
Universität des Saarlandes
Naturwissenschaftlich-Technische Fakultät 1

Fachrichtung Informatik
Bachelor-Studiengang Informatik

Bachelor’s Thesis

Minimization of Tree Automata

submitted by

Thomas von Bomhard

on 11.09.2008

Supervisor

Prof. Dr. Bernd Finkbeiner

Advisor

Dr. Sven Schewe

Author: Thomas von Bomhard

1st Reviewer: Prof. Dr. Bernd Finkbeiner

2nd Reviewer: Dr. Sven Schewe

Statement

Hereby I confirm that this thesis is my own work and that I have documented
all sources used.

Saarbrücken, 11.09.2008

Declaration of Consent

Herewith I agree that my thesis will be made available through the library of
the Computer Science Department.

Saarbrücken, 11.09.2008

3

Abstract

Many verification and synthesis processes are based on finite automata on infi-
nite inputs. It is therefore important to develop techniques that minimize the
considered automata as far as possible.

For Büchi word automata, there are established minimization techniques
such as deletion of nonproductive states and simulation-based quotienting. This
thesis transfers these techniques to alternating Büchi tree automata.

We adapt three different types of simulation relations to alternating Büchi
tree automata and study which of them are useful for minimization. Further-
more, we evaluate the developed techniques on a prototype.

4

Contents

1 Introduction 6

2 Preliminaries 7
2.1 Words and Trees . 7
2.2 Büchi Automata . 8
2.3 From ABTA to NBTA . 9
2.4 Parity Games . 10

3 Minimization of Büchi Tree Automata by Removing Trivial
States 12
3.1 Acceptance Game . 12
3.2 Pseudo Emptiness Game . 14

3.2.1 Correctness of the Pseudo Emptiness Game for ABTA . . 15
3.2.2 Incompleteness of the Pseudo Emptiness Game for ABWA 15
3.2.3 Completeness of the Pseudo Emptiness Game for NBTA . 16

3.3 Pseudo Universality Game . 16
3.3.1 Correctness of the Pseudo Universality Game for ABTA . 17
3.3.2 Incompleteness of the Pseudo Universality Game for NBWA 18

3.4 Solving the Pseudo Emptiness and Pseudo Universality Game . . 18

4 Minimization of Büchi Tree Automata by Simulation-Based
Quotienting 20
4.1 Direct, Delayed, and Fair Simulation Game 20

4.1.1 Description of the Simulation Games 20
4.1.2 Definition of the Simulation Games 21

4.2 Simulation Relations . 24
4.2.1 Basic Properties . 25
4.2.2 Simulation Relations guarantee language containment . . 27

4.3 State Space Minimization by Quotienting 28
4.3.1 Direct and Delayed Quotienting are language preserving . 30

4.4 Solving Simulation Games . 31

5 Evaluation of the Minimization Techniques 33
5.1 Prototypical Implementation . 33
5.2 Experiments . 34
5.3 Results . 35

5.3.1 Experiments of Type 1 . 35
5.3.2 Experiments of Type 2 . 36

6 Summary and Conclusions 37

5

1 Introduction

A big challenge in computer science is the construction of provably correct
systems, this means to ensure that a system behaves as it is intended to do.
There are essentially two approaches:

• Verification: Check if the implementation satisfies logical properties.

• Synthesis: Derive correct-by-construction implementations from logical
specifications.

Consequently, verification and synthesis problems are logical decision problems.
Temporal logics are widely used languages for specifying programs. There

are two variations of temporal logics, linear and branching [18]. In linear-time
temporal logics (LTL), a point of time has a unique possible future, whereas in
branching-time temporal logics (CTL), a point of time may split in to several
possible futures.

In the early sixties, Büchi introduced finite automata on infinite words
(Büchi automata) [2, 3], and in the late sixties, Rabin introduced finite automata
on infinite trees [23]. They are important tools for program verification, because
decision problems of temporal logics can be reduced to automata-theoretic prob-
lems. Furthermore, these automata are also important for modeling the non-
terminating behavior of reactive systems.

A prominent example that shows the use of Büchi automata, is the approach
of Wolper and Vardi [26]: A linear temporal formula φ that specifies some un-
desired property of the system, is translated to a Büchi automaton Aφ. The
accepted words of Aφ represent executions, in which the undesirable property
holds. Then the reactive system is interpreted as a Büchi automaton AM . Fi-
nally, the intersection automaton of AM and Aφ determines whether there exists
executions that exhibit the undesired property. Many LTL - model checkers,
such as SPIN [15], follow this approach.

For branching-time temporal logics, the corresponding automata-theoretic
formalism is the theory of tree automata. The automata-theoretic approach to
model checking for branching-time logics is described in [17].

From a practical perspective, it is important that the considered automata
are as small as possible. Unfortunately, computing for a given Büchi automa-
ton a minimal lanugage equivalent Büchi automaton is PSPACE-hard, hence
heuristic methods are applied. A frequently used minimization technique is
state-space reduction via simulation relations [20]. The main idea is to identify
states where one state can be simulated by another state or in other words all
moves from one state can be mimicked by another state.

Simulation relations guarantee language containment. This means all words
accepted from one state are also accepted by the state that simulates it. As a
consequence, if several states mutually simulate each other, they are language
equivalent. Then it may be possible to merge them together in a single state such
that the language of the automaton is preserved. This is called minimization
by quotienting. It is done for nondeterministic Büchi word automata (NBWA)

6

in [11]. There is previous work on simulation relations for NBWA in [24, 10,
14]. Moreover, minimization by simulation-based quotienting is also done for
alternating Büchi word automata (ABWA), see [12].

This thesis presents minimization techniques for alternating Büchi tree au-
tomata (ABTA).

Chapter 2 considers conservative but cheap tests for detecting empty and
universal states of tree automata. A state is empty or universal, if the automaton
starting from the state accepts no or all input trees, respectively. Such states
can be eliminated without changing the language of the automaton.

In Chapter 3, we follow the approaches of [12, 11] and adapt the simulation
relations to alternating Büchi tree automata. We focus on three types of simula-
tion relations, namely direct [7], delayed [11] and fair simulation [14]. We show
that all types of simulation guarantee language containment. Furthermore, we
demonstrate that direct and delayed simulation can be used for minimization
by quotienting. Also, we show that computing the simulations can be done fast
and efficiently.

We have implemented a prototype for benchmarking the minimization tech-
niques. We apply them on randomly generated ABTA and consider the mini-
mization profit of each technique.

2 Preliminaries

In the following we introduce the basic definitions and notations of Büchi word
automata, Büchi tree automata, an ABTA to NBTA translation and parity
games.

2.1 Words and Trees

For a given nonempty finite alphabet Σ, a finite word w is a finite sequence of
letters of Σ, formally speaking w ∈ Σ∗. An infinite word w′ is an element of Σω.

Let Nk be the set {0, 1, 2 . . . k − 1}. A k-tree is a prefix-closed set of finite
sequences of elements of Nk. More formally, it is a subset T of (Nk)∗ such that

• the empty sequence ε is the root node of T

• if a node x0x1 . . . xn−1 is in T
then the nodes x0x1 . . . xm−1 for all m < n, are also in T

A k-tree where each node has exactly k child nodes is a full k-tree. A subtree
of T with x as root node is T x = {x · y | y ∈ T}. The tree of depth l ∈ N of
T is Tl = {x | x ∈ T and depth(x) ≤ l} where depth(x) is the number of edges
from x to the root.

A path π = x0, x1, . . . of a tree T is a maximal sequence of nodes such that
x0 is the root and xi is the parent of xi+1 for all i > 0.

