hence, the length of v is

|v| = |u|+
|u|−1∑
i=0

2i = |u|+ 1− 2|u|

1− 2
= 2|u| + |u| − 1.

Let the auxiliary function g : N→ N be defined by g(0) = 2 and

g(i+ 1) = 2g(i) + g(i)− 1,

for every i ∈ N. For a sequence of blocks w0, w1, w2, . . . with w0 ∈ LBin ,
wi ∈ LB and wi 7− wi+1 for all i ∈ N, we have g(i) = |wi| for i ∈ N. Now,
using the function g we define the delay function f : N→ N by

f(0) = g(0) + g(1) + 3 and
f(i) = g(i+ 1) + 1 for every i > 0.

Notice, that f and also df are non-elementary.
We claim that Player O has a winning strategy for Γf (L). If Player I

does not pick in the first round a word of the form

]0 [0,0 0 ]1 [1,0 0 [1,1 0 0 ]2
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4 Pushdown Delay Games

with ]0, ]1, ]2 ∈ Σ] and [0,0, [1,0, [1,1 ∈ Σ[, then he has committed some error
within his first two blocks, which can be claimed by Player O with the first
letter. Now assume Player I has produced an input prefix

]0 w0 ]1 w1 ]2 · · · ]i wi ]i+1

after round i−1 without introducing a doubling error in the blocks wj for all
j < i and no copy error in the pairs wj and wj+1 for all j < i. If he produces
an x in the next round i that is of the form v] such that wi and v do not
constitute a copy error and if wi does not contain a doubling error, then
Player O picks N in round i. Otherwise, the error that occurs is claimed
by picking C or D, respectively. This strategy is winning for Player O, as
Player I is not able to signal and produce an error that cannot be claimed
by Player O.

Finally, we show that for every elementary-delay function fe ∈ O(expk),
Player I has a winning strategy in Γfe(L). Started with an initial block
Player I can always play successive blocks without introducing errors until
the length of the block wi exceeds the lookahead

dfe(i) =
(∑i

j=0 fe(j)
)
− (i+ 1)

of Player O. At such a round i, Player O has to make a claim concerning
a block which is not completed yet. So, Player I signals a doubling error
for this incomplete block. If Player O does not claim a doubling error,
then Player I introduces a doubling error while completing the block in the
next round. Subsequently, he produces arbitrary blocks and wins, since he
is the first who indicates an existing error. Vice versa, if Player O claims
the doubling error, then Player I does not introduce a doubling error while
completing the block during the next round. Then, he again continues to
produce arbitrary blocks and wins, as his claim is preceded by the claim of
Player O which indicates a nonexistent error.

Using ideas as presented in Section 4.2 one can show that Theorem 4.7
holds even for the restricted class of winning conditions recognizably by A-
DV1CA. However, the game specification L as described above has to be
modified even more than just providing additional letter for Player O to
indicate which kind of a transition is to be performed. For a visibly one-
counter the problem arises in the situation where the automaton has to
change from phase two to phase four, since a claimed error has to be checked
while the stack is not yet empty. To do this using one stack symbol, the stack
has to be emptied before the next letter is processed, which cannot be done
by a visibly automaton, as it has no ε-transitions. We avoid this situation by
modifying the winning condition L such that if Player O indicates his first
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error in round i and Player I signals an error in front of block wj with j < i,
then Player O loses immediately. Player O has still the possibility to win by
additionally never claiming an error in a block wi if Player I already claimed
an error in a block wj for some j < i. This modified winning condition is
visibly one-counter. Moreover, as a play is only winning for Player I, if he
claims an existing error before Player O does, the set of winning plays for
Player O of the modified winning condition can be accepted by an A-DV1CA.

4.4 Summary of Results

We investigated deterministic contextfree delay games, a modified version
of Gale-Stewart games where Player I has to pick words of some length
greater than zero given by a delay function instead of single letters, thereby
Player O obtains a lookahead on the moves of Player I. The winning condi-
tion is provided by a deterministic contextfree language. For the case where
the lookahead is bounded, i.e., after some round i the lookahead remains
constant, we showed that a delay game can be reduced to a game without
delay, hence, the winner of such a delay game is decidable. Then, we showed
that deciding the winner in a deterministic contextfree delay game with arbi-
trary lookahead is undecidable. We complemented by characterizing classes
of delay functions for which it is decidable whether there is some delay func-
tion in the fixed class such that Player O wins the corresponding delay game.
It turned out that the problem is decidable if and only if there is a global
bound on the lookahead provided by the class of delay functions.

Moreover, we considered the lookahead necessary to win deterministic
contextfree delay games. A non-elementary lower bound was established.
For this, we presented a deterministic contextfree winning condition such
that there exists a delay function such that Player O wins the corresponding
delay game. However, Player O loses, if the lookahead is bounded by any
elementary function.

Furthermore, we showed that our results hold even for restricted classes
of deterministic contextfree winning conditions recognizable by visibly one-
counter with weak acceptance conditions.

Our results show that, unlike the regular case, adding lookahead to deter-
ministic contextfree games significantly changes their algorithmic properties.
For regular delay games, bounded lookahead is sufficient, i.e., if Player O
wins with arbitrary lookahead then he also wins with bounded lookahead.
Bounded lookahead can be encoded into the winning condition, hence the
classical algorithms to solve regular games without lookahead are still appli-
cable for regular delay games. However, in case of deterministic contextfree
delay games unbounded lookahead can not be reduced to the case of bounded
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one. This is a reason why deterministic contextfree delay games are hard to
handle algorithmically.
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Chapter 5

Distributed Synthesis with
Pushdown Specifications

A more realistic and relevant setting for practical application of controller
synthesis than standard two-player games is that of distributed systems. In
practice, systems rarely consist of just one process, but they are rather com-
posed of several processes which communicate with each other and with the
environment via certain communication channels. Thus, the task of dis-
tributed synthesis is to construct, for a given system specification and an
architecture, which describes the communication structure of a distributed
system, several implementations, one for each process, such that every overall
system behavior satisfies the given specification. Clearly, in general the sys-
tem processes have to produce their actions based on incomplete information
about the global system state.

Distributed synthesis has been first considered by Pnueli and Rosner
who proved, based on Peterson and Reif’s results concerning multi-player
games [PR79], that in general distributed synthesis problem is undecidable
for specifications from the linear time temporal logic [PR90]. However, they
also established decidability for linear time temporal logic specifications for
the special case of acyclic architectures, called pipelines, where the processes
are linearly ordered and the information flows from the environment in di-
rection of the worst informed process.

This decidability result was extended by Kupferman and Vardi in two
directions, they proved decidability for further special cases of architectures
which also may contain cycles as well as for branching time temporal speci-
fications [KV01]. Finally, a comprehensive criterion characterizing all decid-
able architectures for specifications given in linear time, branching time tem-
poral logic or in µ-calculus was figured out by Finkbeiner and Schewe [FS05]
who showed that an architecture is decidable if and only if it does not contain
at least two incomparably informed processes, i.e., the processes can be or-
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5 Distributed Synthesis with Pushdown Specifications

dered according to their informedness. The authors also gave a uniform tree
automata-based synthesis procedure for decidable cases (see also [Sch08]).

Madhusudan and Thiagarajan introduced the concept of local specifica-
tions [MT01] where a system specification is given by a conjunction of local
specifications for each of the system processes. Hence, every individual local
specification defines the correct behaviors of the corresponding process. For
such kind of specifications with regular local specifications, a characteriza-
tion of all decidable acyclic architectures was established. It turned out, that
there are architectures, called two-flanked pipelines, which contain incompa-
rably informed processes but are still decidable for specification given by a
conjunction of local regular specifications.

In this chapter we consider distributed synthesis for deterministic con-
textfree global specifications as well as specification given by a conjunction
of regular or deterministic contextfree local specifications. The main result
of this chapter is a full characterization of decidable architectures for the
case of local specifications which is an extension of the result of [MT01],
where acyclic architectures and regular local specifications are considered.
Here we consider general architectures where also cycles are allowed, and
furthermore, the local specifications may also be deterministic contextfree.
In Section 5.1, we give some definitions and fix our notations which will
be used throughout this chapter. The notion of architectures that specify
the communication structure of distributed systems is introduced formally
in Section 5.2. We prove undecidability for almost all architectures with
deterministic contextfree global specifications in Section 5.3. Basically, only
the corner cases are decidable for deterministic contextfree global specifica-
tions, namely those corresponding to nondistributed setting and where the
environment does not send information at all. In Section 5.4, we exhibit
several decidable and undecidable special cases of architectures with local
specifications. These decidability and undecidability results, presented in
Subsection 5.4.1 and Subsection 5.4.2, respectively, serve as prerequisite for
the characterization of the decidable architectures with regular or determin-
istic contextfree local specifications. The effective criterion concerning the
graph structure of the given architecture and the assignment of regular and
deterministic contextfree local specifications to the individual processes is
presented in Section 5.5.

5.1 Preliminaries

In distributed settings we deal with architectures which we formally define
in the next section. Basically, an architecture can be regarded as a directed
graph where the nodes correspond to the processes of the system and edges
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correspond to channels via which the processes communicate. The following
definitions will be needed in the subsequent sections to tackle the distributed
realizability problem which is to decide, given an architecture and a system
specification, whether there are strategies for the system processes which
guarantee that for any input produced by the environment process the overall
behavior of the system satisfies the system specification, i.e., whether there
is a joint winning strategy for the system processes.

For any functions f : A→ B and g : B → C the composition f◦g : A→ C

is defined by (f ◦ g)(a) = g(f(a)), for a ∈ A. Moreover, for a subset A′ ⊆ A,
we denote f(A′) = {f(a) | a ∈ A′}. For two alphabets ΣI , ΣO and a strategy
σ : Σ∗I → ΣO we define the functions σ

(∗) : Σ∗I → Σ∗O and σ
(ω) : Σω

I → Σω
O by

σ
(∗)(w) = σ(pref0(w))σ(pref1(w)) · · · σ(pref |w|−1(w)) and

σ
(ω)(α) = σ(pref0(α))σ(pref1(α)) · · ·

for w ∈ Σ∗I and α ∈ Σω
I , i.e., σ

(∗)(w) is the output word produced by the
strategy σ on the finite prefix w, and σ

(ω)(α) is the infinite output word
produced by σ on the input ω-word α. For a language Lin ⊆ Σω

I , we say that
a strategy σ generates the ω-language

L(ω)(σ) = {σ(ω)(α) | α ∈ Lin}

over Lin. Moreover, the ∗-language generated by σ over Lin is

L(∗)(σ) = {σ(∗)(w) | w @ α for some α ∈ Lin}.

Clearly, L(∗)(σ) = {w | w @ α for some α ∈ L(ω)(σ)} for every strategy σ

and any language Lin ⊆ Σω
I .

Let the boolean alphabet be denoted by B = {⊥,>}. We represent sets
of sequences which can be sent along certain channels by the processes in
a given architecture, called communication languages, by B-labeled trees,
as they are used in [MT01], which we call communication trees. For an
alphabet Σ, we say that a B-labeled full Σ-tree t is a communication tree
over Σ if for every node w ∈ Σ∗ the following is satisfied:

• t(ε) = > and

• if t(w) = ⊥ then t(wa) = ⊥ for all a ∈ Σ and

• if t(w) = > then t(wa) = > for some a ∈ Σ.

The set of all communication trees over Σ is denoted by Tcom(Σ). A com-
munication tree t ∈ Tcom(Σ) represents the communication languages

L(∗)(t) = {w ∈ Σ∗ | t(w) = >} and

L(ω)(t) = {α ∈ Σω | t(prefk(α)) = > for all k ∈ N}.
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Clearly, L(∗)(t) = {w | w @ α for some α ∈ L(ω)(t)} for every communica-
tion tree t ∈ Tcom(Σ).

Finally, we define a product of nondeterministic parity tree automata
and nondeterministic parity pushdown tree automata. Let X be a set and Σ

an alphabet. For a parity-NTA A = (QA,Σ, qAin, δ
A, colA) and a parity-

NPDTA P = (QP ,Σ,Γ, qPin, δ
P , colP) both over Σ-labeled X-trees, we de-

fine the Muller-NPDTA A × P = (Q,Σ,Γ, qin, δ,F) over Σ-labeled X-trees
such that

• Q = QA ×QP ,

• qin = (qAin, q
P
in),

• for every F ⊆ Q, F ∈ F if and only if min{colA(p) | (p, q) ∈ F} is
even and min{colP(q) | (p, q) ∈ F} is even,

• for all (p, q) ∈ Q, all a ∈ Σ and all A ∈ Γ, if δP(q, a, A) = (	, q′, γ),
for some q′ ∈ QP and γ ∈ Γ≤2

⊥ then

δ((p, q), a, A) = (	, (p, q′), γ).

Otherwise, if δP(q, a,A) is not an ε-transition, then

δ((p, q), a, A) =
∨

[ϕA∈δA(p,a)]

∨
[ϕP∈δP (q,a,A)]

∧
[x∈X]

(↓x, (px, qx), γx)

where (↓x, px) ∈ ϕA and (↓x, qx, γx) ∈ ϕP .

Clearly, a tree t ∈ XΣ is accepted by A× P if and only if it is accepted
by A as well as by P. Hence, L(A×P) = L(A) ∩ L(P).

5.2 Architectures

In this section we fix our notations for architectures which are used to specify
the communication structure of distributed systems.

An architecture A = (P,C, r) consists of

• a finite set of processes P = {p0, p1, . . . , pn} with n > 0, process p0 is
called environment process, also denoted by penv = p0, processes from
Psys = {p1, . . . , pn} are called system processes,

• a finite set of channels C = Cp0 ∪Cp1 ∪ · · · ∪Cpn with pairwise disjoint
sets Cp, for p ∈ P , containing the channels process p writes to, we call
a channel c ∈ Cp, for p ∈ P , output channel of process p,
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• a function r : C → P assigning for each channel a process which reads
it, if r(c) = p, for c ∈ C and p ∈ P , then c is called input channel of
process p.

We require that the function r satisfies r(c) ∈ Psys, for all c ∈ C \Cpenv , i.e.,
each output channel of a system process is also an input channel of some
system process. Moreover, we assume that, for all system processes p ∈ Psys,
r−1(p) 6= ∅ and Cp 6= ∅, i.e., each system process has at least one input and
one output channel.

An architecture A = (P,C, r) induces a directed graph GA = (VA, EA)

where VA = P and (p, p′) ∈ EA if and only if there is a channel c ∈ Cp
such that r(c) = p′. For any directed graph G = (V,E) and a subset
S ⊆ V , let G[S] denote the subgraph of G induced by S, i.e., G[S] = (S,E′)

where E′ = E ∩ (S × S). We say that an architecture A is connected if
the subgraph GA[Psys] induced by the set of the system processes is weakly
connected. We say that an architecture A is cyclic if GA contains at least
one nontrivial directed cycle, otherwise A is called acyclic.

Let A = (P,C, r) be an architecture. For a subset Q ⊆ Psys, let C[Q] be
the set of channels restricted to processes from Q ∪ {penv}, i.e.,

C[Q] = CQpenv ∪
⋃
p∈Q

CQp where CQp =
{
c ∈ Cp | r(c) ∈ Q ∪ {penv}

}
,

and let the function rQ : C[Q]→ Q be defined by rQ(c) = r(c), for every c ∈
C[Q]. If (Q∪{penv}, C[Q], rQ) is an architecture, then it is denoted by A[Q]

and we say that A[Q] is the subarchitecture of A induced by Q. Notice, that
not each subset Q of system processes induces a subarchitecture of A, since
the requirement that each system process has at least one input and one
output channel may be not fulfilled. An architecture A′ is a subarchitecture
of A if A′ = A[Q] for some Q ⊆ Psys.

For a process p ∈ P , we call a channel c ∈ Cp hidden if r(c) = p, i.e.,
channel c is read by process p and not by any other process. The set of all
hidden channels of process p ∈ P is denoted by Hp = {c ∈ Cp | r(c) = p}.
We call the output channels Cpenv of the environment process, external input
channels of the system or just external input channels for short. Channels
from Hpenv ⊆ Cpenv are hidden external input channels. We call the channels
from

⋃
p∈Psys

Cp \ Hp internal communication channels. For every system
process p ∈ Psys, channels from Hp cannot be read by any other system
process, so they are used to model channels transmitting information which
is destined for the outside world. Hence, we call channels from

⋃
p∈Psys

Hp

external output channels of the system or external output channels for short.
We say that a process p ∈ Psys is reachable if there is a directed path

from penv to p in the induced graph GA. The set of all reachable system
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penv

p1 p2

p3 p4 p5

p6 p7 p8

Figure 5.1: Induced graph GA of an architecture A

processes is denoted by Preach ⊆ Psys. Let p, p′ ∈ P be two processes with
p 6= p′. We say that p sends information to p′ if there is a channel c ∈ Cp
such that r(c) = p′. We say that p is better informed than p′ if p ∈ Preach
and each directed path from penv to p′ in GA goes through p.

To illustrate the above definitions, consider the graph GA induced by an
architecture A depicted in Figure 5.1. A is not connected, as the subgraph
GA[Psys] is not connected. Subarchitectures are, for instance, induced by
subsets {p1, p2, p4, p5} and {p6, p7, p8}. However, {p1, p2, p3, p4} does not in-
duce a subarchitecture, since p4 has no output channel in GA[{p1, p2, p3, p4}].
Dashed edges correspond to external input and external output channels
where the loop in penv corresponds to hidden external input channels and all
other loops to external output channels. Solid edges arise from internal com-
munication channels. All system processes are reachable. Moreover, process
p3 sends information to p1 and to p4, but not to p2. Furthermore, process
p6 is better informed than p7 and p8, also p4 is better informed than p5.
However, p3 is incomparably informed with any other system process, i.e.,
p3 is not better informed than any other system process, and there is also
no other system process which is better informed than p3.

Now, we define hierarchical architectures. We say that an architecture
A = (P,C, r) with P = {p0, . . . , pn} is a pipeline if

r(Cpenv) = {p1}, r(Cpi) ⊆ {pi, pi+1} for i ∈ [n] and r(Cpn) = {pn}.

This means, the environment process penv sends information only to one pro-
cess p1 ∈ Psys. Furthermore, there is an linear informedness order on Psys,
since each process pi is allowed to send information only to the consecu-
tive process pi+1, for i ∈ [n], as well as to have external output channels.
Moreover, process pn has only external output channels. Hence, for any two
system processes pi and pj , if i < j, then pi is better informed than pj . We
say that the architecture A is a two-flanked pipeline if

r(Cpenv) = {p1, pn}, r(Cpi) ⊆ {pi, pi+1} for i ∈ [n] and r(Cpn) = {pn}.
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In contrast to pipelines, in a two-flanked pipeline the environment pro-
cess penv sends information to the first process p1 and to the last process pn.
In this case, we have for 0 < i < j < n, process pi is better informed than
process pj . However, for every p ∈ Psys\{pn}, the informedness of processes p
and pn is incomparable, i.e., p is not better informed than pn, as well as pn
is not better informed than p.

We extend the two classes of architectures described above by slightly re-
laxing the requirement concerning the internal communication channels. We
allow any system process pi to send information not only to the consecutive
process pi+1, but also to any better informed system process. We say that
the architecture A is a pipeline with backward-channels if

r(Cpenv) = {p1}, r(Cpi) ⊆ {pj | 0 < j ≤ i+ 1} for i ∈ [n], and
r(Cpn) ⊆ Psys.

Notice, that in contrast to pipelines the last process pn of a pipeline with
backward-channels is not constrained to have an external output channel, as
it may send information to some better informed process. Finally, we say
that A is a two-flanked pipeline with backward-channels if

r(Cpenv) = {p1, pn}, r(Cpi) ⊆ {pj | 0 < j ≤ i+ 1} for i ∈ [n], and
r(Cpn) ⊆ Psys.

A channel c ∈ Cpi , for 0 < i ≤ n, is called backward-channel if r(c) = pj
with j < i and it is called forward-channel if r(c) = pj with j = i+1. We say
that an architectureA is hierarchical ifA is a pipeline, a two-flanked pipeline,
a pipeline with backward-channels, or a two-flanked pipeline with backward-
channels. Notice, that our notion of hierarchical architectures slightly differs
from the classical one, since in the literature architectures are usually referred
to as hierarchical if there is no pair of system processes which is incomparable
with respect to the informedness relation.

Figure 5.2 shows four directed graphs GAi induced by example architec-
tures Ai for i ∈ [4], where A0 is a pipeline, A1 is a two-flanked pipeline, A2

is a pipeline with backward-channels and A3 is a two-flanked pipeline with
backward-channels.

A labeling (Σc)c∈C for an architecture A = (P,C, r) assigns to any chan-
nel c ∈ C a finite alphabet Σc containing the symbols which can be sent
along c. For every process p ∈ Psys, we define the input alphabet of p as

Σp
in =

∏
c∈r−1(p)

Σc ,

i.e., we take the Cartesian product over all alphabets of the channels which
are read by process p. Accordingly, the output alphabet of a process is the
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A0 : penv

p1 p2 p3 p4

A1 : penv

p1 p2 p3 p4

A2 : penv

p1 p2 p3 p4

A3 : penv

p1 p2 p3 p4

Figure 5.2: Hierarchical architectures

Cartesian product over all alphabets to which the process writes. Hence, for
every p ∈ P , the output alphabet of p is defined as

Σp
out =

∏
c∈Cp

Σc .

For every system process p ∈ Psys, we define the local alphabet of p as

Σp = Σp
in × Σp

out .

Furthermore, the global system alphabet of A is defined as

ΣA =
∏
c∈C

Σc =
n∏
i=0

Σpi
out .

The overall system operates in rounds i ∈ N. In each round i, every pro-
cess p ∈ P produces an output letter αp(i) ∈ Σp

out and writes the appropriate
components of αp(i) to the corresponding channels c ∈ Cp. The ω-word

αA = αp0
_αp1

_ . . ._ αpn ∈ (ΣA)ω

obtained from the output sequences αp of all the processes p ∈ P is the
global system behavior. Moreover, for every system process p ∈ Psys, the
ω-word βp_αp with βp = PrΣp

in
(αA) is the local process behavior of p.

A global system specification is a language L ⊆ (ΣA)ω consisting of all
correct system behaviors. A local specification for process p ∈ Psys is a
language Lp ⊆ (Σp)ω. Let ` = (Lp1 , . . . , Lpn) be a list of local specifications
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for the system processes. Then, the corresponding global system specification
is the language L(`) ⊆ (ΣA)ω such that for every system process p ∈ Psys,
we have PrΣp(L(`)) = Lp.