We will use trees where the nodes are labeled with a symbol of an alphabet.
A Σ-labeled tree, for a finite alphabet Σ, is a pair (T, v), where T is a tree and

7

v a mapping v : T → Σ. We often refer to v as the labeled tree, leaving its
domain implicit. We denote the set of all Σ-labeled trees TΣ.

We use the mapping v also for paths of T , so for a path π = x0, x1, . . . we
get an Σ-labeled path by v(π) = v(x0), v(x1), . . . which is the word along the
path π.

2.2 Büchi Automata

In the following, we give the definition and notation for alternating Büchi
tree automata (ABTA). Then we define nondeterministic Büchi tree automata
(NBTA), alternating Büchi word automata (ABWA) and nondeterministic Büchi
word automata (NBWA) as special cases of ABTA.

We follow the formalism of [25] which goes back to [5]. Let X be a set. Let
B+(X) be the set of all positive boolean formulas over X, which are formulas
built from elements of X using the operators ∧ and ∨. We also allow the for-
mulas true and false. Let Z ⊆ X. We say that Z satisfies a formula θ ∈ B+(X)
if the truth assignment that assigns true to the members of Z and assigns false
to the members of X\Z satisfies θ. Moreover, Z minimal satisfies θ if it satisfies
θ and all strict subsets of Z does not satisfy θ. We denote by mss(θ) the set of
all minimal satisfying sets of θ.

An alternating Büchi tree automaton on infinite k-trees (ABTA) is a tuple.

A = (Σ, Q, qI , δ, F)

where Σ denotes a finite alphabet, Q denotes a finite set of states, qI ∈ Q denotes
a designated initial state, δ denotes the total transition function and F ⊆ Q is
the set of accepting states. The transition function δ : Q × Σ → B+(Nk × Q)
maps a state and an input letter to a positive boolean combination of pairs of
directions and states.

A run of A on a Σ-labeled full k-tree (T, v) is a ((Nk)∗ ×Q)-labeled k′-tree
(T ′, r). Each node of r corresponds to a node in v. A node (x, q) describes that
the automaton is in state q and reads the node x of v. A run tree has to satisfy
following properties:

1. r(ε) = (ε, qI)

8

2. Let (x, q) = r(y) and θ = δ(q, v(x)). Then there is a set
Z = {(c0, q0), (c1, q1), . . . , (cn, qn)} ⊆ Nk ×Q such that

• Z satisfies θ, and

• for all 0 ≤ i ≤ n, we have r(y · i) = (x · ci, qi).

A run is accepting if there exist infinitely many accepting states on each
path. Formally, the infinity set of a path of a run is the set:

inf(r|π) = {q ∈ Q | r(x) = (nx, q) for infinitely many x ∈ π}

A run (T ′, r) is accepting if for all paths π of T ′, inf (r|π) ∩ F 6= ∅ holds true.
An automaton A accepts a tree v if there exists an accepting run of A on v.
The set of input trees accepted by A is called its language L(A).

A nondeterministic automaton is a special alternating automaton, where the
image of δ consists only of such formulas that, when rewritten in disjunctive
normal form, contain exactly one element of Q × {d} for all d ∈ Nk in ev-
ery disjunct. An automaton on infinite words is a tree automaton on infinite
1-trees.

For convenience, we denote by Aq the ABTA A with q as initial state. For
simplicity of the definition of the games on ABTA, we assume that an ABTA
has two distinct states qT and qF that simulate true and false, respectively.
Precisely, qT is an accepting state and δ(qT , a) = (0, qT) ∧ · · · ∧ (k − 1, qT)
for all a ∈ Σ. Symmetrically, qF is an non-accepting state and δ(qF , a) :=
(0, qF)∧ · · ·∧ (k−1, qF) for all a ∈ Σ. So, a formula δ(q, a) = true of the ABTA
will be rewritten as δ(q, a) = (0, qT) ∧ · · · ∧ (k − 1, qT). Analogously for false.

2.3 From ABTA to NBTA

In the following, we briefly describe a construction for converting an alternating
Büchi tree automaton to a nondeterministic Büchi tree automaton. The con-
struction is the straightforward extension of the Miyano-Hayashi construction
[21], which translates an ABWA to a NBWA, to tree automata.

It is a subset construction modified for de-universalization instead of de-
terminization. The states are pairs (S,R) of subsets of the state set Q. The
first component is used as in normal subset constructions that is, if there is
a state q in S with δ(q, a) = (0, q0) ∧ (0, q1) ∧ (1, q2), and δ′((S,R), a) =
(0, (S0, R0)) ∧ (1, (S1, R1)), then q0, q1 ∈ S0 and q2 ∈ S1. The second com-
ponent is for bookmarking the run tree branches with an obligation to reach
an accepting state. A state is removed from the second component as soon as
its run tree branch reaches an accepting state. A state (S,R) with R = ∅ is an
accepting state and if (S′, R′) is an successor state of (S,R), then R′ = S′\F .

For an ABTA A = (Q,Σ, qI , δ, F) on infinite k-tree, the automaton resulting
by the MH-Construction is the NBTA A′ = (Q′,Σ′, q′I , δ

′, F ′) on infinite k-tree

9

with

Q′ ⊆ 2Q × 2Q

Σ′ = Σ
q′I = ({qI}, {qI | qI /∈ F})

We define a function Υi that maps a satisfying set of a formula to the set of
states with direction i. More formally Υi maps a set Z of Nk × Q to the set
{q | (d, q) ∈ Z ∧ d = i} of Q.

For S,R ⊆ Q, a ∈ Σ, φS =
∧
q∈S δ(q, a) and φR =

∧
q∈R δ(q, a) we define the

transition function δ′ as follows:

If R 6= ∅ :

δ′((S,R), a) =
∨

Z ∈ mss(φS), Z′∈ mss(φR), Z′⊆Z

(
∧

0≤i<k

(i, (Υi(Z),Υi(Z ′)\F)))

If R = ∅ :

δ′((S,R), a) =
∨

Z∈mss(φS)

(
∧

0≤i<k

(i, (Υi(Z),Υi(Z)\F)))

F ′ = 2Q × {∅}

Note that the NBTA A′ has O(2n) states, where n is the number of states of
the ABTA A.

2.4 Parity Games

A parity game G = (Vodd, Veven, E, c) consists of a finite directed game graph
(Vodd ∪ Veven, E), whose sets of vertices Vodd and Veven are the positions of the
players odd and even, respectively. Vodd and Veven are disjoint sets and we
denote as V the union of Vodd and Veven. E ⊆ V × V is the edge relation which
is also called move relation. The coloring function c : V → 0, 1, . . . k maps each
game position v ∈ V to an integer c(v) which we call a color.

Plays: Intuitively, a parity game is played by placing a token on a vertex
v ∈ V . If v is a position of odd, then odd chooses an edge (v, v′) ∈ E and moves
the token to position v′. Symmetrically, if v is a position of even, then even
chooses an edge (v, v′) ∈ E and moves the token to position v′. This is repeated
either infinitely often or finitely, if some player can’t move, which means the
position of the player has no outgoing edges. Such a position is called a sink.
Let VS ⊆ V be the set of all sinks and VC ⊆ V the set of ”continuative” positions
which means that a position v ∈ VC has at least one outgoing edge (v, v′) ∈ E.
A play is either:
an infinite path Π = v0v1v2 · · · ∈ VCω with (vi, vi+1) ∈ E for all i ∈ N or
a finite path Π = v0v1v2 . . . vl ∈ VC∗VS with (vi, vi+1) ∈ E for all i < l.
We call these plays correspondingly infinite play and finite play.

10

Winning Conditions: For a finite play Π = v0v1 . . . vl, the player even
wins the play if the last position vl, the sink, belongs to odd. Symmetrically,
the player odd wins the play if the sink vl belongs to even.
For a infinite play π = v0, v1, v2, . . . , the lowest color which occurs infinitely
often is deciding. So player even (odd) wins the play if the lowest color occurring
infinitely often in c(π) = c(v0), c(v1), c(v2) . . . is even (odd). We call such parity
games min-parity games.

A strategy for even is a partial function f : V ?Veven → V which maps the
history of a play which ends in a position v of even to a successor v′ of v. (That
means there is an edge (v, v′) ∈ E). A play is called f -conform if each decision
of even in the play is in accordance with f . A memoryless strategy for player
even is a function g : Veven → V such that (v, g(v)) ∈ E for all v ∈ Veven.
Its called memoryless because the choice of the next move depends only on the
current position and not on the history of the game which needs memory. The
notions for player odd are defined analogously.
A strategy f of player even (odd) is called v-winning if all f -conform plays that
start in v are winning for player even (odd). A position v ∈ V is v-winning for
player even (odd) if even (odd) has a v-winning strategy. We call the sets of
v-winning positions for player even (odd) the winning region of even (odd).

When we want to consider only plays which start at some designated node
vI ∈ V , we define an initialized game (G, vI). A play of such a game is a play
of the uninitialized game which starts in vI . For initialized games, we say a
player has a winning strategy f in (G, vI), instead of a player has a vI -winning
strategy f in (G, vI).

Theorem 1. [19] Parity Games are memoryless determined:
For every parity game G, the game positions are partitioned into a winning
region Weven of player even and a winning region Wodd of player odd. More-
over, player even and odd have memoryless strategies that are v-winning for all
positions in their respective winning region.

Theorem 2. [16] Parity games with n positions, m edges and two or three
colors can be solved in time O(n m).

11

3 Minimization of Büchi Tree Automata by Re-
moving Trivial States

A simple minimization technique is the elimination of trivial states, namely
empty and universal states. Formally, for an ABTA A, a state q is empty if
L(Aq) = ∅ and a state q is universal if L(Aq) = TΣ. Obviously, empty and
universal states of an ABTA can be replaced by qt and qf , respectively, without
changing the language of the automaton.

Unfortunately, checking emptiness or universality of an ABTA is EXPTIME-
complete [9, 8, 22], hence we use cheap conservative tests. That means, they
are correct and efficient, but incomplete.

Technically, the methods are based on variations of the acceptance game of
tree automata [13]. We call these modified games pseudo emptiness game
and pseudo universality game. They are ”pseudo” games, because they are
incomplete.

3.1 Acceptance Game

At first we give a short description of the game and then we define it in terms
of a parity game.

Description: Let A = (Σ, Q, qI , δ, F) be an ABTA, q0 be a state and v an
input tree. The acceptance game is played by player accept and player reject,
in rounds. Player accept will win if Aq0 accepts v and player reject will win if
Aq0 does not accept v. At start round 0, the starting position is the state q0

and letter v(ε). Assume the game is in round i, so in state qi and letter v(x),
then it is played as follows:

1. Player accept chooses a set Z that satisfies δ(qi, v(x))

2. Player reject chooses an element (d, qi+1) of Z

which determines the starting position, state qi+1 and letter v(xd), for the next
round.

Intuitively, player accept controls the existential choice of the ABTA and
player reject controls the universal choice of the ABTA.

By playing the game, the players produce an infinite sequence of states that
determines the winner: Player accept wins, if the sequence contains infinitely
many accepting states, while player reject wins if the sequence contains finitely
many accepting states.

Lets turn to the formal definition of the described game. The game is ac-
tually a Büchi game, but for convenience we define it as an equivalent 2-color
parity game.

12

Definition: An acceptance game is an initialized min-parity game:

G(A,v) = ((Vodd, Veven, E, c), qI)

The notation G(A,v) means: The acceptance game for the input tree v on the
ABTA A. Player odd takes over the role of player reject and player even the
role of player accept . Each game position corresponds to a state of a round.
The game graph is a straightforward construction:

Game positions:
A pair of a state and a sequence of directions is a position of player accept (A):
VA = Q× N∗
For each position of player accept , we get positions of player reject (R) that
consist of a satisfying set and a sequence of directions:
VR =

⋃
(q,x)∈VA

{(Z, x) | Z satisfies δ(q, a)}

Move relations:
EVA×VR

=
⋃

(q,x)∈VA
{((q, x), (Z, x)) | Z satisfies δ(q, v(x))}

EVR×VA
=

⋃
(Z,x)∈VR

{((Z, x), (q′, xd)) | (d, q′) ∈ Z}

Finally, GA,v = ((Vodd, Veven, E, c), qI) is defined by:
Vodd = VR
Veven = VA
E = EVA×VR

∪ EVR×VA

The coloring function is defined as:

c(v) =

{
0 if v = (q, n) and q ∈ F
1 otherwise.

Theorem 3. [13]: Player accept has a memoryless winning strategy in G(A,v)

if and only if A accepts v.

Proof.
→: Let g be a memoryless winning strategy of player accept in G(A,v). We
construct a run (r, T) of A on the input tree v by successively using g:

Let q0 be the initial state of A, then we set r(ε) = (ε, q0).
Let l ∈ N. Assume that for all nodes of Tl, the run r is already constructed

by using strategy g.
(i) Let x be a leaf of Tl and (n, q) = r(x). By using the strategy g, we get

the set Z = g(q, v(n)). By definition of the game, Z satisfies δ(q, (v(n)). We
extend r by Z according the definition of a run of ABTA.

This construction step (i) can be done for all leaves of Tl. Thus, the run
r is constructed for all nodes of Tl+1. By induction follows that the infinite
construction of r is a run on v.
By construction, each path r(π) corresponds to a g-conform play Π of G(A,v).
Since the strategy g is winning, the play Π is winning, hence there are infinitely

13

many accepting states on r(π). Finally, r is an accepting run.

←: Let r be an accepting run of A on input v. Then, player accept has a
memoryless strategy g for the acceptance game G(A,v) by playing exactly as
the run r prescribes. Since the run r is accepting, there exists infinitely many
accepting states on each path of r, so each g-conform play of G(A,v) is winning.
Thus the strategy g is winning.

3.2 Pseudo Emptiness Game

The pseudo emptiness game is a modified acceptance game, where, in each
round, player accept additionally chooses a letter of the alphabet.

We show that this game is correct for ABTA, that means, if player reject has
a memoryless winning strategy in the pseudo emptiness game on some ABTA
Aq, the state q is empty. While the game is incomplete for ABWA, it is complete
for NBTA.

Furthermore, we demonstrate that the game is efficiently solvable by a parity
game solving algorithm.

Definition: The pseudo emptiness game is an initialized min-parity game
G⊥A(q) = ((Vodd, Veven, E, c), q). The notation G⊥A(q) means: the pseudo empti-
ness game G⊥, where ⊥ symbolizes ”emptiness”, on the automaton A for the
state q. Player odd takes over the role of player reject and player even the role
of player accept

Game positions:
Each state of the automaton is a position of player accept (A):
VA = Q
Each set that satisfies a formula δ(q, a) is a position of player reject (R):
VR =

⋃
q∈Q,a∈Σ{Z | Z satisfies δ(q, a)}

Move relations:
EVA×VR

=
⋃
q∈Q,a∈Σ{(q, Z) | Z satisfies δ(q, a)}

EVR×VA
=

⋃
Z∈VR

{(Z, q) | (d, q) ∈ Z}

Finally G⊥A(q) = ((Vodd, Veven, E, c), q) is defined by:
Vodd = VR
Veven = VA
E = EVA×VR

∪ EVR×VA

The coloring function is defined as:

c(v) =

{
0 if v = q and q ∈ F
1 otherwise.