A local strategy for process p ∈ Psys is a function σp : (Σp
in)∗ → Σp

out. A
local behavior βp_αp of p is consistent with σp, if αp(i) = σp(prefi(βp)), for
all i ∈ N. For a local specification Lp for p, we say that σp is winning if every
local behavior βp_αp of p that is consistent with σp is contained in Lp. Since
system processes form a coalition against the environment process, particular
input sequences can be precluded for some system processes due to the local
strategies of the other processes. Hence, we introduce the notion of strategies
winning on some input language where the set of possible input words for
a system process is restricted. For an input language Lin ⊆ (Σp

in)ω, we say
that σp is winning on Lin if every local behavior βp_αp of p with βp ∈ Lin

which is consistent with σp is contained in Lp. Clearly, a strategy σp for
process p is winning, if it is winning on (Σp

in)ω.
A joint strategy for all system processes is a tuple σsys = (σp1 , . . . , σpn)

where each σpi is a local strategy for process pi, for 1 ≤ i ≤ n. A global
system behavior αA is consistent with σsys if the corresponding local process
behavior of each system process pi ∈ Psys is consistent with σpi . For a global
system specification L, we say that σsys is winning if every global system
behavior which is consistent with σsys is contained in L.

We say that a global system specification L ⊆ (ΣA)ω is realizable in an
architecture A = (P,C, r) with labeling (Σc)c∈C if there is a joint winning
strategy for the system processes. The realizability problem is the following.

Given: Architecture A = (P,C, r) with labeling (Σc)c∈C and global sys-
tem specification L ⊆ (ΣA)ω.

Question: Is L realizable in A with (Σc)c∈C?

For a class L of global system specifications and an architecture A = (P,C, r)

we say that the realizability problem is decidable for global specifications
from L for the architecture A if for every labeling (Σc)c∈C of A the realiz-
ability problem is decidable for A with (Σc)c∈C when the specifications are
restricted to L. We will also refer to an architecture A as decidable for L if
the realizability problem is decidable for specifications from L for A.

Theorem 5.1 ([FS05]). The realizability problem for global specifications
from REGω is decidable for an architecture A if and only if there are no two
reachable and incomparably informed 2 system processes in A.

2In [FS05] this situation where two reachable system processes are incomparably in-
formed is called information fork.

85



5 Distributed Synthesis with Pushdown Specifications

penv

p1

p2

Figure 5.3: Undecidable architecture for global regular specifications

Basically, this theorem is established by showing that every architecture
without a pair of reachable and incomparably informed system processes can
be transformed into a pipeline such that a regular global specification is real-
izable in the pipeline if and only if it is realizable in the original architecture
(for decidability of pipelines see also [PR90, KV01]). On the other hand,
if an architecture contains a pair of reachable and incomparably informed
system processes, then ideas from [PR90] are applied where undecidability
is shown for the architecture depicted in Figure 5.3 using a reduction from
the halting problem for Turing machines.

However, in case where the global specification is given by a list of local
regular specifications, even more architectures turn out to be decidable. A
characterization for the class of acyclic architectures is established in [MT01].

Theorem 5.2 ([MT01]). The realizability problem for specifications given
by a list of local specifications, each from REGω, is decidable for an acyclic
architecture A if and only if each connected subarchitecture of A is a pipeline
or a two-flanked pipeline.

5.3 Global Specifications

In this section we consider the realizability problem for global deterministic
contextfree specifications. We show that unlike the regular case almost all ar-
chitectures, even pipelines, are undecidable. We proceed by a reduction from
the Post’s Correspondence Problem (PCP). For an alphabet Θ, a sequence
of pairs I = ((u0, v0), . . . , (um−1, vm−1)) where ui, vi ∈ Θ∗, for i ∈ [m], is
called instance of the PCP. A word s = i1 · · · ik ∈ [m]+ is called solution of I
if ui1 · · ·uik = vi1 · · · vik . The Post’s Correspondence Problem is to decide,
given an instance I, whether there exists a solution s of I. It is well-known
that PCP is undecidable [Pos46].

Theorem 5.3. The realizability problem for global specifications from DCFLω
is undecidable for an architecture A = (P,C, r) if and only if

• Cpenv 6= ∅, and
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• |Psys| ≥ 2 or Hpenv 6= ∅.

Proof. Let (Σc)c∈C be a labeling of A and let parity-DPDA P define a
global deterministic contextfree specification L(P) ⊆ (ΣA)ω. If Cp0 = ∅
then L(P) is realizable in A with (Σc)c∈C if L(P) 6= ∅, since the system
processes are not obliged to react to the inputs of the environment process,
but just have jointly to produce a word from L(P). Hence, in this case
the realizability problem is reduced to the nonemptiness problem for parity-
DPDA which is decidable. Moreover, if |Psys| = |{p1}| = 1 and Hpenv = ∅,
then ΣA = Σpenv

out ×Σp1
out and we have L(P) is realizable in A with (Σc)c∈C if

Player I wins Γ(L′) where L′ is defined as

L′ = (ΣA)ω \
{
α_β ∈ (Σp1

out × Σpenv
out )ω | β_α ∈ L(P)

}
.

Notice, that the transfer from L(P) to L′ is necessary to resolve the discrep-
ancy between both settings where in an architecture in every round process
environment and the system process produce letters concurrently, whereas
in Gale-Stewart games Player I and Player O proceed in alternation.

Now, assume that Cpenv 6= ∅ and |Psys| ≥ 2. Let p, q ∈ Psys be two system
processes and let cI ∈ Cpenv and cO ∈ Cq. W.l.o.g., assume that r(cI) = p.
Given an instance I = ((u0, v0), . . . , (um−1, vm−1)) of the PCP over some
alphabet Θ, define the labeling (Σc)c∈C of A by

ΣcI = {U, V },
ΣcO = [m] ∪Θ ∪ {]} and
Σc = {]} for all c ∈ C \ {cI , cO},

and consider the following global specification L over ΣA. A word α ∈ (ΣA)ω

is contained in L if and only if PrΣcO
(α) is of the form

PrΣcO
(α) = ] ik · · · i1 ] w ] Σω

cO

with k ∈ N, ij ∈ [m] for j ∈ [k + 1] and w ∈ Θ∗ such that

w =

{
ui1 · · ·uik if (PrΣcI

(α))(0) = U,

vi1 · · · vik if (PrΣcI
(α))(0) = V.

Clearly, L is deterministic contextfree. Consider the following parity-
DPDA P over ΣA. For an input word α ∈ (ΣA)ω, the automaton P checks
whether PrΣcO

(α) has a prefix of the form ] ik · · · i1 ] w ], for ij ∈ [m]

and w ∈ Θ∗. Furthermore, if the ΣcI -component of the first letter of α
is (PrΣcI

(α))(0) = U , then P pushes rev(uij ) (letter by letter using ε-
transitions) onto the stack when reading ij in the ΣcO -component. Oth-
erwise, if (PrΣcI

(α))(0) = V , then P pushes rev(vij ) onto the stack when
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penv p1 penv GA[Psys]

Figure 5.4: Decidable architectures for global specifications from DCFLω

reading ij in the ΣcO -component. Clearly, after processing ] ik · · · i1 ] in
the ΣcO -component, depending on (PrΣcI

(α))(0) the stack content is either
ui1 · · ·uik⊥ or vi1 · · · vik⊥. Now, P has to check whether w coincides with
the stack content.

We show that I has a solution if and only if there is a joint winning
strategy for the system processes. First, notice that any local strategy
σq : (Σq

in)∗ → Σq
out for process q uniquely determines a joint strategy for

all the system processes, since for any other system processes p ∈ Psys with
p 6= q, the output alphabet Σp

out is a singleton set. Assume, there is a solution
s = ik · · · i1 of I. Then, the local strategy σq of process q is just to write the
prefix ] ik · · · i1 ] ui1 · · · uik ] to the channel cO. Since ui1 · · · uik = vi1 · · · vik ,
any global behavior consistent with this strategy is contained in L, regardless
of which letter is written to cI in the first round. Hence, σq determines a joint
winning strategy. On the other hand, since process q is not informed about
the letters written to cI , it has to produce a prefix ] ik · · · i1 ] w ] suitable for
both letters from ΣcI , U and V , which can be written to cI by penv in the first
round. Hence, if the system processes have a joint winning strategy then pro-
cess q produces a prefix ] ik · · · i1 ] w ] such that w = ui1 · · · uik = vi1 · · · vik
which implies that s = i1 · · · ik is a solution of I.

Finally, assume that |Psys| = 1 but Hpenv 6= ∅. To show undecidability
for this case, we use the above specification language. For this, let now
Psys = {q}, cI ∈ Hpenv and cO ∈ Cq. Given an instance I of PCP over
some alphabet, the labeling (Σc)c∈C of A and the specification L are defined
exactly as above. Since the information written to cI cannot be read by
process q, by the same reasoning as above, an architecture with only one
system process and a hidden external input channel is also shown to be
undecidable for deterministic contextfree specifications.

Thus, it turns out that the existence of an external input channel which
cannot be read by some system process makes an architecture undecidable
for global deterministic contextfree specifications. Hence, the only decidable
cases (depicted in Figure 5.4) are architectures without external input chan-
nels and single-process architectures without hidden external input channels.

Notice that Theorem 5.3 holds even for specification languages recognized
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by A-DV1CA. This can be shown by a reduction from the halting problem
for 2-register machines by combining the ideas from Section 4.2 and those
of the above proof. Given a 2-register machine R, consider the following
specification which we describe informally. Process q which writes to channel
cO is required to produce an infinite sequence of encodings of configurations
]c0 ]c1 ]c2 · · · where ci ∈ Conf, for i ∈ N, and c0 = Conf in. Process penv

can claim a violation of the successor relation 7−R once by writing a letter
E0, E1 or L to channel cI which cannot be read by process q. Furthermore,
to check the subsequent two configurations produced by process q according
to the claimed violation by means of a visibly one-counter, process penv has
to write an appropriate sequence of letters Push,Pop, N into cI to enable
the automaton to perform the corresponding test. A global system behavior
αA ∈ (ΣA)ω is contained in the specification language if process q writes
a sequence ]c0 ]c1 ]c2 · · · with ci ∈ Conf, for i ∈ N, and c0 = Conf in into
cO and process penv does not manage to detect a violation of the successor
relation 7−R. Clearly, since process q cannot observe the letters written to
cI by penv there is a joint winning strategy for the system processes if and
only if R does not halt.

5.4 Local Specifications

In the previous section we showed that deterministic contextfree global sys-
tem specifications yield undecidability for almost all architectures. Only
very special cases which basically correspond to the nondistributed setting
or where the antagonistic environment process is excluded are decidable. In
this section we concentrate on the realizability problem for global specifica-
tions given by a list of local specifications, one for each system process. We
extend Theorem 5.2 in two directions. First, we consider architectures where
cycles are allowed, and second, the local specifications may also be determin-
istic contextfree. The complete characterization of decidable architectures
will be given in Section 5.5. For this, decidability and undecidability for
several cases are shown in this section. In particular, we point out decidable
cases of pipelines with backward-channels and of two-flanked pipelines with
backward-channels. Furthermore, basic criteria yielding undecidability are
presented.

5.4.1 Decidable Cases

In this subsection we consider pipelines with backward-channels and two-
flanked pipelines with backward-channels. For both kinds of architectures
we will point out decidable cases. The parameters which we adjust are the
number of processes, and for each system process, the class of the local
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specification as well as the presence of backward-channels. In particular,
we show that any pipeline with backward-channels, where every process is
allowed to have backward-channels and all local specifications are regular
except the local specification of the worst informed process which may also
be deterministic contextfree, is decidable. For two-flanked pipelines with
backward-channels, we show that any two-flanked pipeline with backward-
channels consisting of only two system processes with regular local speci-
fications is decidable. Moreover, we show that two-flanked pipelines with
backward-channels consisting of more than two system processes where the
last process has no backward-channels and all local specifications are re-
stricted to regular ones, are also decidable.

Pipelines with Backward-Channels

Consider a pipeline with backward-channels A = (P,C, r) with a label-
ing (Σc)c∈C . We define a partition on the set of channels C = Cf∪Cb∪Cenv by

Cf =
n−1⋃
i=1

{c ∈ Cpi | r(c) = pi+1}, and

Cb =
n⋃
i=1

{c ∈ Cpi | r(c) = pj for j ≤ i}.

Channels from Cf and external input channels are called forward-channels
of A, and the set Cb consists of backward-channels and external output-
channels of A. Moreover, for every system process pi ∈ Psys, for 1 ≤ i ≤ n,
we define the accumulated output alphabet of process pi as

Σ≥iout =

n∏
j=i

Σ
pj
out

which comprises the output alphabet of process pi and the output alphabets
of all worse informed processes. Furthermore, we denote the alphabet which
labels the backward-channels and external output channels of process pi by

Σb,pi
out =

∏
c∈Cb∩Cpi

Σc .

Moreover, for every process pi ∈ P , for 0 ≤ i < n, let the alphabet labeling
the forward-channels of process pi be denoted by Σi, i.e.,

Σi =
∏

c∈Cf∩Cpi

Σc , for 0 < i < n, and

Σ0 =
∏

c∈Cenv,
r(c)=p1

Σc .
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First, we show that for every system process pi ∈ Psys a local strategy
of pi needs not to depend on the inputs received via channels from Cb but
only on inputs received from process pi−1 via forward-channels, i.e., if there
is a joint winning strategy for the system processes, then there is also a
joint winning strategy such that every local strategy can ignore the inputs
received via channels from Cb.

Lemma 5.4. Let L be a global system specification. There are local strategies
σpi : (Σpi

in)∗ → Σpi
out for the system processes, for 1 ≤ i ≤ n, such that the joint

strategy σsys = (σp1 , . . . , σpn) is winning if and only if there are strategies
τpi : Σ∗i−1 → Σpi

out, for 1 ≤ i ≤ n, such that τsys = (τp1 , . . . , τpn) is winning.

Proof. Assume, that there are strategies τpi : Σ∗i−1 → Σpi
out, 1 ≤ i ≤ n,

such that τsys = (τp1 , . . . , τpn) is winning. Then, define local strategies
σpi : (Σpi

in)∗ → Σpi
out, for 1 ≤ i ≤ n, by

σpi(u) = τpi(PrΣi−1(u))

for u ∈ (Σpi
in)∗, i.e., every local strategy σpi ignores all the inputs received via

channels from Cb and reacts exactly like τpi does on the inputs received via
forward-channels from process pi−1. Obviously, any global system behavior
which is consistent with σsys is also consistent with τsys and is therefore con-
tained in the global system specification L, since τsys is winning. Hence, σsys

is also winning for the system processes.
Conversely, assume that there are local strategies σpi : (Σpi

in)∗ → Σpi
out,

for 1 ≤ i ≤ n, such that the joint strategy σsys = (σp1 , . . . , σpn) is winning
for the system processes. First, notice that for every system process pi
and every word u ∈ Σ∗i−1, there is exactly one word v ∈ (Σ≥iout)

∗ over the
accumulated output alphabet of pi with |v| = |u| such that u_v is consistent
with (σpi , . . . , σpn). This is shown by induction on |u|. For the induction
start, we have u = ε and the statement holds for v = ε. So, for the induction
step assume u = u′a for some u′ ∈ Σ∗i−1 and a ∈ Σi−1. Applying the
induction hypothesis, there is exactly one word v′ ∈ (Σ≥iout)

∗ with |v′| =

|u′| such that u′_v′ is consistent with (σpi , . . . , σpn). For every process pj
with j ≥ i, let vj denote the output sequence produced by the local strategy
σpj on the appropriate inputs from u′_v′, i.e.,

vj = σ
(∗)
pj (Pr

Σ
pj
in

(u′
_
v′))

for j ≥ i. Let v = vi
_ . . ._ vn. Obviously, v ∈ (Σ≥iout)

∗ with |v| = |u|
and u_v is consistent with (σpi , . . . , σpn). To show that v is the only word
satisfying the above requirements, consider a word w ∈ (Σ≥iout)

∗ with |w| = |u|
and u_w is consistent with (σpi , . . . , σpn). Let w, v ∈ (Σ≥iout)

∗ such that
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w = wx and v = vy for some x, y ∈ Σ≥iout. Notice, that since u′
_v and u′_w

are both consistent with (σpi , . . . , σpn), by the induction hypothesis we have
w = v = v′. Moreover, since u_w is consistent with (σpi , . . . , σpn), we have

Pr
Σ

pj
out

(u_w) = σ
(∗)
pj (Pr

Σ
pj
in

(u′
_
w) = σ

(∗)
pj (Pr

Σ
pj
in

(u′
_
v) = Pr

Σ
pj
out

(u_v)

for every pj with j ≥ i. Thus, we have w = v.
Now, let the strategies τpi : Σ∗i−1 → Σpi

out, for 1 ≤ i ≤ n, be defined by

τpi(u) = σpi(u
_PrΣ

pi
in

(v))

for u ∈ Σ∗i−1, where v ∈ (Σ≥iout)
∗ is the unique word with |v| = |u| such

that u_v is consistent with (σpi , . . . , σpn). To prove that every global system
behavior αA ∈ (ΣA)ω which is consistent with τsys is also consistent with σsys

we show by induction that every finite prefix prefk(αA) of αA is consistent
with σsys. Clearly, pref0(αA) is consistent with σsys. So, for the induction
step, let k > 0. Then, for every system process pi, for 1 ≤ i ≤ n, we have

PrΣi−1(prefk−1(αA))_Pr
Σ≥i

out
(prefk−1(αA))

is consistent with (σpi , . . . , σpn), since prefk−1(αA) is consistent with σsys.
Moreover, we have

PrΣ
pi
out

(prefk(αA)) = τpi(PrΣi−1(prefk−1(αA)))

= σpi(PrΣ
pi
in

(prefk−1(αA))) .

The first equality holds, since αA is consistent with τsys and the second one
is due to the definition of τpi . Thus, prefk(αA)) is consistent with every local
strategy σpi , for 1 ≤ i ≤ n, hence, it is consistent with σsys. This means, that
a global system behavior αA which is consistent with τsys is also consistent
with σsys which implies that τsys is winning for the system processes.

From now on, we consider global system specifications L(`) which are
given by a list ` = (Lp1 , . . . , Lpn) of local specifications for the system pro-
cesses p1, . . . , pn such that Lpi ∈ REGω, for all 1 ≤ i < n, and Lpn ∈ DCFLω.
To prove that it can be decided whether L(`) is realizable in A with (Σc)c∈C
we will use communication trees as defined in Section 5.1. Furthermore, the
following definitions will be needed.

Notice, that according to Lemma 5.4 any system process can ignore the
inputs it receives via channels from Cb to determine the output to be pro-
duced next. Furthermore, every better informed system process has enough
information to make a decision for any worse informed system process on
its outputs. Hence, for 1 ≤ i ≤ n, we define an extended local strategy for
process pi by σ≥i = (σi, . . . , σn) where

σj : Σ∗i−1 → Σ
pj
out, for i ≤ j ≤ n,
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5.4 Local Specifications

i.e., σ≥i determines the next output symbol for each process pj , for i ≤ j ≤ n
based on the inputs sent from pi−1 to pi. For a language Lin ⊆ Σω

i−1, we say
that an extended local strategy σ≥i = (σi, . . . , σn) for process pi is locally
winning on Lin if for each global system behavior αA ∈ (ΣA)ω of A with
PrΣi−1(αA) ∈ Lin which is consistent with σ≥i, we have PrΣpi (αA) ∈ Lpi .
Moreover, if σ≥i is an extended local strategy for process pi and σ1, . . . , σi−1

are local strategies for processes p1, . . . , pi−1, then we call (σ1, . . . , σi−1, σ≥i)

winning for processes p1, . . . , pi if any global system behavior αA which is
consistent with (σ1, . . . , σi−1, σ≥i) fulfills PrΣpj (αA) ∈ Lpj , for 1 ≤ j ≤ i.

Recall, that communication trees are used to represent communication
languages, i.e., sequences which can be sent along certain channels in A.
Now, we define a binary operation which combines two communication trees,
one for the input sequences a system process can read and one for the output
sequences the process can write, to a set of communication trees which now
represent strategies for the process. Let Σ and Σ′ be alphabets. We define
the strategy product

↪→: Tcom(Σ)× Tcom(Σ′)→ P(Tcom(Σ× Σ′))

such that for tin ∈ Tcom(Σ) and tout ∈ Tcom(Σ′), we have t ∈ tin↪→ tout if all
of the following conditions are satisfied.

1. For every u ∈ Σ∗ and every v ∈ (Σ′)∗ with |u| = |v|, if tin(u) = ⊥ or
tout(v) = ⊥ then t(u_v) = ⊥.

2. For every u ∈ Σ∗, if tin(u) = > then there is exactly one v ∈ (Σ′)∗

with |u| = |v| such that t(u_v) = >.

3. For every u_v ∈ (Σ × Σ′)∗, if t(u_v) = > then there is some b ∈ Σ′

such that for all a ∈ Σ with tin(ua) = > we have t(ua_vb) = > and
t(ua_vc) = ⊥ for c ∈ Σ′ \ {b}.

Clearly, this definition ensures that for every t ∈ tin↪→ tout, we have for the
communication language represented by t

PrΣ

(
L(ω)(t)

)
= L(ω)(tin) and PrΣ′

(
L(ω)(t)

)
⊆ L(ω)(tout) .

We define the strategy σ(t) : Σ∗ → Σ′ represented by t ∈ tin↪→ tout as follows.
For u ∈ Σ∗, if tin(u) = > then let v ∈ (Σ′)∗ be the unique word with
t(u_v) = > which exists according to the second condition of the definition
of the strategy product. Furthermore, let b ∈ Σ′ be the unique symbol
with t(ua_vb) = > for all a ∈ Σ with tin(ua) = > according to the third
condition of the definition. Then, we define σ(t)(u) = b. Otherwise, if
tin(u) = ⊥ then σ(t) can provide an arbitrary symbol, so define σ(t)(u) = a

for some a ∈ Σ′.
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Now, all necessary preparations are completed to prove the decidability
of the realizability problem for A with (Σc)c∈C and L(`). To do so, we will
use extended strategies and communication trees. We will proceed as follows.
In the following lemma, we deal with the system processes up to the worst
informed process which is then handled separately in the subsequent lemma
as its corresponding local specification may also be deterministic contextfree.
Finally, the result is established by putting these lemmas together.

Lemma 5.5. For any 1 ≤ i < n, there is a parity-NTA Ni over B-labeled
Σ≥iout-trees which accepts a tree tout ∈ Tcom(Σ≥iout) if and only if there exist

• a tree tin ∈ Tcom(Σi−1),

• a tree t ∈ tin↪→ tout and

• strategies σpj : Σ∗j−1 → Σ
pj
out, for 1 ≤ j < i, for processes p1, . . . , pi−1

such that the following conditions are satisfied

• σ(t) is locally winning on L(ω)(tin),

• σ
(∗)
p1 ◦ PrΣ1 ◦ . . . ◦ σ

(∗)
pi−2 ◦ PrΣi−2 ◦ σpi−1 ◦ PrΣi−1 generates a language

L ⊆ Lω(tin) over Σω
0 and

• (σp1 , . . . , σpi−1 , σ(t)) is winning for processes p1, . . . , pi.

Proof. For 1 ≤ i < n, let Si = (QSi ,Σi−1 × Σ≥iout, δ
Si , qSiin , col) be a parity-

DFA which accepts a word α ∈ (Σi−1 × Σ≥iout)
ω if and only if the local

specification Lpi is satisfied in the Σpi-component of α, i.e.,

L(Si) =
{
α ∈ (Σi−1 × Σ≥iout)

ω | PrΣpi
(α) ∈ Lpi

}
.

We show the lemma inductively on i. For the base case, we construct
a parity-NTA N1 over B-labeled Σ≥1

out-trees which accepts a tree tout ∈
Tcom(Σ≥1

out) if and only if there is a tree t ∈ tin↪→ tout where tin ∈ Tcom(Σ0)

with tin(u) = >, for all u ∈ Σ∗0, such that σ(t) is locally winning on
L(ω)(tin) = Σω

0 . For this we define a parity-ATA A1 which is then trans-
lated into N1. The idea for the construction is the following. While process-
ing tout, A1 guesses a tree t ∈ tin↪→ tout and verifies that σ(t) is winning for
process p1 by simulating S1 on all infinite paths of t labeled by >. Formally,
A1 = (QA1 ,B, δA1 , qA1

in , colA1) is defined as follows.

• QA1 = (QS1 × B) ∪ {qacc, qrej},

• qA1
in = (qS1in ,>),
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5.4 Local Specifications

• colA1(q) =


colS1(Pr0(q)) if q ∈ QS1 × B,
0 if q = qacc,
1 if q = qrej,

• for q ∈ QS1 and ζ ∈ B,

δA1
(
(q,>),>

)
=

∨
[b ∈ Σ≥1

out]

∧
[(x,y) ∈ Σ0×Σ≥1

out]

(
↓y, q(b,x,y)

)

where q(b,x,y) =

{(
δS1
(
q, (x, y)

)
,>
)

if y = b,

qacc if y 6= b,

δA1
(
(q,>),⊥

)
=

∧
y ∈ Σ≥1

out

(↓y, qrej),

δA1(qacc, ζ) =
∧

y ∈ Σ≥1
out

(↓y, qacc),

δA1(qrej, ζ) =
∧

y ∈ Σ≥1
out

(↓y, qrej).

The second component of a state is used to keep track of the labelings of
the guessed tree t. Notice, that in the definition of the transition function
the ⊥ symbol in the second component of a state is omitted, since tin ∈
Tcom(Σ0) with tin(u) = >, for all u ∈ Σ∗0, and if the guessed tree t is in
fact from tin ↪→ tout then we have t(u_v) = ⊥ implies tout(v) = ⊥ for
all u_v ∈ (Σ0 × Σ≥1

out)
∗. Hence, if ⊥ is guessed for a node of t then the

automaton initiates an accepting branch by sending a copy with state qacc in
the appropriate direction of tout where it is no longer needed to keep track
of the guessed symbols. The automaton A1 processes a tree tout as follows.
Being in node v ∈ Σ≥1

out in some state (q,>) it guesses a symbol b ∈ Σ≥1
out

which corresponds to the joint output of all system processes. Furthermore,
for every possible input symbol x ∈ Σ0, the automaton sends a >-copy in
direction b while updating state q according to the transition function of
S1 on the symbol (x, b). For all other directions y 6= b, a ⊥-copy is sent
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initiating an accepting branch of the run of A1. Moreover, if symbol ⊥ is
encountered in tout when being in a >-copy which means that the output
symbol b ∈ Σ≥1

out should not have been chosen in the previous step according
to tout, then tout is rejected. In this way, A1 guesses a tree t ∈ tin ↪→ tout

where tin ∈ Tcom(Σ0) with tin(u) = >, for all u ∈ Σ∗0, and simulates S1 on
every α ∈ L(ω)(t). Thus, if tout is accepted by A1 then for the tree t guessed
by A1 we have σ(t) is locally winning on Σω

0 .
Now, for the induction step, let 1 < i < n. Let Ni−1 be a parity-NTA

over B-labeled Σ≥i−1
out -trees satisfying the above requirements according to

the induction hypothesis. By Remark 2.8 a parity-NTA

N ′i−1 = (QN
′
i−1 ,B, δN

′
i−1 , q

N ′i−1

in , colN
′
i−1)

over B-labeled Σi−1 × Σ≥iout-trees can be constructed which accepts a tree t
if and only if wideY (t) ∈ L(Ni−1) where Y = Σ

b,pi−1

out . We show how a
parity-NTA Ni over B-labeled Σ≥iout-trees can be constructed using N ′i−1 and
Si such that Ni accepts a tree tout ∈ Tcom(Σ≥iout) if and only if there exists
a tree tin ∈ Tcom(Σi−1) and a tree t ∈ tin ↪→ tout such that t ∈ L(N ′i−1)

and σ(t) is locally winning on L(ω)(tin). Again, we define parity-NTA Ni
by first constructing an alternating tree automaton, this time a Muller-ATA
Ai, over B-labeled Σ≥iout-trees which is then translated into Ni. The idea
here is to guess both trees tin ∈ Tcom(Σi−1) and t ∈ tin↪→ tout and to verify
that t ∈ L(N ′i−1) as well as that σ(t) is locally winning on L(ω)(tin) by
simulating N ′i−1 on t and simulating Si on every α ∈ L(ω)(tin). Formally,
Ai = (QAi ,B, δAi , qAi

in ,FAi) is defined as follows.

• QAi = ((QSi ∪ {qacc})×QN
′
i−1 × B) ∪ {qrej},

• qAi
in = (qSiin , q

N ′i−1

in ,>),

• a subset Q ⊆ QAi is contained in FAi if and only if qrej /∈ Q and
min{colSi(Pr0(q)) | q ∈ Q} is even and min{colN

′
i−1(Pr1(q)) | q ∈ Q}

is even where we define colSi(qacc) = 0,

• for q ∈ QSi , p ∈ QN ′i−1 and ζ ∈ B,

δAi
(
(q, p,>),>

)
=∨

[∅6=X ⊆ Σi−1]

∨
[b ∈ Σ≥i

out]

∨
[ϕ ∈ δ

N′
i−1 (p,>)]

∧
[(x,y) ∈ Σi−1×Σ≥i

out]

(
↓y, q(X,b,ϕ,x,y)

)
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where q(X,b,ϕ,x,y) =



(
δSi
(
q, (x, y)

)
, r,>

)
if x ∈ X, y = b and

(↓(x,y), r) ∈ ϕ,

(qacc, r,⊥) if x /∈ X or y 6= b and
(↓(x,y), r) ∈ ϕ,

δAi
(
(q, p,>),⊥

)
=

∧
y ∈ Σ≥i

out

(↓y, qrej),

δAi
(
(qacc, p,⊥), ζ

)
=

∨
[ϕ∈δN

′
i−1 (p,⊥)]

∧
[(x,y)∈Σi−1×Σ≥i

out]

(
↓y, (qacc, p(ϕ,x,y),⊥)

)

where (↓(x,y), p
(ϕ,x,y)) ∈ ϕ,

δAi(qrej, ζ) =
∧

y ∈ Σ≥i
out

(↓y, qrej).

Due to this construction, in each step Ai guesses a symbol b ∈ Σ≥iout corre-
sponding to the joint output of all system processes pj , for i ≤ j ≤ n, as
well as a set ∅ 6= X ⊆ Σi−1 of possible inputs which can be received via the
forward-channels from process pi−1. For every symbol (x, b) ∈ Σi−1 × Σ≥iout

with x ∈ X, a >-copy is sent in direction b, otherwise a ⊥-copy is sent.
Similar to the base case, if symbol ⊥ is encountered in tout when being in
a >-copy which means that the output symbol b ∈ Σ≥iout should not have
been chosen in the previous step according to tout, then tout is rejected.
By doing so, trees tin ∈ Tcom(Σi−1) and t ∈ tin ↪→ tout are guessed by Ai.
Moreover, Ai simulates N ′i−1 on t and it simulates Si on every α ∈ L(ω)(t).
Thus, Ai accepts a tree tout if and only if for the trees tin ∈ Tcom(Σi−1)

and t ∈ tin ↪→ tout guessed by Ai we have t ∈ L(N ′i−1) and σ(t) is locally
winning on L(ω)(tin). Using the induction hypothesis, one verifies that the
parity-NTA Ni equivalent to Ai fulfills all conditions of the lemma.

Now, we tackle the worst informed process of a pipeline with backward-
channels. Recall, that we consider system specifications given by a list of
local specifications which are regular for system processes p1, . . . , pn−1 and
deterministic contextfree for the worst informed process pn.

Lemma 5.6. There is a parity-NPDTA Nn over B-labeled Σn−1×Σpn
out-trees

which accepts a tree t if and only if there exist

• a tree tin ∈ Tcom(Σn−1) and
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5 Distributed Synthesis with Pushdown Specifications

• a tree tout ∈ Tcom(Σpn
out)

such that t ∈ tin↪→ tout and σ(t) is locally winning on L(ω)(tin).

Proof. Let Sn = (QSn ,Σn−1 × Σpn
out,Γ

Sn , δSn , qSnin , colSn) be a parity-DPDA
recognizing the local specification for process pn, i.e., L(Sn) = Lpn . We
construct a parity-NPDTA Nn satisfying the requirements of the lemma us-
ing the following idea. Given a B-labeled Σn−1 × Σpn

out-tree t, the pushdown
tree automaton Nn guesses a strategy σ : Σ∗n−1 → Σpn

out and checks whether
σ = σ(t), i.e., whether the guessed strategy corresponds to the strategy repre-
sented by t. For this, define Nn = (QNn ,B,ΓNn , δNn , qNn

in , colNn) as follows.

• QNn = QSn ∪ {qrej, q⊥},

• qNn
in = qSnin ,

• ΓNn = ΓSn ,

• colNn(q) =


colSn(q) if q ∈ QSn ,
1 if q = qrej,

0 if q = q⊥,

• for q ∈ QSn , A ∈ ΓNn
⊥ and ζ, ζ ′ ∈ B,

if δSn(q, ε, A) 6= ∅ then

δNn(q,>, A) = (	ε, δ
Sn(q, ε, A)),

if δSn(q, ε, A) = ∅ then

δNn(q,>, A) =
∨

[∅6=X⊆Σn−1]

∨
[b∈Σpn

out]

∧
[(x,y)∈Σn−1×Σpn

out]

(↓(x,y), (q, γ)(X,b,x,y))

where (q, γ)(X,b,x,y) =

{
δSn(q, (x, y), A) if x ∈ X and y = b,

(q⊥, A) else,

δNn(q⊥,⊥, A) =
∧
z∈Σ

(↓z, q⊥, A), and

δNn(q,⊥, A) = δNn(q⊥,>, A) = δNn(qrej, ζ, A) =
∧
z∈Σ

(↓z, qrej, A)

where Σ = Σn−1 × Σpn
out.
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According to this definition, in each step when being in a node labeled by >,
Nn chooses an output symbol b ∈ Σpn

out and guesses a nonempty set of possible
inputs X ⊆ Σn−1 which process pn may receive in the next step. For every
x ∈ X, a >-copy is sent in direction (x, b), since exactly those successors
should be labeled by >. Otherwise, a ⊥-copy is sent signalizing that a node
should be labeled by ⊥. On the other hand, when being in a node labeled
by >, Nn sends a ⊥-copy to all successors, as they have to be labeled by ⊥.
The automaton Nn checks whether the output symbols as well as the sets of
input symbols are guessed correctly. Moreover, Nn simulates Sn on all paths
labeled by >.

Now, by combining Lemma 5.5 and Lemma 5.6 we show that the realiz-
ability problem for pipelines with backward-channels is decidable for system
specifications given by a list of local specifications where the local specifica-
tion of the worst informed process is deterministic contextfree and all other
local specifications are regular.

Theorem 5.7. Let A = (P,C, r) be a pipeline with backward-channels with
a labeling (Σc)c∈C and a list ` = (Lp1 , . . . , Lpn) of local specifications for the
system processes. The realizability problem for A with (Σc)c∈C and L(`) is
decidable if Lpi ∈ REGω, for all 1 ≤ i < n, and Lpn ∈ DCFLω.

Proof. If n = 1, then the result follows directly from Theorem 3.18, since
this case corresponds to the nondistributed setting, i.e., one has to solve a
deterministic contextfree Gale-Stewart game. So consider n > 1. Let Nn−1

be the parity-NTA over B-labeled Σ≥n−1
out -trees according to Lemma 5.5

and Nn be the parity-NPDTA over B-labeled Σn−1×Σpn
out-trees according to

Lemma 5.6. Similar as in the proof of Lemma 5.5, let N ′n−1 denote a parity-
NTA over B-labeled Σn−1 × Σ≥nout-trees which accepts a tree t if and only
if wideY (t) ∈ L(Nn−1) where Y = Σ

b,pn−1

out . Notice that N ′n−1 can be con-
structed by Remark 2.8. Finally, let N be a parity-NPDTA over B-labeled
Σn−1 × Σpn

out-trees such that L(N ) = L(N ′n−1) ∩ L(Nn). We show that L(`)

is realizable in A with (Σc)c∈C if and only if L(N ) 6= ∅. As nonemptiness
for parity-NPDTA is decidable by Theorem 2.9, the theorem follows.

Assume that there is a tree t ∈ L(N ). Then, since t ∈ L(N ′n−1), we
have sout = wideY (t) ∈ L(Nn−1) where Y = Σ

b,pn−1

out , and by Lemma 5.5
there are a tree sin ∈ Tcom(Σn−2), a tree s ∈ sin ↪→ sout and strategies
σpj : Σ∗j−1 → Σ

pj
out, for 1 ≤ j < n − 1, for processes p1, . . . , pn−2 such that

(σp1 , . . . , σpn−2 , σ(s)) is winning for processes p1, . . . , pn−1. Moreover, let
σpn−1 : Σ∗n−2 → Σ

pn−1

out be defined by

σpn−1(u) = Pr
Σ

pn−1
out

(
(σ(s))(u)

)
,
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for u ∈ Σ∗n−2. Furthermore, since t ∈ L(Nn), by Lemma 5.6 there are trees
tin ∈ Tcom(Σn−1) and tout ∈ Tcom(Σpn

out) such that t ∈ tin ↪→ tout and σ(t)

is locally winning on L(ω)(tin). Moreover, notice that by definition of the
strategy product we have

Pr
Σ≥n−1

out

(
L(ω)(s)

)
⊆ L(ω)(sout) and PrΣn−1

(
L(ω)(t)

)
= L(ω)(tin).

Since PrΣn−1×Σpn
out

(L(ω)(sout)) = L(ω)(t), the language generated by

σ
(∗)
p1 ◦ PrΣ1 ◦ . . . ◦ σ(∗)

pn−2
◦ PrΣn−2 ◦ σpn−1 ◦ PrΣn−1

over Σω
0 is a subset of L(ω)(tin). Hence, σsys = (σp1 , . . . , σpn−1 , σpn) with

σpn = σ(t) is winning for the system processes p1, . . . , pn. Notice that by
Lemma 5.4, the strategies σpi : Σ∗i−1 → Σpi

out can be translated into local
strategies σ

′
pi : (Σpi

in)∗ → Σpi
out, for 1 ≤ i ≤ n.

Now, assume L(N ) = ∅. If L(Nn) = ∅, then for all tin ∈ Tcom(Σn−1)

and all tout ∈ Tcom(Σpn
out) we have σ(t) is not locally winning on L(ω)(tin),

for all t ∈ tin↪→ tout, i.e., the local specification Lpn is not satisfiable. Other-
wise, for every t ∈ L(Nn) we have t /∈ L(N ′n−1) which yields that processes
p1, . . . , pn−1 cannot generate any language L ⊆ PrΣn−1

(
L(ω)(t)

)
over Σω

0 .

Two-Flanked Pipelines with Backward-Channels

Now, we consider two-flanked pipelines with backward-channels. More-
over, we consider only regular local specifications. We will prove decid-
ability for the following two cases. First, we will show that a pipeline with
backward-channels is decidable, if there are no backward-channels from the
last process. Then, deal with the special case of two-flanked pipelines with
backward-channels comprising just two system processes where we however
allow backward-channels from the last process.

So, first let A = (P,C, r) be a two-flanked pipeline with backward-
channels such that there are no backward-channels from the last process pn,
i.e., r(Cpn) = {pn}. Furthermore, let (Σc)c∈C be a labeling of A and
` = (Lp1 , . . . , Lpn) be a list of local specifications for the system processes
p1, . . . , pn with Lpi ∈ REGω, for all 1 ≤ i ≤ n.

Notice, that in this case, for all 0 < i < j < n, process pi is better
informed than process pj , however, process pn is incomparably informed
with any other system process. This means, that for all 0 < i ≤ j < n,
process pi can determine the decisions of process pj , however not the decisions
of process pn. We exploit the fact that there is a linear informedness order on
Psys\{pn} which allows us to use the ideas and constructions developed above
for pipelines with backward-channels also for this case. For this, we adapt
the definitions used for pipelines with backward-channels. The partition of
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the set of channels C = Cf ∪Cb∪Cenv is defined exactly as before. For every
system process pi ∈ Psys \{pn} we redefine the accumulated output alphabet
Σ≥iout of process pi which comprises the output alphabets of all worse informed
processes as

Σ≥iout =
n−1∏
j=i

Σ
pj
out,

i.e., we exclude the output alphabet of the last process pn. The alpha-
bets Σb,pi

out , for 1 ≤ i ≤ n, and Σi, for 0 < i < n are defined as before.
However, we have to account for the external input channels via which now
information is sent to the first process p1 and to the last process pn. Hence,
we define

Σ01 = Σ0 =
∏

c∈Cenv,
r(c)=p1

Σc, and Σ0n =
∏

c∈Cenv,
r(c)=pn

Σc .

As for pipelines with backward-channels, also for this architecture, one can
show that a local strategy of a system process pi ∈ Psys \ {pn} needs not to
depend on the inputs received via channels from Cb but only on those inputs
received from process pi−1. Thus, Lemma 5.4 is reformulated as follows.

Lemma 5.8. Let L be a global system specification. There are local strategies
σpi : (Σpi

in)∗ → Σpi
out for the system processes, for 1 ≤ i ≤ n, such that the joint

strategy σsys = (σp1 , . . . , σpn) is winning if and only if there are strategies
τpi : Σ∗i−1 → Σpi

out, for 1 ≤ i ≤ n − 1, and τpn : (Σpn
in )∗ → Σpn

out such that
τsys = (τp1 , . . . , τpn) is winning.

So, analogously to the case of pipelines with backward-channels, we can
define extended local strategies. For 1 ≤ i ≤ n−1, an extended local strategy
for process pi is now defined as σ≥i = (σi, . . . , σn−1) where

σj : Σ∗i−1 → Σ
pj
out, for i ≤ j ≤ n− 1,

i.e., σ≥i now determines the next output symbol for each process which is
worse informed than pi based on the inputs sent from pi−1 to pi. Accord-
ingly, for a language Lin ⊆ Σω

i−1, we say that an extended local strategy
σ≥i = (σi, . . . , σn−1) for process pi is locally winning on Lin if for each global
system behavior αA ∈ (ΣA)ω of A with PrΣi−1(αA) ∈ Lin which is consis-
tent with σ≥i, we have PrΣpi (αA) ∈ Lpi . Moreover, if σ≥i is an extended
local strategy for process pi and σ1, . . . , σi−1 are local strategies for processes
p1, . . . , pi−1, then we call (σ1, . . . , σi−1, σ≥i) winning for processes p1, . . . , pi
if any global system behavior αA which is consistent with (σ1, . . . , σi−1, σ≥i)

fulfills PrΣpj (αA) ∈ Lpj , for 1 ≤ j ≤ i.
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Clearly, with the new definitions of accumulated output alphabets and
extended local strategies Lemma 5.5 holds for this case just as before. Now,
in contrast to pipelines with backward-channels which we treated previously,
in this case the last process pn has additionally some input channels from
the environment, however we consider only regular local specifications also
for this process. So, Lemma 5.6 has to be reformulated as follows.

Lemma 5.9. There is a parity-NTA Nn over B-labeled Σn−1-trees which
accepts a tree t ∈ Tcom(Σn−1) if and only if there is a local strategy for
process pn which is locally winning on {α ∈ (Σpn

in )ω | PrΣn−1(α) ∈ Lω(t)}.

Proof. Let Sn = (QSn ,Σpn , δSn , qSnin , colSn) be a parity-DFA recognizing the
local specification for process pn, i.e., L(Sn) = Lpn . The idea is to construct
a parity-ATA An which guesses a strategy for process pn when running on
a tree t ∈ Tcom(Σn−1), and verifies that this strategy is locally winning on
{α ∈ (Σpn

in )ω | PrΣn−1(α) ∈ Lω(t)} by simulating Sn on all infinite paths of t
labeled by >. Formally, the parity-ATA An = (QAn ,B, δAn , qAn

in , colAn) is
defined as follows.

• QAn = QSn ∪ {qacc},

• qin = qSnin ,

• colAn(q) =

{
colSn(q) if q ∈ QSn ,
0 if q = qacc,

• for q ∈ QSn ,

δAn(q,>) =
∨

[b∈Σpn
out]

∧
[(x,y)∈Σn−1×Σ0n]

(
↓x, δSn(q, (x, y, b))

)
,

• for q ∈ QAn ,

δAn(q,⊥) =
∨

[b∈Σpn
out]

∧
[(x,y)∈Σn−1×Σ0n]

(
↓x, qacc

)
.

By this construction, in each step when being in a node labeled by >, An
chooses an output symbol b ∈ Σpn

out and for every input symbol (x, y) ∈
Σn−1 × Σ0n a copy is sent in direction x leading to the appropriate state
according to the transition function δSn . On the other hand when being in
a node labeled by ⊥, the accepting state qacc is sent. Clearly, in this way,
the automaton guesses a strategy for process pn and by simulating Sn on all
infinite paths labeled by > it checks whether the guessed strategy is winning
on {α ∈ (Σpn

in )ω | PrΣn−1(α) ∈ Lω(t)}. Moreover, An can be translated into
an equivalent parity-NTA Nn.
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Along the lines of Theorem 5.7, now Lemma 5.5 and Lemma 5.9 are
combined to show the decidability of the realizability problem for two-flanked
pipelines with backward-channels with the restriction on the last process
which is not admitted to have backward-channels for specifications given by
a list of regular local specifications.

Theorem 5.10. Let A = (P,C, r) be a two-flanked pipeline with backward-
channels with a labeling (Σc)c∈C and a list ` = (Lp1 , . . . , Lpn) of local specifi-
cations for the system processes. The realizability problem for A with (Σc)c∈C
and L(`) is decidable if r(Cpn) = pn and Lpi ∈ REGω, for all 1 ≤ i ≤ n.