14

3.2.1 Correctness of the Pseudo Emptiness Game for ABTA

Theorem 4. Let A be an ABTA and q ∈ Q. The state q is empty if player
reject has a memoryless winning strategy in G⊥A(q).

Proof. Let g be a memoryless winning strategy for player reject and r a run
of A. By construction of the game, it exists a g-conform play of G⊥A(q) that
corresponds to a path r(π). Strategy g is winning, so there are only finitely
many accepting states on r(π). Therefore the run r is non-accepting, so q is an
empty state.

In the following, we demonstrate by an example that this simple emptiness test
can be a very profitable minimization technique:
Example 1: Let A = ({a}, {q0, q1, q2, q3}, q0, δ, {q1, q2}) be an NBTA on infinite
2-trees where

δ(q0, a) = (0, q1) ∧ (1, q2)
δ(q1, a) = (0, q1) ∧ (1, q2)
δ(q2, a) = (0, q3) ∧ (1, q0)
δ(q3, a) = (0, q3) ∧ (1, q1)

Player reject has a winning strategy by choosing (0, q3) in G⊥A(q3). Moreover,
player reject has also winning strategies in G⊥A(q2), G⊥A(q1) and G⊥A(q0). Thus,
by using the simple pseudo emptiness game, the NBTA A can be minimized
completely.

3.2.2 Incompleteness of the Pseudo Emptiness Game for ABWA

We show now that there exists an ABWA A and an empty state q, nevertheless
player reject has no winning strategy in G⊥A(q).

Intuitively, the problem of the game is that player accept is too strong be-
cause he is allowed to choose the letters without any restrictions. For that reason
he may have a winning strategy that corresponds to an inconsistent input tree.
Example 2: Let A = ({a, b}, {q0, q1, q2}, q0, δ, {}) be an ABWA with

δ(q0, a) = (0, q1) ∧ (0, q2)
δ(q0, b) = false
δ(q1, a) = true
δ(q1, b) = false
δ(q2, a) = false
δ(q2, b) = true

All input words starting with letter b are not accepted. For an input word
starting with letter a, the run tree has one accepting path and one non-accepting

15

path, thus it is non-accepting. Finally, L(A) is empty. However player accept
has a winning strategy in G⊥A(q0):

At first, he chooses the satisfying set Z = {(0, q1), (0, q2)}. Then player reject
either chooses q1 or q2. In both cases, player accept chooses the true formula,
in the next round. Consequently, he always wins the game.

Note that the corresponding input word is inconsistent, because player accept
chooses once letter ”a” and the other time letter ”b” for the same position.

3.2.3 Completeness of the Pseudo Emptiness Game for NBTA

For NBTA, there exists a one to one correspondence between the input tree and
the run tree. For that reason, it is not possible that a winning strategy of player
accept corresponds to an inconsistent input tree.

Theorem 5. Let A be an NBTA and q ∈ Q. Player reject has a memoryless
winning strategy in G⊥A(q) if the state q is empty.

Proof. (by Contradiction)
Since q is empty, all runs of Aq are non accepting. Assume that player reject
does not have a winning strategy in G⊥A(q). Since parity games are determined
(Theorem 1), player accept has a winning strategy g in G⊥A(q). We show that
we can construct an accepting run (r′, T) of Aq by successively using g on q:

• Set the root node: r′(ε) = (ε, q).

• Let l ∈ N. Assume r′ is already constructed using g for all nodes in Tl.
Furthermore the corresponding input tree v is defined for all nodes in Tl−1.

(i) Let x be a leaf of Tl and (n, q′) = r′(x). We use the strategy g, so let
Z = g(q′). By definition of the game, Z satisfies δ(q′, a) for some a ∈ Σ.
We set v(n) = a and extend r′ by Z according the definition of ABTA.

Since there exist a one to one correspondence between the nodes of the run
tree and the input tree, the construction step (i) for r′ and v is possible
for all leaves of Tl and Tl−1, respectively, without inconsistencies on the
input tree v. Thus, the run r′ on the input tree v is constructed for all
nodes in Tl+1 and Tl, respectively.

By induction follows that the infinite construction of r′ is a run of A on input
v.

Lastly, we show that the run r′ is accepting: By construction of r′ each
labeled path r′(π) corresponds to a g-conform play. Because g is winning, all g-
conform plays are winning, thus r′ is accepting. That contradicts to the premise,
that q is an empty state !

3.3 Pseudo Universality Game

In spite of the duality between emptiness and universality, the pseudo games are
the same except that the players, who choose letters, are exchanged. Finally,

16

the pseudo universal game is a modified acceptance game, where, in each round
player reject additionally chooses a letter of the alphabet.

We show that this game is correct for ABTA, that is, if player accept has a
memoryless winning strategy in the pseudo universality game on an ABTA Aq,
the state q is universal. We give an example that demonstrates the incomplete-
ness of the game for NBWA.

Definition: We formalize the universality game as an initialized min-parity
game G>A = ((Vodd, Veven, E, c), q). player odd takes over the role of player reject
and player even the role of player accept . Each game position corresponds to a
state of a round. The game graph is constructed as follows:

Game positions:
Each state of the automaton is a position of player reject :
VR1 = Q
Each pair of a state and a letter is a position of player accept :
VA1 = {(q, a) | q ∈ Q, a ∈ Σ}
Each set that satisfies a formula δ(q, a) is a position of player reject :
VR2 =

⋃
q∈Q,a∈Σ{Z | Z satisfies δ(q, a)}

Move relations:
EVR1×VA1

= {(q, (q, a)) | q ∈ Q, a ∈ Σ}
EVA1×VR2

=
⋃
q∈Q,a∈Σ{((q, a), Z) | Z satisfies δ(q, a)}

EVR2×VR1
=

⋃
Z∈VA1

{(Z, q) | (d, q) is element of Z }

Finally G>A(q) = ((Vodd, Veven, E, c), q) is defined by:
Vodd = VR1 ∪ VR2

Veven = VA1

E = EVR1×VA1
∪ EVA1×VR2

∪ EVR2×VR1

The coloring function is defined as:

c(v) =

{
0 if v = q and q ∈ F
1 otherwise.

3.3.1 Correctness of the Pseudo Universality Game for ABTA

Theorem 6. Let A be an ABTA and q ∈ Q. The state q is universal if player
accept has a winning strategy in G>A(q).

Proof.
Let g be a winning strategy of player accept and v an input tree. We construct
an accepting run (r, T) of Aq on input v by successively using g:

Set r(ε) = (ε, q).
Let l ∈ N. Assume that for all nodes of Tl, the run r is constructed using g.
(i) Then let x be a leaf of Tl and (n, q′) = r(x). By using strategy g, we

get a satisfying set Z = g(δ(q′, v(n))). By construction of the game, Z satisfies

17

δ(q′, v(n)), thus we can extend r by Z according the definition of ABTA.
The construction step (i) can be done for all leaves of Tl. By induction, r is

a run on input v.
By construction, a path r(π) corresponds to a g-conform play Π of G>A(q).

Since g is a winning strategy, the play Π is winning, thus there are infinitely
many accepting states on r(π). Hence, the run r is accepting.

3.3.2 Incompleteness of the Pseudo Universality Game for NBWA

We show now that there exists an NBWA A and an universal state q, neverthe-
less player accept has no memoryless winning strategy in G>A(q).