Proof. If n = 1, then the result trivially holds as in this case A is a pipeline
comprising just one system process. So consider n > 1. Let Nn−1 be the
parity-NTA over B-labeled Σ

pn−1

out -trees according to Lemma 5.5 and N ′n−1

be a corresponding parity-NTA over B-labeled Σn−1-trees which accepts a
tree t if and only if wideY (t) ∈ L(Nn−1) where Y = Σ

b,pn−1

out . Moreover,
let Nn be the parity-NTA over B-labeled Σn−1-trees according to Lemma 5.9.
Furthermore, let N be a parity-NTA over B-labeled Σn−1-trees such that
L(N ) = L(N ′n−1) ∩ L(Nn). Clearly, analogously as in the proof of Theo-
rem 5.10, L(`) is realizable in A with (Σc)c∈C if and only if L(N ) 6= ∅. As
nonemptiness for parity-NTA is decidable, the theorem follows.

Now we consider two-flanked pipelines with backward-channels where
backward-channels from the last process are allowed, but the number of
system processes is restricted to two. To show that the realizability problem
for such architectures is decidable for specifications given by a pair of regular
local specifications, we will again use alternating parity tree automata which
guess local strategies, each for the respective system process. The difficulty
here lies in the treatment of internal communication channels which are at
the same time output channels (for one process) and input channels (for the
other process). The idea is to extend communication trees to be able to
represent a joint output language produced on the internal communication
channels by the system processes.

For two alphabets Σ0 and Σ1, we say that a (B×B)-labeled full (Σ0×Σ1)-
tree t is an extended communication tree over Σ0 × Σ1 if for every node
u_v ∈ (Σ0 × Σ1)∗ the following is satisfied, for i ∈ {0, 1},

• t(ε) = (>,>),

• if Pri(t(u
_v)) = ⊥ then Pri(t(ua0

_va1)) = ⊥ for all a0 ∈ Σ0, a1 ∈ Σ1,

• if Pri(t(u
_v)) = > then Pri(t(ua0

_va1)) = > for some ai ∈ Σi and
all a1−i ∈ Σ1−i.
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We denote the set of all extended communication trees over Σ0 × Σ1 by
Text
com(Σ0 × Σ1). An extended communication tree t ∈ Text

com(Σ0 × Σ1) repre-
sents the joint communication language

L(ω)(t) = {α ∈ (Σ0 × Σ1)ω | t(prefk(α)) = (>,>) for all k ∈ N}.

We will use extended communication trees over the alphabet Σ1 ×Σ2 to
represent the joint output language produced on the internal communication
channels by the system processes p1 and p2, where Σi is the alphabet contain-
ing the symbols which can be sent along the internal communication channels
from process pi to the other system process, for i ∈ {1, 2}. Notice, that with
regard to the strategies for the system processes even more information can
be deduced from an extended communication tree than the joint language
represented by the tree. If a node u_v ∈ (Σ1 × Σ2)∗ is labeled by (>,⊥),
then it means that process p1 may answer the prefix pref |v|−1(v) by u, but
process p2 may not answer the prefix pref |u|−1(u) by v and the other way
around for the labeling (⊥,>). This assertion is, of course, different from
saying that u_v will not occur or should not be produced.

Theorem 5.11. Let A = (P,C, r) be a two-flanked pipeline with backward-
channels with a labeling (Σc)c∈C and a list ` = (Lp1 , . . . , Lpn) of local specifi-
cations for the system processes. The realizability problem for A with (Σc)c∈C
and L(`) is decidable if |Psys| = 2 and Lpi ∈ REGω, for all 1 ≤ i ≤ n.

Proof. For i ∈ {1, 2}, let Γi denote the alphabet containing the symbols
which process pi can receive via external input channels from the environ-
ment. Moreover, let Σi denote the alphabet containing the symbols which
can be sent along the internal communication channels of process pi and
let alphabet ∆i contain the symbols which can be sent via external output
channels of process pi, i.e., for i ∈ {1, 2},

Γi =
∏

c∈Cenv,
r(c)=pi

Σc, Σi =
∏

c∈Ci\Hi

Σc, and ∆i =
∏
c∈Hi

Σc.

Figure 5.5 depicts the induced graph GA of A where the edges are labeled by
the corresponding alphabets. Furthermore, let Si = (QSi ,Σpi , δSi , qSiin , colSi)

be parity-DFA recognizing the local specification of process pi, i.e., L(Si) =

Lpi , for i ∈ {1, 2}. The idea is to construct two parity-ATA A1 and A2

over (B × B)-labeled (Σ1 × Σ2)-trees such that, when running on a tree
t ∈ Text

com(Σ1×Σ2), A1 guesses a strategy for process p1 and A2 for process p2,
respectively. Furthermore, A1 verifies that the guessed strategy is locally
winning on {α ∈ (Σp1

in )ω | PrΣ2(α) ∈ PrΣ2(Lω(t))} by simulating S1 on
all infinite paths of t labeled by (>,>). Accordingly, A2 verifies that its
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penv

p1 p2

Γ1 Γ2

Σ1

Σ2
∆1 ∆2

Figure 5.5: Two-flanked pipeline with two system processes

guessed strategy is locally winning on {α ∈ (Σp2
in )ω | PrΣ1(α) ∈ PrΣ1(Lω(t))}

using S2. Formally, the parity-ATA A1 = (QA1 ,B × B, δA1 , qA1
in , colA1) is

defined as follows.

• QA1 = QS1 ∪ {qacc, qrej},

• qA1
in = qS1in ,

• colA1(q) =


colS1(q) if q ∈ QS1 ,
0 if q = qacc,

1 if q = qrej,

• for q ∈ QS1 and ζ1, ζ2, ζ3 ∈ B,

δA1(q, (>,>)) =
∨

[(a,b)∈Σ1×∆1]

∧
[(x,y)∈Γ1×Σ2]

(↓(a,y), (δ
S1(q, (a, b, x, y)),

δA1(q, (⊥, ζ1)) = δA1(qrej, (ζ2, ζ3)) =
∧

z∈Σ1×Σ2

(↓z, qrej),

δA1(q, (>,⊥)) = δA1(qacc, (ζ1, ζ2)) =
∧

z∈Σ1×Σ2

(↓z, qacc).

Analogously, parity-ATA A2 = (QA2 ,B× B, δA2 , qA2
in , colA2) is defined by

• QA2 = QS2 ∪ {qacc, qrej},

• qA2
in = qS2in ,

• colA2(q) =


colS2(q) if q ∈ QS2 ,
0 if q = qacc,

1 if q = qrej,
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• for q ∈ QS2 and ζ1, ζ2, ζ3 ∈ B,

δA2(q, (>,>)) =
∨

[(a,b)∈Σ2×∆2]

∧
[(x,y)∈Γ2×Σ1]

(↓(y,a), (δ
S2(q, (a, b, x, y)),

δA2(q, (ζ1,⊥)) = δA2(qrej, (ζ2, ζ3)) =
∧

z∈Σ1×Σ2

(↓z, qrej),

δA2(q, (⊥,>)) = δA2(qacc, (ζ1, ζ2)) =
∧

z∈Σ1×Σ2

(↓z, qacc).

By the above construction, when running on a tree t, in each step, A1

guesses an output symbol (a, b) ∈ Σ1×∆1 and sends, for any possible input
signal (x, y) ∈ Γ1 × Σ2, a copy into direction (a, y). If a labeling (⊥, ζ), for
some ζ ∈ B, is encountered when being in a state q ∈ QS1 which means, that
the component a ∈ Σ1 of the output should not have been chosen in previous
step according to t, then A1 rejects t by proceeding into the rejecting state
qrej. On the other hand, if the labeling (>,⊥) is encountered when being
in a state q ∈ QS1 which means, that the input y ∈ Σ2 will not occur in
this situation according to t, then A1 goes into the accepting state qacc. By
doing so, A1 guesses a local strategy for p1 on all inputs from Γ1 and those
inputs from Σ2 which may occur according to t. Moreover, A1 simulates S1

on all paths consistent with this strategy. Analogously, A2 guesses an output
symbol (a, b) ∈ Σ2×∆2 in each step and sends, for any possible input signal
(x, y) ∈ Γ2 × Σ1, a copy into direction (y, a). If a labeling (ζ,⊥), for some
ζ ∈ B, is encountered when being in a state q ∈ QS2 which means, that
output a ∈ Σ2 should not have been chosen in the previous step according
to t, then t is rejected. If (⊥,>) is encountered which means, that the input
y ∈ Σ1 will not occur in this situation according to t, then A2 proceeds to
qacc. This way, A2 guesses a local strategy for p2 on all inputs from Γ2 and
those inputs from Σ1 which may occur according to t. Furthermore, now S2

is simulated on all paths consistent with this strategy.
Now, let N be a parity-NTA such that L(N ) = L(A1)∩L(A2). Clearly,

if t ∈ L(N ) then the accepting run of A1 on t yields a local winning strategy
for process p1 on all inputs coming from the environment and those inputs
from p2 which may occur according to t. Furthermore, the accepting run
of A2 on t yields a local winning strategy for process p2 on all inputs from
the environment and inputs from p1 which may occur according to t. On
the other hand, for a joint winning strategy σsys = (σ1, σ2) for the system
processes p1 and p2, we can define a (B × B)-labeled (Σ1 × Σ2)-tree t such
that t ∈ L(N ) as follows. For any node u_v ∈ (Σ1×Σ2)∗, define its labeling
by PrΣ1(t(u_v)) = > if and only if there exist w ∈ Γ∗1 and x ∈ ∆∗1 such that
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• |u| = |w| = |x| and

• w_v_u_x is consistent with σ1,

and PrΣ2(t(u_v)) = > if and only if there are w ∈ Γ∗2 and x ∈ ∆∗2 such that

• |v| = |w| = |x| and

• w_u_v_x is consistent with σ2.

Hence, we have L(N ) 6= ∅ if and only if there is a joint winning strategy
for the system processes p1 and p2. As nonemptiness for parity-NTA is
decidable, the theorem follows.

5.4.2 Undecidable Cases

In this subsection we will point out undecidable cases of architectures for sys-
tem specifications given by a list of local specifications. Recall, that in the
previous subsection the realizability problem for pipelines with backward-
channels and specifications given by a list of local specifications is shown
to be decidable if the local specification of the worst informed process is
deterministic contextfree and all other local specifications are regular (see
Theorem 5.7). The first question we investigate here is how a relaxation of
this restrictions effects the decidability. So, first we consider architectures
with specifications given by a list of local specifications which are now al-
lowed to contain at least two deterministic contextfree local specifications.
Then, we consider architectures which again have just one deterministic con-
textfree local specifications, however, now the corresponding system process
is not the worst informed one. We show both cases to be undecidable even
for deterministic one-counter specifications. Finally, we deal with two fur-
ther special cases of architectures which are undecidable even if all local
specifications are regular.

Theorem 5.12. Let A = (P,C, r) be a connected architecture with a la-
beling (Σc)c∈C and a list ` = (Lp1 , . . . , Lpn) of local specifications for the
system processes. The realizability problem for A with (Σc)c∈C and L(`) is
undecidable if Lpi , Lpj ∈ D1CLω, for some i, j ∈ {1, . . . , n} with i 6= j.

Proof. We proceed by a reduction from the halting problem for 2-register
machines. For this, let R =

(
(0 : I0), . . . , (k − 1: Ik−1), (k : HALT)

)
be a 2-

register machine. Define the labeling for the architecture A by Σc = [k+ 1],
for every channel c ∈ C \ Cpenv , and Σc = {]}, for every external input
channel c ∈ Cpenv . Moreover, for every system process pm ∈ Psys, let the lan-
guage Lm contain exactly the words α ∈ (Σpm)ω which satisfy the following
condition for all d, d′ ∈ [dim(Σpm)],

if Prd(α) 6= ]ω and Prd′(α) 6= ]ω then Prd(α) = Prd′(α).
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This means, that a local process behavior of a system process pm is contained
in Lm if and only if the symbols sent to the output channels by process pm and
those process pm receives via internal communication channels are identical
in each step.

Now, consider the following deterministic one-counter automata P0 and
P1. Let parity-D1CA P0 = (QP0 , [k + 1], {A}, qP0

in , δ
P0 , colP0) be defined by

• QP0 = {qx | x ∈ [k + 1]} ∪ {qacc, qrej, q?},

• qP0
in = q0,

• colP0(q) =

{
1 if q ∈ QP0 \ {qacc},
0 if q = qacc,

• for x, y ∈ [k + 1] and Z ∈ {A,⊥},

δP0(qx, x, Z) =



(qx+1, Z) if Ix ∈ {INC(X1), DEC(X1)},
(q?, Z) if Ix = IF X1=0 GOTO y,

(qx+1, AZ) if Ix = INC(X0),

(qx+1, ε) if Ix = DEC(X0) and Z = A,

(qx+1, Z) if Ix = IF X0=0 GOTO y and Z = A,

(qy, Z) if Ix = IF X0=0 GOTO y and Z = ⊥,

(qacc, Z) if Ix = HALT,

δP0(q?, x, Z) = (qx, x, Z),

δP0(qx, y, Z) = (qrej, Z) if x 6= y,

δP0(qacc, x, Z) = (qacc, Z),

δP0(qrej, x, Z) = (qrej, Z).

We define the parity-D1CA P1 = (QP1 , [k + 1], {A}, qP1
in , δ

P1 , colP1) analo-
gously as P0 by swapping the registers. Hence,

• QP1 = QP0 ,

• qP1
in = q0,

• colP1(q) =

{
1 if q ∈ QP1 \ {qacc},
0 if q = qacc,
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• for x, y ∈ [k + 1] and Z ∈ {A,⊥},

δP1(qx, x, Z) =



(qx+1, Z) if Ix ∈ {INC(X0), DEC(X0)},
(q?, Z) if Ix = IF X0=0 GOTO y,

(qx+1, AZ) if Ix = INC(X1),

(qx+1, ε) if Ix = DEC(X1) and Z = A,

(qx+1, Z) if Ix = IF X1=0 GOTO y and Z = A,

(qy, Z) if Ix = IF X1=0 GOTO y and Z = ⊥,

(qacc, Z) if Ix = HALT,

δP1(q?, x, Z) = (qx, x, Z),

δP1(qx, y, Z) = (qrej, Z) if x 6= y,

δP1(qacc, x, Z) = (qacc, Z),

δP1(qrej, x, Z) = (qrej, Z).

For r ∈ {0, 1}, the automaton Pr works a follows. While reading a sequence
of line numbers α ∈ [k + 1]ω it simulates register r of R using its stack. For
this, being in some state qx, for x ∈ [k+1], which means that the automaton
expects line number x for the next input symbol, if Pr reads a symbol y 6= x

then it proceeds to the rejecting state qrej. Otherwise, Pr performs a push-,
pop- or a skip-transition while updating its state according to instruction Ix.
If Ix concerns the other register 1−r then the stack remains untouched, since
it holds the value of register r which is not modified. Moreover, if register
1−r is required to be incremented or decremented then the next line number
is certain and the state is updated to qx+1. On the other hand, if Ix is a
goto-instruction then Pr proceeds to the special state q? which means that
the next line number is not known as the value of register 1− r is unknown,
hence, no line number can be expected for the next input symbol. Otherwise,
if Ix concerns register r then Pr proceeds according to Ix and the current
stack content. A sequence of line numbers is accepted if line number k is
read from state qk.

Now, let ` = (Lp1 , . . . , Lpn) be defined by Lpm = Lm, for all m ∈
{1, . . . , n}\{i, j}, and Lpi = Li∩L(P0) and Lpj = Lj∩L(P1). Clearly, in or-
der to satisfy the specification L(`) any joint winning strategy for the system
processes has to ensure that the sequences written to the output channels of
the processes are all identical, since A is connected and the local behavior
of each process pm has to satisfy Lm. Furthermore, this unique sequence
produced by the joint strategy has to be contained in L(P0) ∩ L(P1), i.e.,
it has to correspond to the sequence of the line numbers of the run of R
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reaching the halting configuration. Thus, there is a joint winning strategy
for the system processes if and only if R halts.

Now, we consider architectures and specifications given by a list of local
specifications with just one deterministic contextfree local specification. For
this case, the following theorem gives a condition which yields undecidability.

Theorem 5.13. Let A = (P,C, r) be an architecture with a labeling (Σc)c∈C
and a list ` = (Lp1 , . . . , Lpn) of local specifications for the system processes.
The realizability problem for A with (Σc)c∈C and L(`) is undecidable if there
are two system processes pi and pj with i 6= j such that

• pi and pj are connected,

• pi ∈ Preach,

• Lpi ∈ D1CLω, and

• pj is not better informed than pi.

Proof. We proceed by a reduction from the halting problem for 2-register
machines. For this, given a 2-register machine

R =
(
(0 : I0), . . . , (k − 1: Ik−1), (k : HALT)

)
,

let Conf and Conf in be defined as in the proof of Theorem 4.4. The idea is
to require that pi and pj simultaneously produce identical sequences of en-
codings of configurations of R starting with the initial configuration Conf in.
Furthermore, for every pair of consecutive encodings of configurations pro-
duced by the processes the environment should be able to trigger process pi
which is reachable and has a deterministic one-counter specification to check
whether the successor relation 7−R is violated by indicating the claimed vi-
olation by one of the letters E0, E1 or L. Since pj is not better informed
than pi this information can be hidden from process pj . Obviously, the sys-
tem processes have a joint winning strategy if and only if processes pi and pj
manage to produce a sequence encoding the infinite run of R which exists if
and only if R does not halt.

To be more formal, let processes px0 , . . . , pxm be such that pxe 6= pxe′ , for
all e, e′ ∈ [m + 1] with e 6= e′, px0 = pi, pxm = pj , and for all e ∈ [m], pxe
sends information to pxe+1 or vice versa. Clearly, such processes exist, since
pi and pj are connected. Furthermore, for e ∈ [m], let cxe ∈ C be such that
either cxe ∈ Cpxe and r(cxe) = pxe+1 or cxe ∈ Cpxe+1

and r(cxe) = pxe , and let
Cx = {cxe | e ∈ [m]}. Moreover, due to the fact that pi is reachable, there is
a directed path from penv to pi, i.e., there are processes py0 , . . . , pyl such that
pye 6= pye′ , for all e, e

′ ∈ [l + 1] with e 6= e′, py0 = penv, pyl = pi, and for all
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e ∈ [l], pye sends information to pye+1 . Furthermore, for e ∈ [l], let cye ∈ C
be such that cye ∈ Cpye and r(cye) = pye+1 , and let Cy = {cye | e ∈ [l]}.
First, assume that Cx ∩ Cy = ∅.

We define the labeling for A by Σc = {N,E0, E1, L} = Σy, for all c ∈ Cy,
and Σc = {], r0, r1} ∪ [k + 1] = Σx, for all c ∈ Cx ∪ Cpi ∪ Cpj . Furthermore,
let Σc = {[}, for all other channels c ∈ C \ (Cx ∪ Cpi ∪ Cpj ∪ Cy). Now, we
define the local specifications as follows. Analogously, as in the proof of The-
orem 5.12, for every process p ∈ {px1 , . . . , pxm}, let the local specification Lp
contain exactly the words α ∈ (Σp)ω satisfying the following condition for
all d, d′ ∈ [dim(Σp)]

if Prd(α) ∈ Σω
x and Prd′(α) ∈ Σω

x then Prd(α) = Prd′(α).

Moreover, for every process p ∈ {py1 , . . . , pyl−1
}, define

Lp = {α_β ∈ (Σp
in × Σp

out)
ω | PrΣc(β) = N · PrΣc′ (α), for c, c′ ∈ Cy},

i.e., a local behavior of a process pyr , for r ∈ {1, . . . , l − 1}, is contained
in Lpyr if in each step the input symbols received via cyr−1 in the previous
step are just forwarded to the output channels cyr , whereas in the first step
where no input is read yet process pyr sends letter N .

Now, consider the following language LR over Σy × Σx. A word α_β ∈
(Σy × Σx)ω is contained in LR if

• β = ]l ]c0 ]c1 ]c2 · · · where ce ∈ Conf, for e ∈ N, and c0 = Conf in, and

• if α = uXw with u ∈ {N}∗, X ∈ {L,E0, E1} and w ∈ (Σy)
ω then

for the smallest s ≥ |u| such that β(s) = ] and β(s + 1) ∈ [k + 1] the
following holds. If

β = prefs(β) ] ` rn0
0 rn1

1 ] `′ r
n′0
0 r

n′1
1 ] β′,

for some n0, n1, n
′
0, n
′
1 ∈ N and β′ ∈ Σω

y , and

` rn0
0 rn1

1 7−R `
′′ r

n′′0
0 r

n′′1
1

then n′0 = n′′0 if X = E0, n′1 = n′′1 if X = E1, an `′ = `′′ if X = L.

The first condition requires that the Σx-component of a word in LR starts
by exactly as many symbols ] as there are processes on the directed path
leading from the environment to process pi, followed by an infinite sequence
of encodings of configurations of R which are separated by symbol ], where
the first encoded configuration is the initial configuration. The second con-
dition requires that immediately after the first occurrence of a letter X 6= N

in the Σy-component for the following two encodings of configurations in the
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Σx-component the line number is updated correctly if X = L or register r is
updated correctly according to R if X = Er, for r ∈ {0, 1}. Clearly, using
ideas as in the proof of Theorem 4.4, one shows that LR ∈ D1CLω.

Using the language LR, we define the local specification of process pi.
Let Lpi contain exactly those words α ∈ (Σpi)ω satisfying the following
conditions for all d, d′ ∈ [dim(Σp)]

• if Prd(α) ∈ Σω
x and Prd′(α) ∈ Σω

x then Prd(α) = Prd′(α), and

• if Prd(α) ∈ Σω
y and Prd′(α) ∈ Σω

x then Prd(α)_Prd′(α) ∈ LR.

Clearly, Lpi ∈ D1CLω. It remains to define the local specifications of all
other system processes p ∈ Psys \ {py1 , . . . , pyl , px1 , . . . , pxm} which we define
as Lp = (Σp)ω.

Now, supposeR does not halt. Then, consider the following joint strategy
σsys. Processes px0 , . . . , pxm simultaneously send the sequence ]l ]c0 ]c1 ]c2 · · ·
where ce ∈ Conf and ce 7−R ce+1, for all e ∈ N, and c0 = Conf in, which cor-
responds to the encoding of the infinite run of R, to the appropriate output
channels. Processes py1 , . . . , pyl−1

transmit the input sequence coming via cy0
from the environment to process pi. Obviously, by doing so, all local spec-
ifications of the system processes are fulfilled regardless of which sequence
is produced by the environment, as the sequence produced by the processes
px0 , . . . , pxm never violates the successor relation. Hence, σsys is a joint win-
ning strategy for the system processes.

On the other hand, if R halts, then any joint strategy for the system pro-
cesses can be spoiled by the environment, since any sequence of encodings of
configurations produced by processes px0 , . . . , pxm which starts with Conf in

eventually has to violate the successor relation 7−R as the halting configu-
ration has no successor configuration. This violation can be claimed by the
environment by sending an appropriate letter L, E0 or E1, however, since
process pj is not informed about the claim of the environment, it cannot re-
act on this letter which implies that also none of the processes px0 , . . . , pxm
can. Thus, there is a joint winning strategy for the system processes if and
only if R does not halt.

Finally, notice that to account for the case where Cx ∩ Cy 6= ∅ the proof
can be adapted by extending the alphabets for the channels from Cx ∩ Cy
such that the inputs produced by the environment are transmitted to process
pi as well as such that it is guaranteed that the sequences of encodings of
configurations produced by pi and by pj coincide. This is easily established
by defining Σc = Σx × Σy, for c ∈ Cx ∩ Cy and appropriately adjusting the
local specifications of the concerned processes.

We conclude this subsection by pointing out two certain patterns such
that the occurrence of at least one of this patterns in an architecture yields
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A2 : penv
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Figure 5.6: Undecidable architectures for local regular specifications

undecidability for this architecture even if all local specifications for the sys-
tem processes are regular. Notice, that for architectures A0, A1 and A2

depicted in Figure 5.6 the realizability problem is shown to be undecidable
for specifications given by a list of regular local specifications in [MT01] by
adapting the reduction from the halting problem for deterministic Turing
machines presented in [PR90]. Moreover, in [FS05] the idea of encryption
is used where the environment is provided with the possibility to send en-
cryption functions such that certain processes are requested to encrypt their
output sequences according to the received encryption function. By doing
so, those sequences become incomprehensible to processes which are not in-
formed about the corresponding encryption function. By combining these
ideas one can easily show that each of the architectures A0, A1 and A2 de-
picted in Figure 5.6 remains undecidable even if they are modified by replac-
ing some external output channels by any internal communication channels.

The first pattern which yields undecidability of an architecture is the
occurrence of some reachable process which sends information to two further
not better informed processes. Clearly, if such a pattern is present in an
architecture then undecidability directly follows from the undecidability of
a corresponding modified version of A0.

Theorem 5.14. Let A = (P,C, r) be an architecture with a labeling (Σc)c∈C
and a list ` = (Lp1 , . . . , Lpn) of local specifications for the system processes.
The realizability problem for A with (Σc)c∈C and L(`) is undecidable if there
are three system processes pi, pj , pk ∈ Preach with i 6= j, i 6= k, j 6= k such that

• pi sends information to processes pj and pk,

• pj and pk are not better informed than pi, and

• Lpm ∈ REGω, for all m ∈ {1, . . . , n}.
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The second pattern is deduced from the undecidability of the modified
versions of A1 and A2. Any architecture containing at least two reachable
and incomparably informed system processes such that from both processes
there is a directed path leading to another system process is undecidable.

Theorem 5.15. Let A = (P,C, r) be an architecture with a labeling (Σc)c∈C
and a list ` = (Lp1 , . . . , Lpn) of local specifications for the system processes.
The realizability problem for A with (Σc)c∈C and L(`) is undecidable if there
are three system processes pi, pj , pk ∈ Preach with i 6= j, i 6= k, j 6= k such that

• pi and pj are incomparably informed,

• there are directed paths from pi to pk and from pj to pk, and

• Lpm ∈ REGω, for all m ∈ {1, . . . , n}.

5.5 Characterization

Using the results shown in the previous section we now derive our main result
of this chapter, a characterization of decidable architectures with specifica-
tions given by a list of regular and deterministic contextfree local specifica-
tions. First notice, that for any architecture A, if the global specification
is given by a list of local specifications, then the realizability problem is
decidable if and only if it is decidable for every connected subarchitecture
of A. Hence, for unconnected architectures, the individual connected subar-
chitectures can be treated separately. For this reason, it suffices to consider
connected architectures only. The characterization is formulated in the fol-
lowing theorem.

Theorem 5.16. Let A = (P,C, r) be a connected architecture with some
labeling (Σc)c∈C and a list ` = (Lp1 , . . . , Lpn) of local specifications for the
system processes. The realizability problem for A with (Σc)c∈C and L(`) is
decidable if and only if

• A is a pipeline with backward-channels and Lp ∈ DCFLω, for the worst
informed system process p, and Lp′ ∈ REGω, for all p′ ∈ Psys \ {p}, or

• any connected subarchitecture A[S] of A with S ⊆ Preach is

– a pipeline with backward-channels, or

– a two-flanked pipeline with backward-channels with rS(CSq ) = q

where q is the last process of A[S], or

– a two-flanked pipeline with backward-channels if |S| = 2,
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and Lp ∈ DCFLω for some unreachable system process p ∈ Psys\Preach,
and Lp′ ∈ REGω, for all p′ ∈ Psys \ {p}.

Proof. If the first condition is fulfilled, i.e., A is a pipeline with backward-
channels and the local specification of the worst informed system process is
deterministic contextfree, and all other system processes have regular local
specifications, then, clearly, A is decidable by Theorem 5.7.

For the second condition, first consider the case where there are no un-
reachable system processes, i.e., Psys = Preach. Then, all local specifications
are regular and decidability directly follows by Theorem 5.7, Theorem 5.10
and Theorem 5.11, since in this case A is either a pipeline with backward-
channels or it is a two-flanked pipeline with backward-channels such that
either there are no backward-channels from the last process or it contains
only two system processes.

Now, assume that A also contains unreachable system processes. Let the
unreachable process p ∈ Psys \ Preach be the only process having a determin-
istic contextfree local specification Lp ∈ DCFLω. Moreover, let

ΣU =
∏

p∈Psys\Preach

Σp
out

denote the joint alphabet of the output channels of all unreachable processes.
Furthermore, for any unreachable process p ∈ Psys\Preach, define the language
L′p = {α ∈ Σω

U | PrΣp(α) ∈ Lp} and let

LU =
⋂

p∈Psys\Preach

L′p.

Clearly, LU ∈ DCFLω, since L′p is deterministic contextfree and all other L′p
are regular, for p 6= p.

Now, we show for the case where Psys\Preach 6= ∅ that A is decidable if the
second condition of the theorem is satisfied. A generic architecture for this
case is sketched in Figure 5.7. Now, consider any connected subarchitecture
A[S] = (S ∪ {penv}, C[S], rS) of A with S ⊆ Preach. Let

CU→S = {c ∈ Cp | p ∈ Psys \ Preach} ∩ {c ∈ C | r(c) ∈ S},

i.e., CU→S contains all channels via which information is sent from some
unreachable process to a process from S in A. The idea is to extend the sub-
architecture A[S] for being able to simulate channels from CU→S . Therefor,
we reroute the channels from CU→S such that the respective recipients re-
main unchanged, however, now particular processes from S are writing to
those channels instead of the original unreachable processes. Then, if a
joint winning strategy exists for the system processes of the new architec-
ture which produces output sequences along the new channels such that they
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penv

Psys\Preach
· · ·

Figure 5.7: Generic decidable architecture

don’t depend on the inputs coming from the environment, clearly, this could
also be accomplished by the respective original unreachable processes in A
along the corresponding original channels in CU→S .

We first consider the case where A[S] = ({s0, . . . , sm}, C[S], rS) is a two-
flanked pipeline with backward-channels, where m = |S| and s0 = penv, such
that there are no backward-channels from the last process sm. Define the
architecture BS = (PB, CB, rB) as follows,

• PB = {s0, . . . , sm},

• CBp = CSp for all p ∈ {s0, . . . , sm} \ {sm−1},

• CBsm−1
= CSsm−1

∪ C0 ∪ C1 where Ci = {c(i) | c ∈ CU→S} for i ∈ {0, 1},

• rB(c) = rS(c), for c ∈ CB \ (C0 ∪ C1),

• rB(c(0)) = r(c), for c(0) ∈ C0 and the corresponding channel c ∈ CU→S ,

• rB(c(1)) = sm, for c(1) ∈ C1.

Thus, BS evolves from A[S] by adding two copies C0 and C1 of channels
CU→S to the last but one process sm−1 of the two-flanked pipeline. Via
channels from C0 process sm−1 sends information to the respective recipients
of the corresponding channels from CU→S , whereas channels from C1 are all
read by process sm. Furthermore, let the labeling (Σ̂c)c∈CB be defined by
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Σ̂c = Σc, for c ∈ CB \ (C0 ∪ C1), and for i ∈ {0, 1}, let Σ̂c(i) = Σc for every
c(i) ∈ Ci where c is the corresponding channel in CU→S , i.e., the alphabets
assigned to the channels from C0 and C1 are exactly the same as for the
original channels from CU→S . To be able to distinguish between this two
copies of channels C0 and C1 we denote the corresponding joint alphabets by

Σ̂Ci =
∏
c∈Ci

Σ̂c, for i ∈ {0, 1}.

Now, we define the list ̂̀= (L̂s1 , . . . , L̂sm) of local specification for the
system processes of BS . For every p ∈ {s1, . . . , sm−2} the local specifi-
cations remain as in `, i.e., L̂p = Lp. The local specification of the last
process sm is defined by L̂sm = {α ∈ (Σ̂sm)ω | PrΣsm (α) ∈ Lsm}, i.e.,
there are no conditions imposed on the information sent along the new
channels. Finally, let the local specification of process sm−1 be defined by
L̂sm−1 = {α ∈ (Σ̂sm−1)ω | Pr

Σ̂C0
(α) = Pr

Σ̂C1
(α) and PrΣsm−1 (α) ∈ Lsm−1}

Hence, for process sm−1 we additionally require that the sequences produced
on channels from C0 coincide with the corresponding sequences sent along
the channels from C1.

Notice that the architecture BS is a pipeline with backward-channels
which has no backward-channels from the last process, i.e., rB(CBsm) = sm.
Moreover, as all local specifications in ̂̀ are regular, by Theorem 5.10 the
realizability problem for BS with (Σ̂c)c∈CB and L(̂̀) can be solved. LetNm−1

be the parity-NTA over B-labeled Σ̂
sm−1

out -trees according to Lemma 5.5 and
let N ′m−1 be a corresponding parity-NTA over B-labeled Σ̂m−1-trees which
accepts a tree t if and only if wideY (t) ∈ L(Nm−1) where Y = Σ̂

b,sm−1

out .
Moreover, let Nm be the parity-NTA over B-labeled Σ̂m−1-trees according
to Lemma 5.9. Furthermore, let N be a parity-NTA over B-labeled Σ̂m−1-
trees such that L(N ) = L(N ′m−1) ∩ L(Nm). Clearly, if L(N ) = ∅, then L(`)

is not realizable in A with (Σc)c∈C . So, assume L(N ) 6= ∅.
Now, we construct an alternating finite automaton CS over Σ̂C1 which

accepts a word ν ∈ (Σ̂C1)ω if and only if there is a tree t ∈ Tcom(Σ̂m−1)

such that Pr
Σ̂C1

(L(ω)(t)) = {ν} and t ∈ L(N ), i.e., there is a joint win-
ning strategy for the system processes such that process sm−1 produces the
sequence ν along the channels from C1 (and consequently also along the
channels from C0 due to L̂sm−1) for any external input sequence produced
by the environment. The idea for the construction is the following. While
processing a word ν ∈ (Σ̂C1)ω the automaton successively guesses a tree
t ∈ Tcom(Σ̂m−1) which satisfies Pr

Σ̂C1
(L(ω)(t)) = {ν}. Moreover, the automa-

ton verifies that t is accepted by N by furthermore guessing an accepting
run of N on t. Formally, define the parity-AFA CS = (QC , Σ̂C1 , δ

C , qCin, colC)

as follows.
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• QC = QN × B

• qCin = (qNin ,>)

• colC(q, ζ) = colN (q) for all q ∈ QN and all ζ ∈ B

• for q ∈ QN and b ∈ Σ̂C1

δC
(
(q,>), b

)
=

∨
[∅6=X⊆Σ̂m−1]

∨
[ϕ∈δN (q,>)]

∧
[a∈Σ̂m−1]

q(X,ϕ,a,b)

where q(X,ϕ,a,b) =



(p,>) if a ∈ X and PrΣC1
(a) = b

and(↓a, p) ∈ ϕ,

(p,⊥) if
(
a /∈ X or PrΣC1

(a) 6= b
)

and(↓a, p) ∈ ϕ,

δC
(
(q,⊥), b

)
=

∨
[ϕ∈δN (q,⊥)]

∧
[a∈Σ̂m−1]

q(ϕ,a)

where q(ϕ,a) = (p,⊥) if (↓a, p) ∈ ϕ.

Clearly, if L(CS) 6= ∅ then there is a strategy σsys for the system pro-
cesses Psys such that any global system behavior αA ∈ (ΣA)ω consistent
with σsys fulfills all local specifications of the processes in S. For this, let
ν ∈ L(CS). Then, there is a tree t ∈ L(N ) such that Pr

Σ̂C1
(L(ω)(t)) = {ν}

which means that there is a joint winning strategy (σ̂s1 , . . . , σ̂sm) for the
system processes in BS such that the language generated by

σ̂
(∗)
s1 ◦ Pr

Σ̂1
◦ . . . ◦ σ̂(∗)

sm−2
◦ Pr

Σ̂m−2
◦ σ̂sm−1 ◦ Pr

Σ̂m−1

over Σ̂ω
penv is a subset of L(ω)(t). Hence, we can define σsys = (σp1 , . . . , σpn)

any global system behavior which is consistent with σsys satisfies all local
specifications Lp of the processes p ∈ S as follows. For p ∈ {s1, . . . , sm−2},
define σp = σ̂p. For processes sm−1 and sm, we define corresponding strate-
gies by σsm−1 = σ̂sm−1 ◦ Pr

Σ
sm−1
out

and σsm(u) = σ̂sm(u_pref |u|(ν)) for all
u ∈ Σsm

in . Furthermore, for every unreachable process p ∈ Psys \ Preach,
define σp such that it produces a sequence αp ∈ (Σp

out) which satisfies
PrΣc(αp) = PrΣc(ν) for every c ∈ Cp ∩ CU→S .

Now, let the subarchitectureA[S] = ({s0, . . . , sm}, C[S], rS) be a pipeline
with backward-channels. This case can be reduced to the previous case
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of two-flanked pipelines with backward-channels which have no backward-
channels from the last process. For this, we first augment A[S] by an aux-
iliary process sm+1, since the last process sm of A[S] may have backward-
channels. By doing so, we obtain a two-flanked pipelines with backward-
channels which have no backward-channels from the last process which is
the now process sm+1. Then, this architecture is handled exactly as above.

Finally, we consider the case whereA[S] = ({s0, s1, s2}, C[S], rS) is a two-
flanked pipeline with backward-channels containing exactly two system pro-
cesses s1 and s2. For this case, we define the architecture BS = (PB, CB, rB)

as follows.

• PB = {s0, s1, s2},

• CBsi = CSsi ∪ Ci where Ci = {c(0) | c ∈ CU→S , r(c) 6= si}, for i ∈ {1, 2},

• rB(c) = rS(c), for c ∈ CB \ (C1 ∪ C2),

• rB(C1) = s2 and rB(C2) = s1.

Thus, in this case, BS is obtained from A[S] by appending a copy

C0 = C1 ∪ C2

of channels from CU→S to the subarchitecture. Now, each process take the
role of the unreachable process sending information to the other process, i.e.,
channels from CU→S which are read by process s1 are simulated by process s2

by sends information via C2 and, vice versa, channels from CU→S which are
read by process s2 are simulated by process s1 by sends information via C1.
We define the labeling (Σ̂c)c∈CB as above. Moreover, the local specifications
are adapted accordingly, L̂si = {α ∈ (Σ̂si)ω | PrΣsi (α) ∈ Lsi}, for i ∈ {1, 2}.
Notice that since BS is a two-flanked pipeline containing only two system
processes and as both local specifications L̂si , for i ∈ {1, 2}, are regular, the
realizability problem can be solved by Theorem 5.11. So, let now N be a
parity-NTA over (B× B)-labeled (Σ̂1 × Σ̂2)-trees as in Theorem 5.11 where

Σ̂i =
∏

c∈CBi \HBî

Σc, for i ∈ {1, 2}.

Analogously, as for two-flanked pipelines with backward-channels with
no backward-channels from the last process, one can construct a parity-AFA
CS which now accepts a word ν ∈ (Σ̂C0)ω if and only if there is a tree
t ∈ Text

com(Σ̂1 × Σ̂2) such that Pr
Σ̂C0

(L(ω)(t)) = {ν} and t ∈ L(N ). Formally,

parity-AFA CS = (QC , Σ̂C1 , δ
C , qCin, colC) is defined as follows.

• QC = QN × (B× B)
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• qCin = (qNin , (>,>))

• colC(q, ζ) = colN (q) for all q ∈ QN and all ζ ∈ B× B

• for q ∈ QN and b ∈ Σ̂C0 and ζ ∈ (B× B) \ {(>,>)}

δC
(
(q, (>,>)), b

)
=

∨
[∅6=X⊆Σ̂1×Σ̂2]

∨
[ϕ∈δN (q,(>,>))]

∧
[a∈Σ̂1×Σ̂2]

q(X,ϕ,a,b)

where q(X,ϕ,a,b) =



(p, (>,>)) if a ∈ X and PrΣC0
(a) = b

and(↓a, p) ∈ ϕ,∨
ζ′∈B×B,
ζ′ 6=(>,>)

(p, ζ ′) if
(
a /∈ X or PrΣC0

(a) 6= b
)

and(↓a, p) ∈ ϕ,

δC
(
(q, ζ), b

)
=

∨
[ϕ∈δN (q,ζ)]

∧
[a∈Σ̂1×Σ̂2]

q(ϕ,a)

where q(ϕ,a) =
∨

ζ′∈B×B,
ζ′ 6=(>,>)

(p, ζ ′) if (↓a, p) ∈ ϕ.

Clearly, if ν ∈ L(CS) then there is a joint winning strategy (σ̂s1 , σ̂s2) for
processes s1 and s2 such that any global system behavior of BS which is
consistent with this strategy fulfills both local specifications L̂s1 and L̂s2 .
Furthermore, since the sequence ν produced along the channels from C0 =

C1 ∪ C2 by this strategy is completely independent of the external input
produced by the environment, we can define a joint strategy σsys such that
any global system behavior of A which is consistent with σsys fulfills Ls1
and Ls2 . For this, define σsi = σ̂si ◦ PrΣ

si
out

, for i ∈ {1, 2}, and for the
unreachable processes p sending information to s1 or s2, the corresponding
strategies σp are required to produce a sequence αp ∈ (Σp

out) which satisfies
PrΣc(αp) = PrΣc(ν) for every c ∈ Cp ∩ CU→S .

Finally, for any connected subarchitecture A[S] with S ⊆ Preach (which
is either a pipeline with backward-channels, or a two-flanked pipeline with
backward-channels which has no backward-channels from the last process or
contains just two system processes), let

L′(CS) = {α ∈ Σω
U | PrΣU→S

(α) ∈ L(CS)}

where ΣU→S =
∏
c∈CU→S

Σc. Clearly, there is a joint winning strategy σsys

for the system processes in A if and only if

L = LU ∩
⋂

S⊆Preach,

A[S] is
connected

L′(CS) 6= ∅
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which can be decided, since L is deterministic contextfree.
For the other direction, notice that, if both conditions of the theorem

are not fulfilled, then either there are at least two system processes p 6= p′

with deterministic contextfree local specifications Lp, Lp′ , or Psys contains
a reachable process p with a deterministic contextfree local specification Lp
and also some not better informed process p′ 6= p, or there are three reachable
distinct system processes p, p′ and p′′ such that p′ and p′′ are incomparably
informed and either p sends information to both, p′ and p′′, or there are
directed paths from p′ to p as well as from p′′ to p. Hence, in this case,
undecidability of A follows by Theorem 5.12, Theorem 5.13, Theorem 5.14
and Theorem 5.15.

5.6 Summary of Results

We investigated the realizability problem for distributed systems which is to
decide, given a distributed system represented by a labeled architecture and
a global system specification, whether there is a joint winning strategy for
the system processes. In particular, we considered regular and deterministic
contextfree specifications.

First, we showed that in case of deterministic contextfree global system
specifications the realizability problem becomes undecidable even for very
simple architectures, namely, for architectures with at least two system pro-
cesses or architectures containing hidden channels from the environment pro-
cess, i.e., channels which are not read by any system process. So basically, for
deterministic contextfree global system specifications the realizability prob-
lem turns out to be decidable only for nondistributed settings. Furthermore,
we mentioned that this result holds even for the restricted class of determin-
istic contextfree global specifications recognizable by deterministic visibly
one-counter with weak acceptance condition.

Then, we concentrated on system specifications given by a list of local
system specifications, one for each system process. We extended the result
of [MT01], where the class of system specifications given by a list of regular
local system specifications, however, only for the case of acyclic architectures
is studied. Our main result is a complete characterization of decidable archi-
tectures for general architectures where cycles are allowed and for the class
of system specifications given by a list of local system specifications which
may be regular or deterministic contextfree.
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Chapter 6

Finite-Time Pushdown Games

In infinite games with strong winning conditions such as parity or Muller
winning conditions, the winner of a play depends on events which happen
infinitely often during the play and hence can be determined only after in-
finitely many rounds. In contrast, finite-duration variants of infinite-duration
games are provided with a criterion which stops a play after a finite num-
ber of rounds and declares a winner based on the finite play prefix. This
criterion is sound if, for i ∈ {0, 1}, Player i wins the infinite-duration game
if and only if Player i wins the corresponding finite-duration game. Clearly,
as a finite-duration game has a reachability objective, a sound termination
criterion which stops a play after at most n rounds yields an algorithm to
determine the winner of the corresponding infinite-duration game just by
building the attractor on a finite tree of depth at most n.

McNaughton introduced a finite-duration variant for Muller games played
on finite game graphs [McN00]. He defined the termination criterion by
means of so-called scoring functions which rate finite play prefixes. A play
is stopped when some scoring function reaches a given threshold score value.
McNaughton proved soundness of this criterion for a factorial threshold score
value, i.e., he showed equivalence between Muller games and corresponding
finite-time Muller games with factorial threshold score. This implies that
the winner of a Muller game on a finite game graph can be determined by
solving a reachability game over a game graph which is doubly-exponential
in the size of the game graph of the original Muller game. This result was im-
proved by Fearnley and Zimmermann who showed that the constant thresh-
old score value of three suffices for the equivalence of the corresponding
games [FZ10]. Furthermore, a score-based reduction from Muller games to
safety games evolved from this result [Zim12, NRZ12] which yields general
non-deterministic winning strategies called permissive strategies. This ex-
tends the work of Bernet et al. [BJW02] on permissive strategies for parity
games to Muller games.

123



6 Finite-Time Pushdown Games

In this chapter we extend these results to parity pushdown games. First,
we introduce a new finite-duration variant for parity pushdown games. This
is necessary since the known results on finite game graphs do not hold for
infinite ones. By exploiting the intrinsic structure of pushdown graphs we
define stair-scoring functions and prove equivalence between parity push-
down games and their corresponding finite-duration variants with a thresh-
old stair-score which is exponential in the size of the underlying pushdown
system. This yields a new reduction method which determines the winner
of a parity pushdown game by solving a reachability game on a finite tree.
Moreover, we establish an almost matching lower bound on the threshold
stair-score such that the equivalence between the corresponding games still
holds, which is exponential in the cube root of the size of the underlying
pushdown system. We introduce finite-time games formally in Section 6.1
where we give the new notion of stair-scoring functions which we use to de-
fine finite-time parity pushdown games. Then, in Section 6.2 we recall and
adapt Walukiewicz’s construction as it is needed for the following section.
The equivalence between parity pushdown games and their corresponding
finite-duration variants is proved in Section 6.3. Finally, we present the
lower bound in Section 6.4.