Intuitively, the problem of the game is that player accept is too weak because
he is restricted to one strategy for all input trees. Hence, if at some game
position of player accept , the acceptance of an input tree v1 requires the choice
of the satisfying set Z and the acceptance of an input tree v2 requires the choice
of transition Z ′, player accept cannot have a winning strategy although the state
could be universal. In more detail, consider the following automaton, which is
the dual of the automaton shown in Example 2:

Example 3: Let U = ({a, b}, {q0, q1, q2}, q0, δ, {}) be an NBWA with

δ(q0, a) = (0, q1) ∨ (0, q2)
δ(q0, b) = true
δ(q1, a) = false
δ(q1, b) = true
δ(q2, a) = true
δ(q2, b) = false

All input words starting with letter b are accepted. For an input word starting
with letter a, there exists either an accepting run starting with q1 or an accepting
run starting with q2. Hence q0 is universal. However player reject has a winning
strategy for G>A(q0):

First, he chooses the formula δ(q0, a). Then player accept either chooses Z =
{(0, q1), (1, q1)} or Z ′ = {(0, q2), (1, q2)}. In both cases, player reject chooses
the false formula in the next round. Hence he always wins the game.

3.4 Solving the Pseudo Emptiness and Pseudo Universal-
ity Game

In the following, we estimate the size of the game graphs depending on the size
of the ABTA and then we give time complexities for solving the games.

Let A = (Σ, Q, qI , δ, F) be an ABTA on infinite k-trees, n the number of
states, l the number of letters and m the total sum of minimal satisfying sets of
all the formulas δ(q, a). Formally speaking: m = Σq∈Q,a∈Σ|mss(δ(q, a))|.

18

Size of the pseudo emptiness game graph:
Positions:

• |VA| is in O(n).

• |VR| is in O(m).

Since each state has at least one formula, it follows that n ≤ m, hence |V | is in
O(m).

Edges:

• A position of VA has |
⋃
a∈Σmss(δ(q, a))| edges to VR. Hence, the edge

set EVA×VR
has Σq∈Q|

⋃
a∈Σmss(δ(q, a))| edges that is in O(m).

• A position of VR has at most n edges to VA. So, |EVR×VA
| is in O(nm).

Totally, |E| is in O(nm).

The pseudo emptiness game is a 2-color parity game. Thus, theorem 2 en-
tails that it can be solved in O(nm2).

Size of the pseudo universality game graph:
Positions:

• |VR1 | is in O(n).

• |VA1 | is in O(nl).

• |VR2 | is in O(m)

Since each state has for each letter of the alphabet a formula, it follows that
nl ≤ m, hence |V | is in O(m).

Edges:

• |EVR1×VA1
| is in O(nl)

• A position of VA1 has |mss(δ(q, a))| edges to VR2 . Consequently, |EVA1×VR2
|

is in O(m).

• A position of VR2 has at most n edges to VA1 . Hence |EVR2×VR1
| is in

O(nm).

As already mentioned above, nl ≤ m, hence |E| is in O(nm)

The pseudo universality game is a 2-color parity game. Thus, theorem 2 entails
that it can be solved in O(nm2).

19

4 Minimization of Büchi Tree Automata by Simulation-
Based Quotienting

In the following, we transfer what has be done for NBWA [11] and ABWA [12]
to Büchi tree automata. We introduce and study simulation relations for ABTA
(which includes the NBTA). Technically, we define the simulation relations on
simulation games that we formalize in terms of min-parity games as in [14, 1, 11].
We concentrate on the three types of simulation relations, namely direct, delayed
and fair simulation. The approach for all types is as follows:

• We introduce a simulation game for ABTA such that a winning position
corresponds to the fact that some state is simulated by another state.

• Based on the game, we define a simulation relation, which formalizes that
a state is simulated by another state.

• We show that the simulation relation guarantees language containment.

• Based on the simulation relation, we define a simulation equivalence rela-
tion which formalizes that two states simulate each other.

• We define a quotient automaton with respect to the simulation equivalence
relation.

• We show whether the quotient automaton preserves the language of the
original automaton

• We demonstrate that computing the simulation relation can be done fast
and efficiently.

4.1 Direct, Delayed, and Fair Simulation Game

In the following, we give an intuitive description of the three simulation games
and then a formal definition as parity games.

4.1.1 Description of the Simulation Games

In principle, the three simulation games rely on the same game, only the winning
conditions varies.

Basic Game: Let A be an ABTA and q0, q
′
0 be states. A simulation game

is played by the two players Spoiler and Duplicator, in rounds.
The basic principle of the game is as follows: Spoiler dictates letters and

visits of accepting states from q0, which Duplicator must match from q′0 in
order to win the simulation game on (q0, q

′
0).

The game starts, at round 0, in position (q0, q
′
0) but assume the game is in

round i, in position (qi, q′i). A round is played as follows:

1. Spoiler chooses a letter a ∈ Σ, which determines the formula δ(qi, a).

20

2. Spoiler chooses a set ZS that satisfies δ(qi, a).

3. Duplicator, responding, chooses a set ZD that satisfies δ(q′i, a). Note that
he has to use the same letter as Spoiler.

4. Spoiler chooses an element (d, q′i+1) of ZD.

5. Duplicator, responding, chooses an element (d, qi+1) of ZS . Note that he
has to use the same direction d as Spoiler.

which determines the starting pair for the next round: (qi+1, q
′
i+1).

Intuitively, Spoiler controls the choice of letters and the existential choice
of Aq0 and Duplicator controls the existential choice of Aq

′
0 . For the universal

choices the controls are switched. So Spoiler controls the universal choice of Aq
′
0

and Duplicator controls the universal choice of Aq0 .

Winning condition: If some player cannot proceed, he looses immediately.
If both players can always proceed, they construct an infinite sequence of pairs
of states: (q0, q

′
0)(q1, q

′
1)(q2, q

′
2). . .

This sequence determines the winner, depending on which simulation we are
interested in:

• Direct (di): Duplicator wins if for every i with qi ∈ F we have q′i ∈ F .

• Delayed (de): Duplicator wins if for every i with qi ∈ F there exists j ≥ i
such that q′j ∈ F .

• Fair (f): Duplicator wins if it holds: if there are infinitely many i with
qi ∈ F , then there are also infinitely many j with q′j ∈ F .

In all other cases Spoiler wins.
The winning conditions in the order fair, delayed, direct get stricter for

Duplicator. That means, if Duplicator wins a fair simulation game on (q, q′),
he might loose the delayed simulation game on (q, q′).

4.1.2 Definition of the Simulation Games

We formalize the three simulation games as initialized min parity games

G?A(q0, q
′
0) = ((V ?odd, V

?
even, E

?, c?), (q0, q
′
0)) with ? ∈ {di,de,f}

Player odd takes over the role of Spoiler and player even takes over the role of
Duplicator. We present the game graph for GfA at first, then for GdiA and lastly
for GdeA .

Fair Simulation Game
Each state of a round corresponds to a game position. The state 1. and 2. of a
round can be joined to one game position, since Spoiler chooses consecutively.