6.1 Finite-Time Games

In this section we introduce a finite-duration variant of parity pushdown
games. For this, the concept of scoring functions, which were originally
introduced in [McN00] for Muller games, is adapted to parity games. Scoring
functions are used to rate finite play prefixes. In Muller games, for every set
of vertices F , the score of a finite play prefix w with respect to F is defined
as the number of times the entire set F is visited in the longest suffix of w
consisting merely of vertices in F . This is straightforwardly transfered to
the case of parity games.

In the following, let (G, col) be a parity game with G = (V, V0, V1, E, vin)

and col : V → [n], for some n ∈ N. We define scoring functions for par-
ity games as follows. For every color c ∈ [n], define the scoring function
Scc : V ∗ → N assigning to any finite sequence of vertices a natural number
by

Scc(ε) = 0

and for w ∈ V ∗ and v ∈ V ,

Scc(wv) =


Scc(w) if col(v) > c,

Scc(w) + 1 if col(v) = c,

0 if col(v) < c.
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6.1 Finite-Time Games

Furthermore, the maximum score function MaxScc : V ∗ ∪ V ω → N ∪ {∞},
for every c ∈ [n], is defined by

MaxScc(ρ) = sup
wvρ

Scc(w),

for ρ ∈ V ∗ ∪ V ω, i.e., the maximum score function assigns to any finite
or infinite sequence ρ of vertices the highest value which is reached by the
corresponding scoring function on finite prefixes w v ρ, or ∞ is assigned if
this value is unbounded.

Now, consider the case where the set of vertices V of the game graph is
finite and let σ be a positional winning strategy for Player i in the parity
game. Notice that, for every play ρ ∈ V ω, if ρ is consistent with σ, then
there are no two positions j < j′ ∈ N with ρ(j) = ρ(j′) such that

Par(col(ρ(j))) = 1− i and col(ρ(k)) ≥ col(ρ(j)), for all j ≤ k ≤ j′,

i.e., any play consistent with a positional winning strategy for Player i does
not visit a vertex v ∈ V with Par(col(v)) = 1− i twice without visiting some
vertex of strictly smaller color in between, since otherwise, the play

ρ = prefj(ρ)
(
ρ(j) · · · ρ(j′ − 1)

)ω
is consistent with σ, however, as min{Inf(col(ρ))} = 1− i it is not winning.
Hence, applying the pigeonhole principle, it follows that positional winning
strategies in parity games on finite graphs bound the scores of the losing
player. For c ∈ [n], let

|V |c = |{v ∈ V | col(v) = c}|,

i.e., |V |c denotes the number of vertices colored by c.

Remark 6.1. Let G = (G, col) be a parity game with G = (V, V0, V1, E, vin)

and col : V → [n], for n ∈ N, where the set V is finite. If σ is a positional
winning strategy for Player i in G, then, for every play ρ that is consistent
with σ and every c ∈ [n] with Par(c) = 1− i, we have MaxScc(ρ) ≤ |V |c.

Due to this remark, for parity games on finite game graphs, if both players
play according to respective positional strategies, then a play can be stopped
as soon as a certain threshold value |V |c + 1 is reached by some scoring
function Scc, for c ∈ [n], and Player Par(c) can be declared to be the winner
of the play. This is the idea behind finite-time versions of infinite games.

Formally, a finite-time parity game G = (G, col, k) consists of a game
graph G = (V, V0, V1, E, vin), a parity condition col : V → [n], for n ∈ N, and
a threshold value k ∈ N \ {0}. A play in G is a finite path

w = w(0) · · ·w(r) ∈ V ∗
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6 Finite-Time Pushdown Games

with w(0) = vin and (w(i), w(i + 1)) ∈ E, for all i ∈ [r], such that the
following conditions are satisfied,

• MaxScc(w) = k for some c ∈ [n], and

• MaxScc(w(0) · · ·w(r − 1)) < k, for all c ∈ [n].

The play w is winning for Player i if Par(c) = i. A strategy for Player i is a
function σ : V ∗Vi → V such that for every sequence u ∈ V ∗Vi of vertices, we
have (last(u), σ(u)) ∈ E. A play w ∈ V ∗ is consistent with a strategy σ for
Player i if w(j+ 1) = σ(prefj+1(w)) for every j ∈ [|w|−1] with w(j) ∈ Vi. A
strategy σ is winning for Player i if every play w which is consistent with σ

is winning for Player i. Player i wins the finite-time parity game G if there
exists a winning strategy for Player i in G.

First notice, that every threshold value k ∈ N is eventually reached by
some scoring function, if the path in the game graph is sufficiently long.
Thus, there are no draws due to infinite plays.

Lemma 6.2. Let V be a set of vertices and col : V → [n] a coloring function,
for n ∈ N. For every w ∈ V ∗ and every k ∈ N, if |w| ≥ kn, then there is
some c ∈ [n] such that MaxScc(w) ≥ k.

Proof. We show the lemma by induction on the number n of colors. Clearly,
the statement holds trivially for the base case n = 1. Hence, for the induction
step, let n > 1. Consider w ∈ V ∗ with |w| ≥ kn, for k ∈ N. If there is an
infix u of w with |u| = kn−1 such that |Occ(col(u))| ≤ n−1, i.e., the vertices
occurring in u are colored by at most n− 1 distinct colors, then by applying
the induction hypothesis, there is some color c ∈ [n] such that MaxScc(u) ≥ k
and, hence, also MaxScc(w) ≥ k. Otherwise, if every infix u of w of length
|u| = kn−1 contains at least one vertex colored by c, for every color c ∈ [n],
then, the smallest color 0 occurs at least k times in prefkn(w) = w1 · · ·wk
with |wi| = kn−1, for 1 ≤ i ≤ k, and, hence, MaxScc(w) ≥ k.

Due to this lemma, a play in a finite-time parity game (G, col, k) continues
for at most kn rounds where [n] is the codomain of the coloring function col.
Moreover, it can also be shown that the bound in Lemma 6.2 is tight, i.e.,
there is a game graph G = (V, V0, V1, E, vin) such that for every k, there is
a path w ∈ V ∗ with |w| = kn − 1 such that MaxScc(w) < k, for all colors
c ∈ [n] (cf. Lemma 4.9 in [Zim12]).

Furthermore, the following simple consequence of the definition of the
scoring functions guarantees that every play in a finite-time parity game has
a unique winner. By definition of the scoring functions, only the value of one
function Sccol(w(i)) is increased in round i of a play w, for all other functions
Scc with c 6= col(w(i)) the value either remains constant or is reseted to zero.
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Lemma 6.3. Let V be a set of vertices and col : V → [n] a coloring function,
for n ∈ N. For w ∈ V ∗, v ∈ V and c, c′ ∈ [n], if Scc(wv) = Scc(w) + 1 and
Scc′(wv) = Scc′(w) + 1, then c = c′.

Hence, a play in a finite-time parity game (G, col, k) continues until one
of the scoring functions Scc is increased to the threshold value k. As soon as
this happens, a unique winner of the play can be declared.

In [FZ10], finite-time Muller games are studied where the original scor-
ing functions for Muller games are used. For the case of finite game graphs,
the equivalence between Muller games and corresponding finite-time Muller
games is established for the constant threshold k = 3. This means that
Player i wins a Muller game if and only if Player i wins the correspond-
ing finite-time Muller game with threshold k = 3. Due to Remark 6.1 an
analogous result holds for parity games on finite game graphs.

Theorem 6.4. Let G = (V, V0, V1, E, vin) be a game graph where V is finite
and col : V → [n] be a coloring function, for n ∈ N. For every threshold value
k > max

c∈[n]
|V |c, Player i wins (G, col) if and only if Player i wins (G, col, k).

However, this result does not hold for infinite game graphs. To verify this,
consider the infinite pushdown game graph G(S) induced by the pushdown
system S = (Q,Γ,∆, qin) where Q = {qin, q1, q2}, Γ = {A} and ∆ contains
the following transitions, for X ∈ {A,⊥},

• (qin, X, qin, AX), (qin, X, q1, AX),

• (q1, A, q1, ε), (q1,⊥, q2,⊥),

• (q2, A, q2, ε), (q2,⊥, q2,⊥),

with the partition Q0 = {q1, q2} and Q1 = {qin}. The part of G(S) which
is reachable from the initial vertex vin = (qin,⊥) is depicted in Figure 6.1.
Furthermore, let the coloring function col : Q→ [2] be defined by col(q1) = 1

and col(qin) = col(q2) = 0. Clearly, the parity game (G(S), col) is won by
Player O, since for every play ρ ∈ V ω,

PrQ(ρ) = qωin or PrQ(ρ) = qminq
m+1
1 qω2 , for m > 0,

which means that configurations in state q1 are seen only finitely many times
during the play ρ and hence Inf(col(ρ)) = 0. However, for every threshold
value k > 1, Player I wins the corresponding finite-time game (G(S), col, k).
The positional winning strategy σI for Player I is to move the token to
configuration (q1, A

k−1⊥), i.e., σI((qin, A
m⊥)) = (q1, A

m+1⊥) if m = k −
2 and σI((qin, A

m⊥)) = (qin, A
m+1⊥), otherwise. Following this strategy,
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6 Finite-Time Pushdown Games

(qin,⊥) (qin, A⊥) (qin, AA⊥) · · ·

(q1,⊥) (q1, A⊥) (q1, AA⊥) · · ·

(q2,⊥)

Figure 6.1: The pushdown game graph induced by S

Player I wins since color 1 is the first to reach score k which happens when
the token arrives at the configuration (q1,⊥).

Thus, to obtain an analogous result as in Theorem 6.4 for pushdown par-
ity games, we have to introduce another version of finite-time parity games
adjusted for pushdown parity games. For this, we adapt the scoring func-
tions using the concept of stairs as defined in Definition 3.1, which we call
stair-score functions.

Let (G, col) be a pushdown parity game with a pushdown game graph
G = (V, V0, V1, E, vin) and a coloring function col : V → [n], for n ∈ N. To
simplify our notation, we define the following functions

MinCol : V + → [n],

reset : V + → V ∗ and
lastBump : V + → V +

as follows. For w ∈ V ∗, let

MinCol(w) = min{col(w(i)) | 0 ≤ i < |w|},

and for v ∈ V and w = w(0) · · ·w(l) · · ·w(r) ∈ V + where r ≥ 1 and 0 ≤ l < r

is the greatest position such that sh(w(l)) ≤ sh(w(r)), i.e., l is the second
largest3 stair position of w, define

reset(v) = ε and lastBump(v) = v,

reset(w) = w(0) · · ·w(l) and lastBump(w) = w(l + 1) · · ·w(r).

Notice, that for every w ∈ V +, we have reset(w) · lastBump(w) = w. Now,
we give the definition of the stair-score functions.

3Notice that the last position of a finite path is always a stair position.
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reset(w) lastBump(w)
st
ac
k
he

ig
ht

w

col : 0 2 1 0 2 1 0 0 0 1 1 1 1 2 1

StairSc0 : 1 1 1 2 2 2 3 3 2 2 2 2 2 2 2

StairSc1 : 0 0 1 0 0 1 0 0 0 1 2 3 4 4 3

StairSc2 : 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Figure 6.2: A finite path w, its stair positions and values of the stair-scoring
functions

Definition 6.5 (Stair-scoring functions). Let (G, col) be a parity pushdown
game with G = (V, V0, V1, E, vin) and col : V → [n], for n ∈ N. For every
color c ∈ [n], define the function StairScc : V ∗ → N by

StairScc(ε) = 0

and for w ∈ V +,

StairScc(w) =


StairScc(reset(w)) if MinCol(lastBump(w)) > c,

StairScc(reset(w)) + 1 if MinCol(lastBump(w)) = c,

0 if MinCol(lastBump(w)) < c.

Furthermore, for every color c ∈ [n], the maximum stair-score function
MaxStairScc : V ∗ ∪ V ω → N ∪ {∞} is defined by

MaxStairScc(ρ) = sup
wvρ

StairScc(w),

for ρ ∈ V ∗ ∪ V ω.

Figure 6.2 illustrates the above definitions, where an example path w is
indicated with its corresponding stack heights and coloring. The positions
from StairPositions(w) are indicated by the marked stack heights. Moreover,
the decomposition of w in reset(w) and lastBump(w) is inscribed as well as
the corresponding values of the stair-scoring functions for all prefixes of w.

Now, we define a new version of finite-time parity games played on push-
down game graphs using these new notions of stair-scoring functions. A
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finite-time pushdown parity game G = (G, col, k) consists of a pushdown
game graph G = (V, V0, V1, E, vin), a parity condition col : V → [n], for
n ∈ N, and a threshold value k ∈ N \ {0}. A play in G is a finite path

w = w(0) · · ·w(r) ∈ V ∗

with w(0) = vin and (w(i), w(i+ 1)) ∈ E, for all i ∈ [r], such that

• MaxStairScc(w) = k for some c ∈ [n], and

• MaxStairScc(w(0) · · ·w(r − 1)) < k for all c ∈ [n].

The play w is winning for Player i if Par(c) = i. The notions of strategies
and winning strategies are defined as above (see page 126).

Again, we can show that every threshold value k is eventually reached
by some stair-scoring function if the path in the pushdown game graph is
sufficiently long. This bounds the length of the plays of finite-time parity
pushdown games. For this, we need the following lemma.

Lemma 6.6. Let G = (V,E) be a pushdown graph and w ∈ V + be a path
in G such that 0 ∈ StairPositions(w) . For any m ∈ N, if |w| ≥ 2m then there
exists a prefix w′ v w such that |StairPositions(w′)| > m.

Proof. We show the claim by induction on m. For the base case, consider
m = 0. Then, |w| ≥ 1 implies |StairPositions(w)| > 0, since the first configu-
ration w(0) of w is a stair position. For the induction step, we prove the con-
trapositive statement. Consider w = w(0) · · ·w(r) such that for all w′ v w,
|StairPositions(w′)| ≤ m+1. Let n0, n1 ∈ StairPositions(w), where n0 = 0, be
the first two stair positions of w. First, consider the suffix u = w(n1) · · ·w(r).
As n0, n1 ∈ StairPositions(w), it follows that n0, n1 ∈ StairPositions(w′′), for
every w′′ v w with |w′′| ≥ n1 + 1. From this, we conclude that for every
u′ v u, we have |StairPositions(u′)| = |StairPositions(w(0) · · ·w(n1−1)u′)|−1

and 0 ∈ StairPositions(u). This means, since |StairPositions(w′)| ≤ m + 1,
for all w′ v w, we have |StairPositions(u′)| ≤ m, for all u′ v u. Thus, by
applying the induction hypothesis, we have |u| < 2m. Now, consider the
prefix v = w(0) · · ·w(n1−1). If n1 = 1, then we have |v| = |w(0)| = 1 ≤ 2m.
Thus, let n1 6= 1, then sh(w(0)) = sh(w(n1)), sh(w(1)) = sh(w(n1 − 1))

and sh(w(i)) > 0, for all i ∈ {1, · · · , n1 − 1}, Thus, for the same rea-
son as for the suffix u we can apply the induction hypothesis and con-
clude that |w(1) · · ·w(n1 − 1)| = |v| − 1 < 2m, i.e., |v| ≤ 2m. Hence,
|w| = |v|+ |u| < 2 · 2m = 2m+1.

Notice, that the bound in Lemma 6.6 is tight, i.e., there is a pushdown
graph G = (V,E) such that for every m ∈ N \ {0} there exists a path
wm ∈ V + in G with 0 ∈ StairPositions(wm) such that |wm| = 2m − 1
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(qin,⊥) (qin, A⊥) (qin, AA⊥) · · ·

Figure 6.3: The pushdown game graph induced by P

and |StairPositions(w′)| ≤ m, for every prefix w′ v wm. To verify this,
consider the following PDS P = (Q,Γ,∆, qin) with Q = {qin}, Γ = {A},
∆ = {(qin,⊥, qin, A⊥), (qin, A, qin, AA), (qin, A, qin, ε)} and its induced con-
figuration graph G(P) = (V,E) depicted in Figure 6.3. For v = (qin, γ⊥) ∈
V and α ∈ Γ∗, let raise(v, α) = (q, γα⊥) and for w = w(0) · · ·w(r) ∈
V +, let raise(w,α) = raise(w(0), α) · · · raise(w(r), α). We define sequences
wm ∈ V +, for m ∈ N \ {0}, inductively by w1 = vin and for m > 1,
wm = vin · raise(wm−1, A) · wm−1. Now, we can show by induction on
m that the statement holds for sequences wm. First, since |w1| = 1, we
have |StairPositions(w1)| = 1. So, let m > 1, then |wm| = 1 + 2 · |wm−1|
and for all prefixes w′ v wm−1, we have |StairPositions(vin · raise(w′, A))| =

|StairPositions(vin · raise(wn−1, A) ·w′)| = 1 + |StairPositions(w′)|. Hence, ap-
plying the induction hypothesis yields |wn| = 1 + 2 · (2n−1− 1) = 2n− 1 and
|StairPositions(w′)| ≤ m for every prefix w′ v wm.

Now, due to the fact that for every play prefix w′ v w of a play w ∈ V +

in a finite-time pushdown parity game one can construct a sequence u′ ∈ Q∗
of states of the corresponding PDS inducing the pushdown game graph with
|u′| = |Stairs(w′)| such that for every color c ∈ [n], StairScc(w

′) = Scc(u
′)

and by combining Lemma 6.6 and Lemma 6.2 the desired upper bound on
the length of the plays of finite-time parity pushdown games is obtained.

Lemma 6.7. Let G = (V,E) be a pushdown graph with a coloring function
col : V → [n], for n ∈ N. For every w ∈ V ∗ and every k ∈ N, if |w| ≥ 2k

n,
then there is some c ∈ [n] such that MaxStairScc(w) ≥ k.

Thus, a play in a finite-time parity pushdown game (G, col, k) continues
for at most 2k

n number of rounds where [n] is the codomain of col. Again, the
bound in Lemma 6.7 is tight, i.e., there is a game graphG = (V, V0, V1, E, vin)

such that for every k there is a path w ∈ V ∗ with |w| = kn − 1 such that
MaxStairScc(w) < k, for all colors c ∈ [n]. Moreover, Lemma 6.3 can directly
be lifted to the new definition of stair-scoring functions which ensures a
unique winner of a play. This is done in the following lemma.

Lemma 6.8. Let G = (V,E) be a pushdown graph with a coloring function
col : V → [n], for n ∈ N. For w ∈ V ∗, v ∈ V and c, c′ ∈ [n], if StairScc(wv) =

StairScc(w) + 1 and StairScc′(wv) = StairScc′(w) + 1, then c = c′.

We prove our main result, the equivalence between parity pushdown
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games and finite-time parity pushdown games in Section 6.3. To this end,
Walukiewicz’s reduction [Wal96] is needed.

6.2 Walukiewicz’s Reduction

In this section, we recall the technique for solving parity pushdown games
introduced in [Wal96] which comprises a reduction to parity games on finite
game graphs. We slightly modify the original construction which is necessary
for the proof of the main result in Section 6.3.

Consider a pushdown game G = (G(P), col) with a game graph G(P) =

(V, V0, V1, E, vin) induced by a PDS P = (Q,Γ,∆, qin) and a partitionQ0∪Q1

of the set of states Q and a parity condition col : Q → [n], for n ∈ N.
To simulate G by a game on a finite game graph the information stored
on the stack is encoded by some finite memory structure. The essential
component of this structure is the set Pred = (P(Q))n which we call the set
of predictions. A prediction P = (P0, . . . , Pn−1) ∈ Pred contains for every
color c ∈ [n] a subset Pc ⊆ Q of states.

The core idea of the game simulating the pushdown game is the following.
The players are assigned different tasks, one of them makes predictions and
the other one verifies them. Whenever a push-transition is to be simulated
the predicting player has to make a prediction P ∈ Pred about the future
round t when the same stack height as before performing the push-transition
is reached again for the first time if it is reached at all. With this prediction,
the predicting player claims that if the current push-transition is performed,
then in round t some state q ∈ Pc will be reached if c ∈ [n] is the minimal
color seen in between. Once a prediction P is proposed, the verifying player
has two ways of reacting, either believing that P is correct or not. In the
first case, he is not interested in verifying P , so the push-transition is not
performed and the verifying player chooses a color c ∈ [n] and a state q ∈ Pc,
for some Pc 6= ∅, and skips a part of the simulated play by jumping to an
appropriate position in the play. In the other case, he wants to verify the
correctness of P , so the push-transition is performed and when the top of
the stack is eventually popped it will turn out whether or not P is correct.
The predicting player wins if P turns out to be correct and otherwise the
verifying player wins. Thus, after a pop-transition the winner is certain. For
the case where no pop-transition is performed at all, the parity condition
determines the winner.

In the following, let Player i take the role of the predicting player and
Player 1 − i the role of the verifying one. The game G′i = (G′, col′) which
depends on i ∈ {0, 1}, with G′ = (V ′, V ′0 , V

′
1 , E

′, v′in) is defined as follows. For
all states q ∈ Q, stack symbols A,B ∈ Γ⊥, colors c, d ∈ [n] and predictions
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P,R ∈ Pred, the set V ′ contains the vertices

Check[q, A, P, c, d],

Push[P, c, q, AB],

Claim[P, c, q, AB,R],

Jump[q, A, P, c, d],

Wini[q],

Win1−i[q].

Vertices of the form Check[q, A, P, c, d] correspond to the configurations
of G, vertices Wini[q] and Win1−i[q] are sink vertices. All other vertices
are auxiliary vertices and serve as intermediates. Vertices Push[P, c, q, AB]

are used to signalize the intention to perform a push-transition, vertices
Claim[P, c, q, AB,R] are used to make new predictions and parts of a simu-
lated play are skipped via vertices Jump[q, A, P, c, d].