21

Therefore we have positions (q, q′) for the starting and end point of a round.
Secondly, we have positions of the form (Z, q′, a) which represent the fact that
Spoiler has chosen a satisfying set of δ(q, a). Next turn, Duplicator chooses a
satisfying set of δ(q′, a). Hence, we get positions of the form (ZS , ZD), which
means that both players have chosen their satisfying sets. Now its Spoilers turn
for choosing an element of ZD. Lastly, we have positions of the form (ZS , (d, q′))
which represent the fact that Spoiler has chosen an element. Duplicator has to
choose an element from ZS with the same direction d and the round is finished.
In detail, the game graph consists of the following game positions and move
relations:
game positions:
S1 = {(q, q′) | q, q′ ∈ Q}

D1 =
⋃

(q,q′)∈S1
{(Z, q′, a) | a ∈ Σ, Z ∈ δ(q, a)}

S2 =
⋃

(Z,q′,a)∈D1
{(Z,Z ′) | a ∈ Σ, Z ′ ∈ δ(q′, a)}

D2 =
⋃

(Z,Z′)∈S2
{(Z, (d, q′)) | (d, q′) ∈ Z ′}

move relations:
ES1×D1 = {((q, q′), (Z, q′, a)) | (q, q′) ∈ S1, Z

′ ∈ δ(q, a)}

ED1×S2 = {((Z, q′, a), (Z,Z ′)) | (Z, q′, a) ∈ D1, Z
′ ∈ δ(q′, a)}

ES2×D2 = {((Z,Z ′), (Z, (d, q′))) | (Z,Z ′) ∈ S2, (d, q′) ∈ Z ′}

ED2×S1 = {((Z, (d, q′)), (q, q′)) | (Z, (d, q′)) ∈ D2, (d, q) ∈ Z}

Finally, the game GfA = (V feven, V
f
odd, E

f , cf) can be defined by:
V fodd = S1 ∪ S2

V feven = D1 ∪D2

Ef = ES1×D1 ∪ ED1×S2 ∪ ES2×D2 ∪ ED2×S1

cf (v) =


0 if v = (q, q′) and q′ ∈ F
1 if v = (q, q′), q ∈ F, and q′ /∈ F
2 otherwise.

If the smallest occurring number is 0, then Duplicator sees infinitely many ac-
cepting states, thus he wins. If the smallest occurring number is 1, then Spoiler
sees infinitely many accepting states, but Duplicator only finitely many, hence
Spoiler wins. Lastly if the smallest occurring number is 2, then Spoiler has only
seen finitely many accepting states, so Duplicator wins. In that way the fair
winning condition is defined in terms of a parity game.

22

Direct Simulation Game
We now describe how GfA can be modified to get GdiA . The game graph of GdiA is
constructed as the game graph of GfA, except that we leave out the edges from
positions of D2 to positions (q, q′) of S1 where q ∈ F and q′ /∈ F in order to
take care of the direct winning condition.
The game GdiA = (V dieven, V

di
odd, E

di, cdi) can be defined by

V diodd = V fodd

V dieven = V fodd

Edi = Ef \ {(v, (q, q′)) | v ∈ D2, (q, q′) ∈ S1, q ∈ F, q′ /∈ F}

and the coloring function is 0 for all positions: cdi(v) = 0

Delayed Simulation Game
For the delayed game GdeA we have to modify the game graph of GfA somewhat
more: For each vertex of the game graph there will be two corresponding ver-
tices in GdeA . The extra bit b encodes whether Spoiler has seen an accept state
or not, for which Duplicator has not seen one so far. The modified positions
and move relations are as follows:
game positions:
S′1 = {(b, q, q′) | q, q′ ∈ Q, b ∈ {0, 1}, (q′ ∈ F → b = 0), (q ∈ F, q′ /∈ F → b = 1)}

The other game positions D′1, S
′
2, D

′
2 are constructed as for the fair game graph

except that each position contains the bit b:
D′1 =

⋃
(b,q,q′)∈S′

1
{(b, Z, q′, a) | a ∈ Σ, Z ∈ δ(q, a)}

S′2 =
⋃

(b,Z,q′,a)∈D′
1
{(b, Z, Z ′) | Z ′ ∈ δ(q′, a)}

D′2 =
⋃

(b,Z,Z′)∈S′
2
{(b, Z, (d, q′)) | (d, q′) ∈ Z ′}

move relations:
The edges from S′1 to D′1, D′1 to S′2 and S′2 to D′2 are exactly as for the fair
game graph except that the bit b is passed from position to position:
ES′

1×D′
1

= {((b, q, q′), (b, Z, q′, a)) | (b, q, q′) ∈ S′1, Z ′ ∈ δ(q, a)}

ED′
1×S′

2
= {((b, Z, q′, a), (b, Z, Z ′)) | (b, Z, q′, a) ∈ D′1, Z ′ ∈ δ(q′, a)}

ES′
2×D′

2
= {((b, Z, Z ′), (b, Z, (d, q′))) | (b, Z, Z ′) ∈ S′2, (d, q′) ∈ Z ′}

The edges from D′2 to S′1 update the bit b such that the delayed winning condi-

23

tion is transfered:

ED′
2×S′

1
= {((0, Z, (d, q′)), (1, q, q′)) | (Z, (d, q′)) ∈ D′2, (d, q) ∈ Z, q ∈ F ∧ q′ /∈ F}
∪ {((0, Z, (d, q′)), (0, q, q′)) | (Z, (d, q′)) ∈ D′2, (d, q) ∈ Z, q /∈ F ∨ q ∈ F}
∪ {((1, Z, (d, q′)), (1, q, q′)) | (Z, (d, q′)) ∈ D′2, (d, q) ∈ Z, q′ /∈ F}
∪ {((1, Z, (d, q′)), (0, q, q′)) | (Z, (d, q′)) ∈ D′2, (d, q) ∈ Z, q′ ∈ F}

So the game GdeA = (V deeven, V
de
odd, E

de, cde) can be defined:

V deodd = S′1 ∪ S′2

V deeven = D′1 ∪D′2

Ede = ES′
1×D′

1
∪ ED′

1×S′
2
∪ ES′

2×D′
2
∪ ED′

2×S′
1

cde(v) =

{
b if v = (b, q, q′)
1 otherwise

We assign priority 0 or 1 to the vertices (b, q, q′) ∈ V deodd which signifies if the
delayed winning condition is fulfilled or not. In other words, if there is an
”‘unmatched”’ final state by Duplicator, (for example Spoiler has seen an final
state, but Duplicator hasn’t seen one) then the bit is 1. If from some point
onwards the bit 1 occurs infinitely often, then the smallest number in the game is
1, so Spoiler wins the game. Otherwise, if Duplicator can match each occurrence
of an final state then the smallest occurring number will be a 0, so Duplicator
wins the game. In this way the delayed winning condition is defined in terms of
a parity game.

4.2 Simulation Relations

We introduce the direct, delayed and fair simulation relations via the simulation
games:

Definition: Let A be an ABTA. A state q is ?-simulated by a state q′

if there is a memoryless winning strategy g for Duplicator in G?A(q, q′) where
? ∈ {di,de, or f}. We denote such a relationship by q �? q′.

Example 4: Let A = ({a}, {q0, q1, q2}, q0, δ, {q2}) be an ABTA on infinite
2-tree with

δ(q0, a) = (0, q1) ∧ (0, q2) ∧ (1, q2) ∨ (0, q0) ∧ (1, q0)
δ(q1, a) = (0, q2) ∧ (1, q2)
δ(q2, a) = (0, q2) ∧ (1, q2)
δ(q3, a) = (0, q2) ∧ (1, q1) ∧ (1, q3)

24

Clearly, q2 ?-simulates all other states. Moreover, it holds true that q0 �de q1:
In a play starting in (q0, q1), Spoiler chooses a satisfying set ZS for δ(q0, a)
and then Duplicator must choose ZD = {(0, q2), (1, q2)}. Next, Spoiler must
choose (0, q2) or (1, q2) of ZD. So, in the next round, Duplicator always starts
from state q2 and since q2 delayed simulates all states, the described strategy is
winning for Duplicator in GdeA (q0, q1)

The converse q1 �de q0 also holds true: Spoiler chooses ZS = {(0, q2), (1, q2)}
for δ(q1, a). Duplicator chooses ZD = {(0, q1), (0, q2), (1, q2)} for δ(q0, a), be-
cause otherwise he will stay in q0 forever and loose. Next, if Spoiler chooses
(0, q2) or (1, q2), then in the next round Duplicator starts in q2 and therefore
will win. Otherwise, if Spoiler chooses (0, q1), then in the next round Duplicator
starts in q1. Nevertheless, clearly q2 �de q1 holds true, so Duplicator also wins
from q1. Thus the described strategy is winning for Duplicator in GdeA (q1, q0) .

It holds true that q2 �de q3: Spoiler chooses ZS = {(0, q2), (1, q2)} for
δ(q2, a). Duplicator chooses ZD = {(0, q2), (1, q1), (1, q3)} for δ(q3, a). Next,
Spoiler chooses (1, q3) of ZD, Duplicator must choose (1, q2) of ZS . Since q3 is
non-accepting and q2 is accepting, the described strategy is winning for Spoiler
in GdeA (q2, q3).

4.2.1 Basic Properties

Lemma 1. For ? ∈ {di, de, f}, the simulation relation �? is a preorder on the
state set Q of an ABTA A.

Proof. Reflexivity of �? with ? ∈ {di, de, f}: Let q ∈ Q. Duplicator has a
winning strategy in the game G?A(q, q) by choosing the same satisfying sets and
directions as Spoiler.

Transitivity of �di: Suppose that q0 �di q′0 and q′0 �di q′′0 . By definition
Duplicator has winning strategies in GdiA (q0, q

′
0) and GdiA (q′0, q

′′
0), say g and g′,

respectively. We construct a strategy g′′ for Duplicator in GdiA (q0, q
′′
0) by g and

g′:
If g(Z, q′, a) = (Z,Z ′′) and g′(Z ′, q′′, a) = (Z ′, Z ′′)

then g′′(Z, q′′, a) = (Z,Z ′′)
And if g(Z, (d, p′)) = (d, p) and g′(Z ′, (d, p′′)) = (d, p′)

then g′′(Z, (d, p′′)) = (d, p)
The strategy g′′ is winning:
Let Π′′ = (q0, q

′′
0)w′′0v

′′
0x
′′
0(q1, q

′′
1)w′′1v

′′
1x
′′
1 . . . be a g′′-conform play. There exists

a g-conform play Π = (q0, q
′
0)w0v0x0(q1, q

′
1)w1v1x1 . . . and a g′-conform play

Π′ = (q′0, q
′′
0)w′0v

′
0x
′
0(q′1, q

′′
1)w′1v

′
1x
′
1

Since g is a winning strategy, it holds for all i that if qi is accepting then q′i is
accepting. Similarly, since g′ is also a winning strategy, it holds for all i that if
q′i is accepting then q′′i is also accepting. Consequently, the play Π′′ is a winning
play and hence g′′ is winning.

Transitivity of �de: The proof is also analogous to the direct case except the
last step. So g and g′ are winning strategies, then Π and Π′ are winning plays.
This implies that if qi ∈ F then there exists a j ≥ i such that q′j ∈ F and then

25

there exists a k ≥ j such that q′′k ∈ F . So Π′′ is a winning play, hence the claim
holds.

Transitivity of �f : The proof is analogous to the direct case except the last
step. So g and g′ are winning strategies, then Π and Π′ are winning plays. This
implies that if there are infinitely many i such that qi ∈ F then there are also
infinitely many j such that q′j ∈ F and then there are also infinitely many k
such that q′′k ∈ F . So Π′′ is a winning play, hence the claim holds.

Finally, we have shown that �di,�de,�f are preorder relations.

Intuitively, the winning condition from direct to delayed to fair relaxes which
leads to a strengthening of Duplicator. Hence if he has a winning strategy in a
direct simulation game, then the strategy is also winning in the delayed or fair
simulation game.

Lemma 2. [11] Simulation relations are ordered by containment: �di⊆�de⊆�f .

Proof. Let A be an ABTA and let g be a winning strategy of Duplicator in
GdiA (q, q′). For a g-conform play Π = (q0, q

′
0)w0v0x0(q1, q

′
1)w1v1x1 . . . holds

true that for all i: If qi is accepting, then also q′i is accepting. The delayed
winning condition, (which is for all i holds: If qi is accepting, then there exists
a j ≥ i such that qj is accepting), includes the direct case. So, strategy g is also
winning in GdeA (q, q′). Similarly, the fair winning condition, (which is, if there
are infinitely many i with qi accepting, then there are also infinitely many j with
q′j accepting), includes the delayed case. Consequently, if g is a winning strategy
of Duplicator in GdeA (q, q′), then it is also a winning strategy of Duplicator in
GfA(q, q′).

These inclusions are strict for certain automata:

i): State 2 is not direct simulated by state 3, but state 2 is delayed simulated
by 3.
ii): State 2 is not delayed simulated by state 3, since Spoiler has a winning
strategy by always choosing c’s, but state 2 is fair simulated by state 3.

26

4.2.2 Simulation Relations guarantee language containment

In the following we prove that all three types of simulation guarantee language
containment. At first we show a lemma and then the theorem.

Lemma 3. For ? ∈ {di, de, f}: Let A be an ABTA, q �? q′ and (r, T) be a run
of Aq on input tree v. Then there exist

• a run (r′, T ′) of Aq
′

on v and

• a mapping Ψ : T ′ → T that maps every node r′(x) = (n, q′) to a node
r(y) = (n, q) such that q �? q′

Proof.
Let the domain T be subset of (Nm)∗ and the domain T ′ be subset of (Nm′

)∗.
Since q �? q′, Duplicator has a winning strategy g in G?A(q, q′). We construct
by successively using g a run tree r′ of Aq

′
on input v:

Set r′(ε) = (ε, q′). Since q �? q′, set Ψ(ε) = ε.
Let l ∈ N. Assume we have already constructed r′ using strategy g for all

nodes of T ′l . Moreover, the mapping Ψ exists for all nodes of T ′l .
Let x be a leaf of T ′l and r′(x) = (n, p′). By assumption, we get y = Ψ(x)

with (n, p) = r(y). Then let Z be the set of the children of the node r(y),
formally speaking Z := {(di, si) | (n · di, si) = r(y · i), i ∈ Nm}. By using the
strategy g, we get the game position (Z,Z ′) := g(Z, p′, v(n)). By definition of
the game, Z ′ is a satisfying set of δ(p′, v(n)). We extend r′(x) by Z ′ according
to the definition of a run of an ABTA.

(i) Now let (n · d, s′) be a child of r′(x). By using g, we get a position
(s, s′) = g(Z, (d, s′)). By definition of the game, the element (d, s) is in Z. Let
j ∈ Nm such that r(y · j) = (d, s). Since g is winning, s � s′ holds true, so we
set Ψ(x · i) = y · j.

This construction step is done for all leaves of T ′l . So, for all x ∈ T ′l+1 r′ is
constructed and the mapping Ψ exists .

By induction, the infinite construction of r′ is a run of Aq
′

on input v and
the mapping Ψ exists for all nodes of T

′
.

Theorem 7. For ? ∈ {di, de, f}: Let A be an ABTA and q �? q′, then L(Aq) ⊆
L(Aq

′
)

Proof. We have to prove that for each input tree with an accepting run on Aq,
exists an accepting run on Aq

′
. Let v ∈ L(Aq) and r be an accepting run tree of

Aq on input v. Since q �? q′, Duplicator has a winning strategy g in G?A(q, q′).
By lemma 3, there exists a run r′ of Aq

′
on v and a mapping Ψ. We must show

that the run r′ is also accepting:
Let r′(π′) = (ε, q′)(n1, q

′
1)(n2, q

′
2) . . . be a path. By construction of r′, there

exists a g-conform play Π = (q, q′)w0v0u0(q1, q
′
1) . . . of G?A(q, q′) consisting of

the path r′(π′) and a path r(π) = (ε, q0)(n1, q1)(n2, q2)

27

The run tree r is accepting, so r(π) is accepting. Since the strategy g is winning,
Π is winning, thus r′(π′) is also accepting. Finally, r′ is an accepting run.