The set E′ consists of the following edges, where for the sake of readabil-
ity, we denote an edge (v1, v2) ∈ E′ by v1 → v2. For every skip-transition
δ = (q, A, p,B) ∈ ∆ there are edges

Check[q, A, P, c, d]→ Check[p,B, P,min{c, col(p)}, col(p)] ,

for P ∈ Pred and c, d ∈ [n]. Thus, the first two components of the Check-
vertices are updated according to δ, the prediction P remains untouched,
the last but one component is used to keep track of the minimal color for
being able to check the prediction for correctness and the last component
determines the color of the current Check-vertex. For every push-transition
δ = (q, A, p,BC) ∈ ∆ there are edges

Check[q,A, P, c, d]→ Push[P, c, p,BC] ,

for all P ∈ Pred and c, d ∈ [n]. Here, a player states that a push-transition is
to be performed such that the current state q has to be changed to p and the
top of the stack A has to be replaced by BC. The information containing
the current prediction P and the minimal color c is carried over, as this is
needed in the case where the verifying player decides to skip. Moreover, to
make a new prediction R, all edges

Push[P, c, p,BC]→ Claim[P, c, p,BC,R]

for every R ∈ Pred are needed. In case a new prediction is to be verified, a
push-transition is finally performed using edges of the form

Claim[P, c, p,BC,R]→ Check[p,B,R, col(p), col(p)]
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where the prediction P , the color c and the lower stack symbol C are dis-
carded since they are no longer needed. For the case where the verifying
player intends to skip a part of a play, all edges

Claim[P, c, p,BC,R]→ Jump[q, C, P, c, e]

with q ∈ Re are contained in E′. Here, the verifying player chooses a color
e ∈ [n] for the minimal color of the skipped part and a state q from the
corresponding component Re of the prediction R. Now, the lower stack
symbol C, the prediction P and the color c additionally have to be carried
over, whereas B and R are discarded. Then, all edges

Jump[q, C, P, c, e]→ Check[q, C, P,min{c, e, col(q)},min{e, col(q)}]

are contained in E′ where the last component of the Check-vertex is set to be
the minimum of the color of the current state q and the minimal color of the
part just skipped. For the last but one component, we also have to account
for the color c, which is necessary for eventually checking P for correctness.
Finally, we have for every pop-transition (q,A, p, ε) ∈ ∆, the edges

Check[q, A, P, c, d]→Wini[p] if p ∈ Pc , and
Check[q, A, P, c, d]→Win1−i[p] if p /∈ Pc ,

for P ∈ Pred and c, d ∈ [n], which lead to the sink vertex of the predicting
player Wini[p] if the prediction P turns out to be correct or to the sink vertex
of the verifying player Win1−i[p] otherwise. Moreover, the following edges
are contained in E′, for j ∈ {0, 1} and q ∈ Q,

Winj [q]→Winj [q].

The initial vertex v′in has to correspond to the initial configuration of the
parity pushdown game vin = (qin,⊥), hence, it is defined to be

v′in = Check[qin,⊥, P in, col(qin), col(qin)]

where prediction P in is such that P in
c = ∅ for every c ∈ [n], since the sym-

bol ⊥ cannot be deleted from the empty stack. The set of vertices V ′i of the
predicting Player i is defined to consist of all Push-vertices, as there Player i
has to make a new prediction, and of those Check[p,A, P, c, d] vertices where
p ∈ Qi. Accordingly, all other vertices belong to Player 1 − i. Finally, the
coloring function col′ : V ′ → [n+ 1] is defined as follows. For v ∈ V ′,

col′(v) =


d if v = Check[p,A, P, c, d],

j if v = Winj [q],

n otherwise,
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Notice, that auxiliary vertices are colored by the maximal color n which
does not appear in G, since they should have no influence on the minimal
color seen infinitely often. This is guaranteed by the structure of G′, as
there are no loops consisting only of auxiliary vertices. Moreover, notice
that in the original construction, Jump-vertices are colored by the minimal
color of the skipped part of the play which is chosen by the verifying player.
This is avoided here by shifting the color of a Jump-vertex to the successive
Check-vertex. For this purpose, the last component of the Check-vertices is
introduced.

Theorem 6.9 ([Wal96]). Let G be a parity pushdown game. For i ∈ {0, 1},
Player i wins G if and only if Player i wins G′i.

Now, we describe how a pushdown winning strategy σ for Player i in G
can be constructed from a positional winning strategy σ

′
i for Player i in G′i.

The idea is to simulate σ
′
i in G. As long as only skip- and push-transitions

are involved, the decisions made by σ
′
i can simply be transfered to σ. As

soon as the first pop-transition is used, σ′i leads to some sink Wini-vertex at
which the future moves of σ′i are no longer useful for playing in the original
game G. To overcome this, the pushdown strategy σ uses its stack to store
Claim-vertices visited during the simulated play. This allows to reset the
simulated play and to continue from the appropriate successor Jump-vertex
of the Claim-vertex stored on the stack.

Formally, let G′|σ′i = (V ′|σ′i , V
′

0 |σ′i , V
′

1 |σ′i , E
′|σ′i , v

′
in) be the game graph ob-

tained from G′i by restricting it to the vertices and edges visited by σ
′
i. Notice,

that this implies that every vertex from V ′i |σ′i has a unique successor in G′|σ′i
and that Win1−i-vertices are not contained in V ′i |σ′i . Furthermore, let

` : E′|σ′i → ∆ ∪ {ε}

be the labeling which assigns to every edge in E′|σ′i its corresponding tran-
sition δ ∈ ∆, i.e., for (v, v′) ∈ E′|σ′i ,

`(v, v′) =



(q, A, p,B) if v = Check[q, A, P, c, d] and
v′ = Check[p,B, P, c′, d′]

(q, A, p,BC) if v = Check[q, A, P, c, d] and
v′ = Push[P, c, p,BC]

(q, A, p, ε) if v = Check[q, A, P, c, d] and v′ = Wini[p]

ε otherwise.

We construct a deterministic pushdown transducer Tσ implementing the
pushdown strategy σ from σ

′
i by exploiting the game graph G′|σ′i for its finite
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6 Finite-Time Pushdown Games

control and the Claim-vertices as its stack symbols. Formally, the DPDT
implementing σ is defined by Tσ = (Qσ,Γσ,∆σ, qσin,Σ

σ

I ,Σ
σ

O, λ
σ) where

• Qσ = V ′|σ′i ,

• Γσ = {v ∈ V ′|σ′i | v is a Claim-vertex},

• qσin = v′in,

• Σσ

I = Σσ

O = ∆,

• for every (v, v′) ∈ E′|σ′i ,

– if v is not a Claim-vertex and v′ is not a Wini-vertex then

(v, Z, `(v, v′), v′, Z) ∈ ∆σ, for every Z ∈ Γσ

⊥ ,

– if v is a Claim-vertex and v′ is a Check-vertex, then

(v, Z, `(v, v′), v′, vZ) ∈ ∆σ, for every Z ∈ Γσ

⊥ ,

– if v = Check[q, A, P, c, d] and v′ = Wini[p], for q, p ∈ Q, A ∈ Γ,
P ∈ Pred and c, d ∈ [n], then

(v, Z, `(v, v′), Jump[p, C,R, e, c], ε) ∈ ∆σ,

for every Z = Claim[R, e, q′, BC,R′] ∈ Γσ.

• for Check-vertices v ∈ V ′|σ′i ,

λσ(v) = `(v, v′) where (v, v′) ∈ E′|σ′i .

Due to this construction, Tσ updates its states according to the tran-
sition structure of G′|σ′i as long as no Claim-vertices and Wini-vertices are
involved. As soon as a Claim-vertex v is reached, it is pushed onto the
stack while the state is updated to the successive Check-vertex v′ according
to the current transition `(v, v′) which is read. Moreover, each time some
Wini-vertex v′ = Wini[p] is reached from a vertex v = Check[q,A, P, c, d], the
topmost symbol Z = Claim[R, e, q′, BC,R′] is popped from the stack and the
pushdown transducer proceeds to the state Jump[p, C,R, e, c] which would
be reached in G′i|σ′i if Player 1 − i had chosen color c and state p ∈ Rc to
determine the successor of Claim[R, e, q′, BC,R′]. Furthermore, the corre-
sponding transition `(v, v′) of the edge (v, v′) chosen by σ

′
i determines the

output of Tσ.
The correctness of this construction emerges from Lemma 6.11 in the

following section, which establishes a connection between the values of the
scoring functions of the plays in G′i and the values of the stair-scoring func-
tions of the corresponding plays in G.
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6.3 Equivalence: Infinite-Time and Finite-Time

In this section, we prove the equivalence between parity pushdown games and
the corresponding finite-time parity pushdown games for a certain threshold
which is exponential in the size of the underlying pushdown system. For
any parity pushdown game G = (G(P), col) with the pushdown game graph
G(P) = (V, V0, V1, E, vin) induced by a PDS P = (Q,Γ,∆, qin) and a parity
condition col : Q→ [n], for n ∈ N, define kG by

kG = |Q| · |Γ| · 2|Q|·n · n.

Clearly, kG is an upper bound on the number of Check-vertices in G′i of the
same color. Furthermore, to simplify our notation, we define the function

lastStrictBump : {vin} · V ∗ → V +

as follows. For w ∈ V + with sh(last(w)) = 0, let

lastStrictBump(w) = w,

and for w(0) · · ·w(l) · · ·w(r) ∈ V + where l is the greatest position such that
sh(w(l)) < sh(w(r)), define

lastStrictBump(w) = w(l + 1) · · ·w(r).

Now, we can formulate our main theorem.

Theorem 6.10. Let G = (G, col) be a parity pushdown game and let Gk =

(G, col, k) be the corresponding finite-time parity pushdown game with thresh-
old value k. For every k > kG, Player i wins G if and only if Player i wins Gk.

To prove this theorem, we need the following lemma which establishes a
relation between the values of the scoring functions of the plays in G′i and the
values of the stair-scoring functions of the corresponding plays in G. Let σ

′
i

be a positional winning strategy for Player i in G′i and Tσ be the DPDT
implementing the corresponding pushdown winning strategy σ for Player i
in G as defined in the previous section.

Lemma 6.11. For every play prefix w in G consistent with σ, there is a play
prefix w′ in G′i that is consistent with σ

′
i such that StairScc(w) = Scc(w

′), for
every c ∈ [n].

Proof. We show the lemma by induction over |w|. To prove our claim, we
strengthen the induction hypothesis as follows. For every play prefix w in G
that is consistent with σ, there is a play prefix w′ in G′i|σ′i that is consistent
with σ

′
i by construction, such that the following requirements are satisfied,

let last(w) = (q, Aγ),
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6 Finite-Time Pushdown Games

(i) StairScc(w) = Scc(w
′), for every c ∈ [n].

(ii) last(w′) = Check[q,A, P, c, d], for some P ∈ Pred, d ∈ [n] and for
c = MinCol(lastStrictBump(w)).

(iii) Let (v, γσ) be the last configuration of the run of Tσ on the sequence
of transitions induced by w. Furthermore, if γσ 6= ⊥, let γσ(j) =

Claim[Pj , cj , pj , BjCj , Rj ] for every 0 ≤ j ≤ |γσ| − 2. We require

• v = last(w′),

• C0 · · ·Ck = γ where k = |γσ| − 2 and

• R0 = P .

For the induction start, we have w = vin = (qin,⊥). Define w′ by

w′ = v′in = Check[qin,⊥, P in, col(qin), col(qin)].

Since col(vin) = col′(v′in) = col(qin), we have StairScc(w) = Scc(w
′), for every

c ∈ [n]. Moreover, requirements (ii) and (iii) are satisfied as well.
Now, let w = w(0) · · ·w(r) with r > 0 and w(r−1) = (q, Aγ). Moreover,

let reset(w) = w(0) · · ·w(s) and w(s) = (qs, Asγs). The induction hypothesis
yields play prefixes u′ and u′s in G′i|σ′i such that by requirement (i) we have

StairScc(w(0) · · ·w(r − 1)) = Scc(u
′) and

StairScc(w(0) · · ·w(s)) = Scc(u
′
s),

for every c ∈ [n]. Also, for some P, Ps ∈ Pred and d, ds ∈ [n], by require-
ment (ii) we have

last(u′) = Check[q, A, P, c, d]

with c = MinCol(lastStrictBump(w(0) · · ·w(r − 1))) and

last(u′s) = Check[qs, As, Ps, cs, ds]

with cs = MinCol(lastStrictBump(w(0) · · ·w(s))).

We distinguish three cases, whether the transition from w(r − 1) to w(r) is
a skip-, push-, or pop-transition.

In case of a skip-transition δ = (q, A, p,B), we have w(r) = (p,Bγ). By
construction, there is also an edge from last(u′) = Check[q, A, P, c, d] to the
vertex

v = Check[p,B, P,min{c, col(p)}, col(p)]
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in G′i|σ′i labeled by `(last(u′), v) = δ. Thus, let w′ = u′v. This choice satisfies
requirement (ii), as for a skip-transition from w(r − 1) to w(r) it holds

MinCol(lastStrictBump(w))

= min{MinCol(lastStrictBump(w(0) · · ·w(r − 1))), col(w(r))}
= min{c, col(p)} .

Furthermore, requirement (iii) is satisfied since when processing δ, the push-
down transducer Tσ changes its state last(u′) to v while the stack is left
unchanged. To prove the equality of the scores, let e = col(w(r)), which is
also the color of v in G′i|σ′i . Then, we have

StairSce(w) = StairSce(w(0) · · ·w(r − 1)) + 1 = Sce(u
′) + 1 = Sce(w

′)

and for e′ < e,

StairSce′(w) = StairSce′(w(0) · · ·w(r − 1)) = Sce′(u
′) = Sce′(w

′).

Finally, for e′ > e, we have

StairSce′(w) = 0 = Sce′(w
′).

In case of a push-transition δ = (q,A, p,BC), we have w(r) = (p,BCγ).
Consider the finite path

u′′ = Push[P, c, p,BC] ·Claim[P, c, p,BC,R] ·Check[p,B,R, col(p), col(p)]

in G′i|σ′i where R is the prediction picked by σ
′
i. Notice that there is in-

deed an edge from last(u′) to Push[P, c, p,BC] in E′|σ′i . We claim that
w′ = u′u′′ has the desired properties. Requirement (ii) is satisfied, as
lastStrictBump(w) = w(r) in this case, and MinCol(w(r)) = col(p). Further-
more, Claim[P, c, p,BC,R] is pushed onto the stack of Tσ when processing δ.
Hence, requirement (iii) is satisfied.

The scores evolve as in the case of a skip-transition explained above
since in both cases we have lastBump(w) = w(r), and u′′ contains exactly
one vertex with color in [n], namely its last vertex, which has the same color
as w(r). The intermediate auxiliary vertices have color n and, therefore, do
not influence the scores we are interested in.

Finally, the case of a pop-transition is the most involved one since a play
in G′i|σ′i ends in a sink Wini-vertex, as soon as a pop-transition is simulated.
In this case, Tσ uses the top Claim-vertex stored on its stack to determine
the appropriate Check-vertex that allows to continue playing according to
σ
′
i. Suppose the transition is δ = (q, A, p, ε), i.e., we have w(r) = (p, γ).

Let δs = (qs, As, q
′, BC) be the push-transition of the PDS underlying G,
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6 Finite-Time Pushdown Games

which induces the edge (w(s), w(s + 1)) ∈ E. Note that Cγs = γ, since
the stack content Cγs remains untouched until δ is executed from w(r − 1)

to w(r). Hence, w(r) = (p, Cγs). By definition of σ, there is an edge from
last(u′) = Check[q, A, P, c, d] to Wini[p] in E′|σ′i such that p ∈ Pc.

Now, consider the run of Tσ on w. By construction, the transducer
pops the top Claim-vertex v from its stack while processing the transition δ.
We show that v = Claim[Ps, cs, q

′, BC, P ]. First, notice that v was pushed
onto the stack while processing the transition from w(s) to w(s+ 1), which
is induced by δs. Applying the induction hypothesis shows that the run
of Tσ on the sequence of transitions induced by w(0) · · ·w(s) ends in state
last(u′s) = Check[qs, As, Ps, cs, ds] with some stack content γσ ∈ (Γσ)+⊥ sat-
isfying the above requirements. Since now δs is to be processed, the run of
Tσ is continued as follows for some R ∈ Pred,

(last(u′s), γσ)
δs7− (Push[Ps, cs, q

′, BC], γσ)
ε7− (Claim[Ps, cs, q

′, BC,R], γσ)
ε7− (Check[q′, B,R, col(q′), col(q′)],Claim[Ps, cs, q

′, BC,R] · γσ)

It remains to show that R = P , which is done by applying the induction
hypothesis to the run of Tσ on transitions induced by w(0) · · ·w(r − 1).
The top symbol Claim[Ps, cs, q

′, BC,R], which is pushed on the stack while
processing (w(s), w(s + 1)), remains untouched until w(r − 1) is reached
and is again the top symbol after processing (w(r − 2), w(r − 1)). However,
since last(u′) = Check[q, A, P, c, d] is the state reached by Tσ after processing
w(0) · · ·w(r − 1) it follows from requirement (iii) that R = P .

Consider the following finite path u′′ = u′′(0) · · ·u′′(3) in G′i|σ′i with

u′′(0) = Push[Ps, cs, q
′, BC],

u′′(1) = v,

u′′(2) = Jump[p, C, Ps, cs, c], and
u′′(3) = Check[p, C, Ps,min{cs, c, col(p)},min{c, col(p)}].

Notice that there is an edge from last(u′s) to Push[Ps, cs, q
′, BC] in E′|σ′i .

So, we can show that w′ = u′su
′′ satisfies the above requirements. Require-

ment (ii) is satisfied, since

MinCol
(
lastStrictBump(w)

)
= min

{
MinCol

(
lastStrictBump(w(0) · · ·w(s))

)
,

MinCol
(
w(s+ 1) · · ·w(r − 1)

)
, col(w(r))

}
= min

{
cs,MinCol

(
lastStrictBump(w(0) · · ·w(r − 1))

)
, col(p)

}
= min

{
cs, c, col(p)

}
.
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Requirement (iii) is satisfied, since after processing δ by Tσ, the top stack
symbol v is popped from the stack and the state

Check[p, C, Ps,min{cs, c, col(p)},min{c, col(p)}]

is reached. By doing so, the same stack content is reestablished as after
the run of Tσ on reset(w). Hence, by applying the induction hypothesis,
we have C0 · · ·Ck = γs. Since we have γ = Cγs, this suffices. To show
requirement (i), let color e ∈ [n] be

e = MinCol(lastBump(w))

= min{MinCol(lastStrictBump(w(0) · · ·w(r − 1))), col(w(r))}
= min{c, col(p)} .

Notice that e is also the color of the vertex last(w′) in G′i|σ′i which is

last(w′) = Check[p, C,R,min{cs, c, col(p)},min{c, col(p)}].

Thus, StairSce(w) = StairSce(w(0) · · ·w(s)) + 1 = Sce(u
′
s) + 1 = Sce(w

′)

and for e′ < e StairSce′(w) = StairSce′(w(0) · · ·w(s)) = Sce′(u
′
s) = Sce′(w

′).
Finally, if e′ > e, StairSce′(w) = 0 = Sce′(w

′).

Now, the proof of the main Theorem 6.10 is straightforward.

Proof of Theorem 6.10. Assume that Player i wins G, then due to Theo-
rem 6.9 Player i also wins G′i. For every color c ∈ [n], there are at most kG
Check-vertices colored by c. Hence, by Remark 6.1 there is a positional win-
ning strategy σ

′
i in G′i for Player i such that for every color c ∈ [n] with

Par(c) = 1 − i, we have MaxScc(ρ
′) ≤ kG , for every play ρ′ which is con-

sistent with σ
′
i. From Lemma 6.11 it follows that the pushdown strategy σ

that is constructed from σ
′
i bounds the values of the stair-scoring functions

of Player 1− i by kG . Thus, for every play ρ which is consistent with σ and
every k > kG , there exists w @ ρ such that w is winning for Player i in Gk.
Hence, using the same strategy σ Player i wins every finite-time game Gk for
k > kG . The reverse direction follows by determinacy of parity games.

6.4 Lower Bounds

In the previous section, we proved the equivalence between parity pushdown
games and corresponding finite-time parity pushdown games with an ex-
ponential threshold. In this section, we present an almost matching lower
bound on the threshold value that always yields equivalent games. To this
end, we construct a parity pushdown game in which the winning player
is forced to produce a play prefix leading to a configuration of high stack
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height while only visiting states such that the stair-scoring functions of the
opponent increase. Thereby, the opponent is the first player to reach high
stair-scores, although he loses the play eventually.

Theorem 6.12. There are a family of pushdown games (G(Pn), coln) and
threshold values kn exponential in the cube root of the size of Pn such that
for every n > 0, Player O wins the pushdown game (G(Pn), coln), but for
every k ≤ kn, Player I wins the finite-time pushdown game (G(Pn), coln, k).

Proof. Let the i-th prime number be denoted by primi. For n > 0, define

kn =

n∏
i=1

primi

and let the PDS Pn = (Qn,Γ,∆n, qin) be defined by

• Qn = {qin, q2} ∪
⋃n
i=1Mi, where Mi = {qjprimi

| 0 ≤ j < primi},

• Γ = {A},

• ∆n consists of the following transitions

– (qin, X, qin, AX) and (qin, X, q2, AX), for every X ∈ {A,⊥},
– (q2, A, q

0
primi

, A) for every 1 ≤ i ≤ n,

– (qjprimi
, A, q`primi

, ε), where ` = (j + 1) mod primi, and

– (q,⊥, q,⊥), for every q ∈ Qn \ {qin}.

Furthermore, define the partition of the set Qn of states by (Qn)1 = {q2}
and (Qn)0 = Qn \ (Qn)1, i.e., Player I moves from configurations in state q2
and all other configurations belong to Player O. Moreover, let the coloring
function coln : Qn → {0, 1} be given by

coln(q) =

{
0 if q = q0

primi
, for 1 ≤ i ≤ n

1 otherwise,

for q ∈ Qn. For the threshold value, we have kn ≥ 2n, and the number
of states |Qn| can be bounded from above by O(n2 log(n)) [BS96]. Hence,
the threshold value kn is exponential in the cube root of the size of Pn.
The pushdown game (G2, col2) for the case n = 2 is depicted in Figure 6.4.
Double-lined vertices correspond to configurations colored by 0.

A play in the game (Gn, coln) proceeds as follows. Player O picks a
natural number x > 0 by moving the token to the configuration (q2, A

x⊥). If
he fails to do so by staying in qin ad infinitum, he loses since coln(qin) = 1. At
configuration (q2, A

x⊥), Player I picks a modulus primi ∈ {prim1, . . . , primn}
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Figure 6.4: Pushdown game (G2, col2)

by moving the token to (q0
primi

, Ax⊥). From this configuration, a single path
emanates, i.e., there is only one way to continue the play. Player O wins this
play if and only if x mod primi = 0. Hence, Player O has a winning strategy
for this game by moving the token to some non-zero multiple of kn. Thus,
the parity pushdown game (Gn, coln) is won by Player O, for every n > 0.

Now, let k ≤ kn. If Player O reaches (qin, A
k−1⊥), then he loses the

finite-time pushdown game (Gn, coln, k), since in this case we have

MaxStairSc1(w) = k and MaxStairSc0(w) = 0,

for the play prefix w produced by Player O. On the other hand, if Player O
moves the token to a configuration (q2, A

x⊥) for some x ≤ k− 1, then there
is a primi ∈ {prim1, . . . , primn} such that x mod primi 6= 0, as x < kn. Hence,
assume Player I moves the token to (q0

primi
, Ax⊥). Then, the play ends in

a self-loop at a configuration (qmprimi
,⊥) for some m 6= 0. The path w from

(qin,⊥) to (qmprimi
,⊥) via (q2, A

x) satisfies MaxStairSc0(w) ≤ x. Since qmprimi

is colored by 1, the stair-scoring function StairSc0 is never increased while
using the self-loop at (qmprimi

,⊥). Thus, his scores never reach the threshold
value k. Hence, Player I is the first to reach this threshold value since by
Lemma 6.7 there is some color that reaches the threshold value eventually.
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Thus, Player I wins (Gn, coln, k).

6.5 Summary of Results

We investigated finite-duration variants of infinite-duration games for the
case of parity pushdown games. It turned out that known results for games
on finite game graphs which establish equivalence between finite-time games
and the corresponding infinite-duration games don’t hold for the case of
infinite game graphs.

To overcome this problem and, nevertheless, to obtain an analogous con-
nection between infinite-duration games and corresponding finite-duration
games on pushdown graphs, we introduced a new finite-duration variant
for parity pushdown games. For this, the notions of scoring functions were
adapted to exploit the intrinsic structure of a pushdown game graph. Using
this new definitions of stair-scoring functions, we obtained a finite-duration
parity pushdown game that always has the same winner as the correspond-
ing parity pushdown game, if a play terminates as soon as some stair-scoring
function reaches a threshold value which is exponential in the size of the
underlying pushdown system. This result yields that the winner of a parity
pushdown game can be determined by solving a finite reachability game.

Furthermore, we established an almost matching lower bound on the
threshold values which constitute the termination condition for the plays of
finite-time pushdown games, which is exponential in the cube root of the
size of the underlying pushdown system.
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Chapter 7

Conclusion

The main object of investigation in this thesis are infinite games played
on pushdown graphs as well as Gale-Stewart games with contextfree win-
ning conditions. The study of such infinite-state games is motivated by
non-terminating reactive systems with non-regular system specifications, i.e.,
specifications over infinite memory structures. Considering pushdown games
in this context is the first step towards an effective theory of infinite-state
games. Let us summarize the main results of the work in this chapter and
point out some directions for further research.

7.1 Results

The main results of the thesis are the following.

• A tight connection between the formats of game specifications and cor-
responding winning strategies was established for a number of types of
pushdown games, among them, pushdown games played on pushdown
graphs and Gale-Stewart games defined by deterministic, deterministic
visibly, deterministic realtime, and deterministic one-counter machines
or automata, respectively, with parity and stair parity conditions. Fur-
thermore, we exhibited special cases of pushdown games where this cor-
respondence fails, namely those with deterministic visibly one-counter
winning conditions. Moreover, we showed that deterministic blind one-
counter strategies are not sufficient for solving pushdown games on
pushdown graphs of deterministic blind one-counter machines.

• Solving deterministic contextfree delay games was shown to be unde-
cidable, in general. Moreover, we gave a criterion which classifies sets
of delay functions for which it is decidable, given a deterministic con-
textfree winning condition, whether there is a delay function in the
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fixed set such that the player with lookahead wins the correspond-
ing delay game. Furthermore, a non-elementary lower bound on delay
functions was established, i.e., we showed that there is a deterministic
contextfree winning condition such that for some delay function the
player obtaining the lookahead wins the corresponding delay game,
however, for every elementary delay function, he loses the correspond-
ing delay game.

• The analysis of pushdown games in the context of distributed synthesis
problem resulted in a complete characterization of decidable architec-
tures for the class of specifications given by a list of local specifications,
one for each process, which may be regular or deterministic contextfree.
Moreover, for the case of global deterministic contextfree specifications,
undecidability was proved for all de facto distributed architectures, i.e.,
only architectures corresponding to the nondistributed setting and the
corner case where the environment doesn’t send information at all are
decidable for global deterministic contextfree specifications.

• A new finite-duration variant of pushdown games was introduced. We
proved equivalence between infinite-duration and finite-duration push-
down games with an exponential threshold value determining the ter-
mination condition of a play. This yields a new reduction method to
determine the winner of a pushdown game by solving a reachability
game over a finite graph. Moreover, we established a lower bound on
the threshold value, for which the equivalence holds, which is exponen-
tial in the cube root of the size of the underlying pushdown system.

7.2 Further Research

Let us mention some open questions and ideas for potential further research
in this section.

The results of Chapter 3 raise the question concerning abstract reasons
for the transfer of game specifications of certain types to corresponding win-
ning strategies of the same type. Can we find criteria which precisely separate
the classes of games played on pushdown graphs as well as contextfree Gale-
Stewart games where solvability with winning strategies of the same format
is guaranteed from those classes where winning strategies of the same for-
mat do not suffice? Incidentally, this question is open as well for regular
games. Moreover, there is one more specific open question concerning blind
one-counter games. We showed that deterministic blind one-counter strate-
gies are not sufficient for solving pushdown games on pushdown graphs of
deterministic blind one-counter machines (see Theorem 3.24). However, it is
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open, whether this result also holds for corresponding Gale-Stewart games.
Hence, are DB1CLω-games and StDB1CLω-games determined with DB1CL

winning strategies?
Our results from Chapter 4 on contextfree delay games were shown also

for restricted classes of deterministic contextfree winning conditions. Hence,
we showed that undecidability and lower bounds on delay also hold for win-
ning conditions recognized by deterministic visibly one-counter automata
with weak acceptance conditions. Since in the proofs of Theorem 4.4 and
Theorem 4.7, basically Player O is responsible for the behavior of the stack,
we can restrict the class of visibly winning conditions even more by parti-
tioning the alphabet ΣI × ΣO such that only the second component of a
letter determines the membership in Σpush, Σpop or Σskip, respectively. An
interesting question is, whether our results also hold if we consider the class
of visibly winning conditions where Player I controls the behavior of the
stack, i.e., the alphabet ΣI × ΣO is partitioned such that now only the first
component of a letter determines to which alphabet it belongs, Σpush, Σpop

or Σskip, respectively. The following example shows that linear lookahead is
necessary for this case.

Example 7.1. Let ΣI = {a, b}, ΣO = {0, 1}. Furthermore, let Σpush =

{a}×ΣO and Σpop = {b}×ΣO. Notice, that the first component of a letter
from Σ = ΣI × ΣO determines to which alphabet it belongs. Consider the
following winning condition L over Σ. A word w = α_β ∈ Σω is contained
in L if

• α(0) = b, or

• |prefn(α)|a > |prefn(α)|b, for all n > 0, or

• for the minimal n > 0 with |prefn(α)|a = |prefn(α)|b we have β(m) = 1

and β(m′) = 0 for all m′ < m, where m < n is the maximal position
such that α(m) = a.

This means that in order to violate L Player I has to start with symbol a and
eventually produce a prefix containing the same number of a’s as b’s, i.e., a
configuration with empty stack is eventually reached. The task of Player O
is to indicate the last position where Player I has produced a b before the
stack is empty for the first time. 3

Clearly, Player O wins Γf (L) with the linear-delay function f(n) = 2,
for n ∈ N. This is due to the fact that the stack height is bounded by k
after processing k letters. Hence, Player I can play at most k returns before
the stack is empty. However, obviously for every bounded-delay function
Player I has a winning strategy in the corresponding delay game. It would
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be interesting to figure out whether linear delay is always sufficient for this
restricted class of visibly winning conditions, where Player I controls the
behavior of the stack, as well as whether the winner of such a game can be
determined effectively.

In Chapter 6 we showed the equivalence between parity pushdown games
and corresponding finite-time parity pushdown games for an exponential
threshold value. Since every threshold value k ∈ N is eventually reached by
some stair-scoring function if the play prefix is sufficiently long, according
to Lemma 6.7, Player O wins if he manages to prevent his opponent from
reaching an exponential stair-score which yields a safety game. An essen-
tial question is, whether and how a winning strategy of a finite-time parity
pushdown game or a winning strategy of the corresponding safety game can
be turned into a winning strategy for the original parity pushdown game. In
a recent publication such results were established for Muller games on finite
game graphs [NRZ12].

148



Bibliography

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages.
In László Babai, editor, STOC, pages 202–211. ACM, 2004.

[BJW02] Julien Bernet, David Janin, and Igor Walukiewicz. Permissive
strategies: from parity games to safety games. ITA, 36(3):261–
275, 2002.

[BL69] Julius R. Büchi and Lawrence H. Landweber. Solving sequential
conditions by finite-state strategies. Transactions of the American
Mathematical Society, 138:295–311, April 1969.

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, Vol.1:
Efficient Algorithms. MIT, Cambridge MA, 1996.

[Büc60] Julius R. Büchi. Weak second-order arithmetic and finite au-
tomata. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 6:66–92, 1960.

[Cac01] Thierry Cachat. Two-way tree automata solving pushdown
games. In Grädel et al. [GTW02], pages 303–317.

[CB71] Rina S. Cohen and Janusz A. Brzozowski. Dot-depth of star-free
events. J. Comput. Syst. Sci., 5(1):1–16, 1971.

[CDT02] Thierry Cachat, Jacques Duparc, and Wolfgang Thomas. Solv-
ing pushdown games with a Σ3 winning condition. In Julian C.
Bradfield, editor, CSL, volume 2471 of Lecture Notes in Computer
Science, pages 322–336. Springer, 2002.

[CG77a] Rina S. Cohen and Arie Y. Gold. Theory of omega-languages I.
characterizations of omega-context-free languages. J. Comput.
Syst. Sci., 15(2):169–184, 1977.

[CG77b] Rina S. Cohen and Arie Y. Gold. Theory of omega-languages II.
a study of various models of omega-type generation and recogni-
tion. J. Comput. Syst. Sci., 15(2):185–208, 1977.

149



Bibliography

[CG78] Rina S. Cohen and Arie Y. Gold. Omega-computations on deter-
ministic pushdown machines. J. Comput. Syst. Sci., 16(3):275–
300, 1978.

[Chu57] Alonzo Church. Application of recursive arithmetic to the prob-
lem of circuit synthesis. In Summaries of the Summer Institute of
Symbolic Logic, volume 1, pages 3–50. Cornell University, 1957.

[Chu63] Alonzo Church. Logic, arithmetic and automata. In Proceed-
ings of the International Congress of Mathematicians 1962 (Djur-
sholm, Sweden), pages 23–35. Institut Mittag-Leffler, 1963.

[CJH04] Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Hen-
zinger. Quantitative stochastic parity games. In J. Ian Munro,
editor, SODA, pages 121–130. SIAM, 2004.

[COT11] Namit Chaturvedi, Jörg Olschewski, and Wolfgang Thomas. Lan-
guages vs. ω-languages in regular infinite games. In Giancarlo
Mauri and Alberto Leporati, editors, Developments in Language
Theory, volume 6795 of Lecture Notes in Computer Science, pages
180–191. Springer, 2011.

[Dic13] Leonard E. Dickson. Finiteness of the odd perfect and primitive
abundant numbers with n distinct prime factors. Amer. J. Math.,
35:413–422, 1913.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching time
temporal logic to synthesize synchronization skeletons. Sci. Com-
put. Program., 2(3):241–266, 1982.

[EJ88] E. Allen Emerson and Charanjit S. Jutla. The complexity of
tree automata and logics of programs. In Proceedings of the 29th
Annual Symposium on Foundations of Computer Science, FOCS,
pages 328–337. IEEE Computer Society, 1988.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-
calculus and determinacy (extended abstract). In FOCS, pages
368–377. IEEE Computer Society, 1991.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design and
related arithmetics. Trans. Amer. Math. Soc., 98:21–52, 1961.

[Fin01] Olivier Finkel. Topological properties of omega context-free lan-
guages. Theor. Comput. Sci., 262(1):669–697, 2001.

[Fin05] Olivier Finkel. On winning conditions of high borel complexity
in pushdown games. Fundam. Inform., 66(3):277–298, 2005.

150



Bibliography

[FLZ11] Wladimir Fridman, Christof Löding, and Martin Zimmermann.
Degrees of lookahead in context-free infinite games. In Marc
Bezem, editor, CSL, volume 12 of LIPIcs, pages 264–276. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[FP11] Wladimir Fridman and Bernd Puchala. Distributed synthesis
for regular and contextfree specifications. In Filip Murlak and
Piotr Sankowski, editors, MFCS, volume 6907 of Lecture Notes
in Computer Science, pages 532–543. Springer, 2011.

[Fri10] Wladimir Fridman. Formats of winning strategies for six types of
pushdown games. In Montanari et al. [MNP10], pages 132–145.

[FS05] Bernd Finkbeiner and Sven Schewe. Uniform distributed synthe-
sis. In LICS, pages 321–330. IEEE Computer Society, 2005.

[FZ10] John Fearnley and Martin Zimmermann. Playing muller games
in a hurry. In Montanari et al. [MNP10], pages 146–161.

[FZ12] Wladimir Fridman and Martin Zimmermann. Playing Pushdown
Parity Games in a Hurry. In Marco Faella and Aniello Mu-
rano, editors, Proceedings of the Third International Symposium
on Games, Automata, Logic, and Formal Verification, volume 96
of EPTCScience, pages 183–196, 2012.

[GG66] Seymour Ginsburg and Sheila A. Greibach. Deterministic context
free languages. Information and Control, 9(6):620–648, 1966.

[GS53] David Gale and Frank M. Stewart. Infinite games with perfect
information. In H. W. Kuhn and A. W. Tucker, editors, Con-
tributions to the theory of games, vol. 2, Annals of Mathematics
Studies, vol. 28, pages 245–266. Princeton University Press, 1953.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors.
Automata, Logics, and Infinite Games: A Guide to Current Re-
search [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002.

[HKT10] Michael Holtmann, Łukasz Kaiser, and Wolfgang Thomas. De-
grees of lookahead in regular infinite games. In C.-H. Luke Ong,
editor, FOSSACS, volume 6014 of Lecture Notes in Computer
Science, pages 252–266. Springer, 2010.

[HL72] Frederick A. Hosch and Lawrence H. Landweber. Finite delay
solutions for sequential conditions. In Maurice Nivat, editor,
ICALP, pages 45–60. North-Holland, Amsterdam, 1972.

151



Bibliography

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor.
Comput. Sci., 27:333–354, 1983.

[KPV02] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Pushdown
specifications. In Matthias Baaz and Andrei Voronkov, editors,
LPAR, volume 2514 of Lecture Notes in Computer Science, pages
262–277. Springer, 2002.

[KV97] Orna Kupferman and Moshe Y. Vardi. Synthesis with incomplete
information. In Proceedings of the 2nd International Conference
on Temporal Logic (ICTL 97), pages 91–106, Manchester, UK,
1997.

[KV99] Orna Kupferman and Moshe Y. Vardi. Church’s problem revis-
ited. Bulletin of Symbolic Logic, 5(2):245–263, 1999.

[KV00a] Orna Kupferman and Moshe Y. Vardi. An automata-theoretic
approach to reasoning about infinite-state systems. In E. Allen
Emerson and A. Prasad Sistla, editors, CAV, volume 1855 of
Lecture Notes in Computer Science, pages 36–52. Springer, 2000.

[KV00b] Orna Kupferman and Moshe Y. Vardi. µ-calculus synthesis.
In Mogens Nielsen and Branislav Rovan, editors, MFCS, vol-
ume 1893 of Lecture Notes in Computer Science, pages 497–507.
Springer, 2000.

[KV01] Orna Kupferman and Moshe Y. Vardi. Synthesizing distributed
systems. In LICS, pages 389–398. IEEE Computer Society, 2001.

[LMS04] Christof Löding, P. Madhusudan, and Olivier Serre. Visibly push-
down games. In Kamal Lodaya and Meena Mahajan, editors,
FSTTCS, volume 3328 of Lecture Notes in Computer Science,
pages 408–420. Springer, 2004.

[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics,
102(2):363–371, September 1975.

[McN65] Robert McNaughton. Finite-state infinite games. Project MAC
Rep., Massachusetts Institute of Technology, Cambridge, Septem-
ber 1965.

[McN93] Robert McNaughton. Infinite games played on finite graphs. Ann.
Pure Appl. Logic, 65(2):149–184, 1993.

[McN00] Robert McNaughton. Playing infinite games in finite time. In
Arto Salomaa, Derick Wood, and Sheng Yu, editors, A Half-
Century of Automata Theory, pages 73–91. World Scientific, 2000.

152



Bibliography

[MNP10] Angelo Montanari, Margherita Napoli, and Mimmo Parente, ed-
itors. Proceedings First Symposium on Games, Automata, Logic,
and Formal Verification, volume 25 of EPTCS, 2010.

[Mos91] Andrzej W. Mostowski. Games with forbidden positions. Tech-
nical Report 78, University of Gdansk, 1991.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree
automata by nondeterministic automata: New results and new
proofs of the theorems of rabin, mcnaughton and safra. Theor.
Comput. Sci., 141(1&2):69–107, 1995.

[MT01] P. Madhusudan and P. S. Thiagarajan. Distributed controller
synthesis for local specifications. In Fernando Orejas, Paul G.
Spirakis, and Jan van Leeuwen, editors, ICALP, volume 2076
of Lecture Notes in Computer Science, pages 396–407. Springer,
2001.

[MW81] Zohar Manna and Pierre Wolper. Synthesis of communicating
processes from temporal logic specifications. In Dexter Kozen,
editor, Logic of Programs, volume 131 of Lecture Notes in Com-
puter Science, pages 253–281. Springer, 1981.

[MW03] Swarup Mohalik and Igor Walukiewicz. Distributed games.
In Paritosh K. Pandya and Jaikumar Radhakrishnan, editors,
FSTTCS, volume 2914 of Lecture Notes in Computer Science,
pages 338–351. Springer, 2003.

[NRZ12] D. Neider, R. Rabinovich, and M. Zimmermann. Down the Borel
Hierarchy: Solving Muller Games via Safety Games. In M. Faella
and A. Murano, editors, Proceedings of the Third International
Symposium on Games, Automata, Logic, and Formal Verifica-
tion, GandALF 2012, volume 96 of Electronic Proceedings in The-
oretical Computer Science, pages 169–182, 2012.

[Pos46] E. L. Post. A variant of a recursively unsolvable problem. Bul-
letion of the American Mathematical Society, 52:264–268, 1946.

[PR79] Gary L. Peterson and John H. Reif. Multiple-person alternation.
In FOCS, pages 348–363. IEEE Computer Society, 1979.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive
module. In POPL, pages 179–190. ACM Press, 1989.

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are
hard to synthesize. In FOCS, pages 746–757. IEEE Computer
Society, 1990.

153



Bibliography

[RT07] Alexander Rabinovich and Wolfgang Thomas. Logical refine-
ments of church’s problem. In Jacques Duparc and Thomas A.
Henzinger, editors, CSL, volume 4646 of Lecture Notes in Com-
puter Science, pages 69–83. Springer, 2007.

[Sch08] Sven Schewe. Synthesis of Distributed Systems. PhD thesis, Saar-
land University, 2008.

[Sel07] Victor L. Selivanov. Fine hierarchy of regular aperiodic omega
-languages. In Tero Harju, Juhani Karhumäki, and Arto Lepistö,
editors, Developments in Language Theory, volume 4588 of Lec-
ture Notes in Computer Science, pages 399–410. Springer, 2007.

[Sel08] Victor L. Selivanov. Fine hierarchy of regular aperiodic omega-
languages. Int. J. Found. Comput. Sci., 19(3):649–675, 2008.

[Ser04] Olivier Serre. Games with winning conditions of high borel com-
plexity. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and
Donald Sannella, editors, ICALP, volume 3142 of Lecture Notes
in Computer Science, pages 1150–1162. Springer, 2004.

[SS63] John C. Shepherdson and Howard E. Sturgis. Computability of
recursive functions. J. ACM, 10(2):217–255, 1963.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in infinite
games. In Proceedings of the 12th Symposium on Theoretical As-
pects of Computer Science (STACS’95), volume 900 of Lecture
Notes in Computer Science, pages 1–13. Springer-Verlag, 1995.

[Tho97] Wolfgang Thomas. Languages, automata, and logic. In Grze-
gorz Rozenberg and Arto Salomaa, editors, Handbook of formal
languages, volume Vol. 3, pages 389–455. Springer, 1997.

[Tra61] Boris A. Trakhtenbrot. Koneqnye avtomaty i logika odnomest-

nyh predikatov (Finite automata and the logic of monadic pred-
icates). Doklady akademii Nauk SSSR (Proceedings of the
USSR Academy of Sciences), 140:326–329, 1961.

[Var98] Moshe Y. Vardi. Reasoning about the past with two-way au-
tomata. In Kim Guldstrand Larsen, Sven Skyum, and Glynn
Winskel, editors, ICALP, volume 1443 of Lecture Notes in Com-
puter Science, pages 628–641. Springer, 1998.

[Wal96] Igor Walukiewicz. Pushdown processes: Games and model check-
ing. In Rajeev Alur and Thomas A. Henzinger, editors, CAV,

154



Bibliography

volume 1102 of Lecture Notes in Computer Science, pages 62–74.
Springer, 1996.

[Wal01] Igor Walukiewicz. Pushdown processes: Games and model-
checking. Inf. Comput., 164(2):234–263, 2001.

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with
applications to automata on infinite trees. Theor. Comput. Sci.,
200(1-2):135–183, 1998.

[Zie04] Wieslaw Zielonka. Perfect-information stochastic parity games.
In Igor Walukiewicz, editor, FoSSaCS, volume 2987 of Lecture
Notes in Computer Science, pages 499–513. Springer, 2004.

[Zim12] Martin Zimmermann. Solving Infinite Games with Bounds. PhD
thesis, RWTH Aachen University, 2012.

155




	1 Introduction
	1.1 Contribution
	1.2 Organization of the thesis

	2 Preliminaries
	2.1 Basic Definitions
	2.2 Automata
	2.2.1 Finite Automata
	2.2.2 Pushdown Systems, Pushdown Automata
	2.2.3 Trees and Tree Automata

	2.3 Infinite Games
	2.3.1 Gale-Stewart Games
	2.3.2 Games on Graphs
	2.3.3 Game Reduction, Game Simulation


	3 Pushdown Games and Pushdown Winning Strategies
	3.1 Classes of Contextfree Languages
	3.2 Formats of Winning Conditions and Winning Strategies
	3.2.1 Solving Pushdown Games using A2TA
	3.2.2 Proof of Theorems

	3.3 Summary of Results

	4 Pushdown Delay Games
	4.1 Games with Delay
	4.2 Decision Problems
	4.3 Lower Bounds on Delays
	4.4 Summary of Results

	5 Distributed Synthesis with Pushdown Specifications
	5.1 Preliminaries
	5.2 Architectures
	5.3 Global Specifications
	5.4 Local Specifications
	5.4.1 Decidable Cases
	5.4.2 Undecidable Cases

	5.5 Characterization
	5.6 Summary of Results

	6 Finite-Time Pushdown Games
	6.1 Finite-Time Games
	6.2 Walukiewicz's Reduction
	6.3 Equivalence: Infinite-Time and Finite-Time
	6.4 Lower Bounds
	6.5 Summary of Results

	7 Conclusion
	7.1 Results
	7.2 Further Research

	Bibliography