4.3 State Space Minimization by Quotienting

In this section, we introduce the equivalence relation ≈ which formalizes that
two nodes simulate each other. Based on the equivalence relation, we define a
quotient automaton. Then we show that for direct and delayed simulation, lan-
guage equivalence between the automaton and quotient automaton holds true.
For fair simulation there is no reasonable definition of a quotient automaton as
shown in Proposition 16 of [11]

Definition: For each simulation relation we define an equivalence relation
≈di,≈de, and ≈f , where

q ≈? q′ if and only if q �? q′ and q′ �? q.

Definition: For ABTA A = (Σ, Q, qI , δ, F) and equivalence relation ≈ on
the states Q, let [q] denote the equivalence class of q ∈ Q with respect to ≈.
The quotient automaton of A with respect to ≈ is the automaton

A/ ≈ = (Σ, Q/ ≈, [qI], δ≈, F/ ≈)

where
δ≈([q], a) =

∨
q′∈[q]

Φ(δ(q′, a))

and
F/ ≈ = {[q] | q ∈ [q] and q ∈ F}

with function Φ : B+(D × Q) → B+(D × Q/ ≈), which maps a formula θ
consisting of concrete states to the corresponding formula consisting of their
quotient states. That means, each (d, q′) of θ is mapped to (d, [q]) if q′ ∈ [q].

The quotient automaton is an overestimation because it accepts at least all
input trees of L(A). The reasons are that each quotient state [q] has the tran-
sitions of all concrete states q ∈ [q] and a quotient state [q] is accepting if there
exist some concrete accepting state q ∈ [q]. Thus the accepting run of A must
be also an accepting run of the quotient automaton. The converse direction also
holds true, but needs much more work. First, we prove two lemmas and then
the main theorem.

28

Lemma 4. For ? ∈ {di, de}: Let A be an ABTA, q be an accepting state,
q �? q′ and (r, T) be a run of Aq on input tree v. Then there exist

• a run (r′, T ′) of Aq
′

on v such that on each path of r′ at least one accepting
state exists

• a mapping Ψ : T ′ → T that maps every node r′(x) = (n, q′) to a node
r(y) = (n, q) such that q �? q′

Proof. By lemma 3 we know that there exists a run r′ of Aq
′

on v and a mapping
Ψ (as defined above). Since q �? q′, Duplicator has a winning strategy g in
G?A(q, q′). Let r′(π′) = (ε, q′)(n1, q

′
1)(n2, q

′
2) . . . be a path. By construction

of r′, there exists a g-conform play Π = (q, q′)w0v0u0(q1, q
′
1) . . . of G?A(q, q′)

consisting of the path r′(π′) and some path r(π) = (ε, q)(n1, q1)(n2, q2)
Since g is winning, the play Π is winning. Hence by the definition of the ?-
simulation game follows that there exists a i ∈ N such that q′i is accepting.

Lemma 5. Let A = (Σ, Q, q′, δ, F) be an ABTA on k-trees and
A/ ≈de= (Σ, Q/ ≈, [q], δ≈, F/ ≈) the quotient ABTA. Let v ∈ L(A/ ≈de),
q �de q′ and (r, T) a run of A/ ≈de on v. Then it exist

• a run (r′, T ′) of A on input v and

• a mapping Ψ : T ′ → T that maps every node r′(x) = (n, q′) to a node
r(y) = (n, [q]) such that q �? q′

Proof.
Let the domain T ⊆ (Nm)∗ and the domain T ′ ⊆ (Nm′

)∗. Let g be Duplicator’s
winning strategy in GdeA (q, q′). We construct r′ by successively using g:

We set r′(ε) = (ε, q′). Since q � q′ holds, we set Ψ(ε) = ε.
Let l ∈ N. Assume the run r′ is constructed for all nodes of T ′l (using g).

Moreover the mapping Ψ exists for all nodes of T ′l

Let x be a leaf of T ′l with r′(x) = (n, p′). By assumption, we get y = Ψ(x)
with (n, [p]) = r(y). By definition of Ψ: p � p′ holds. Then let Z be the set of
children of r(y), formally speaking Z = {(di, [si]) | (n·di, [si]) = r(y·i), i ∈ Nm}.
By definition of ABTA, Z is a satisfying set of δ≈([p], v(n)).
By definition of the quotient automaton A/ ≈, it exists
(i) a state p̂ such that p̂ ≈ p
(ii) a satisfying set Ẑ of δ(p̂, v(n)) such that

for each (d, ŝ) ∈ Ẑ, exists a (d, [s]) ∈ Z
such that ŝ ≈ s

By (i) and p � p′ and transitivity follows: p̂ � p′
Let g′ be the memoryless winning strategy for Duplicator in GdeA (p̂, p′). By us-
ing g′ we get the game position (Ẑ, Z ′) = g′(Ẑ, p′, v(n)). By definition of the
simulation game, Z ′ satisfies δ(p′, v(n)). We extend r′(x) by Z ′ according the
definition of a run of an ABTA.

29

Moreover, by using g′ we get for a (d, s′) ∈ Z ′ a (d, ŝ) ∈ Ẑ such that ŝ � s′.
By (ii) and transitivity follows s � s′. Let i ∈ Nm′

and j ∈ Nm such that
r′(xi) = (n, s′) and r(yj) = (n, [s]). Then we set Ψ(xi) = yi.

This construction step can be done for all leaves of Tl. Hence for all nodes
of Tl+1, r′ is constructed and the mapping Ψ exists.

By induction, the infinite construction of r′ is a run of A on input v and the
mapping Ψ exists for all nodes of r′.

4.3.1 Direct and Delayed Quotienting are language preserving

Theorem 8. For ? = {di, de}: Let A be an ABTA and ≈? a simulation equiv-
alence relation. Then it holds true that L(A) = L(A/ ≈?)

We prove the claim for delayed simulation, because the claim for direct simula-
tion follows from that.

Proof.
L(A) ⊆ L(A/ ≈de):
Let v ∈ L(A) and (r, T) an accepting run of A on v. As already mentioned, the
quotient automaton A/ ≈de is an overestimation, thus it follows directly that
(r′, T) with r′(x) := (n, [q]) if r(x) = (n, q), is an accepting run of A/ ≈de on v.

L(A/ ≈de) ⊆ L(A):
Let v ∈ L(A/ ≈de). Let r be an accepting run of A/ ≈de on v. We cannot
guarantee that r′ with r′(x) = (n, q) if r(x) = (n, [q]), is a run of A on v.
However we show that there exists an accepting run r̂ of A on input v:

Let q̂0 be the initial state of A. By definition of the quotient automaton q̂0 ≈de q0

and in particular q0 �de q̂0. By lemma 5 follows that there exists a run r̂ of A
on input v and a mapping Ψ. Let T be the domain of r, T̂ be the domain of r̂
and W be the domain of v.

We will successively modify the run r̂ such that it guarantees:
(i) If a state [q] of a node r(x) = (n, [q]) is accepting,

then ∀ y ∈ Ψ−1(x) ∀ paths π ⊆ T̂ y ∃ z ∈ π with (n, q̂) = r̂(z) : q̂ ∈ F .
(where Ψ−1(x) is the pre image of x)

Let l ∈ N. Assume the run r̂ is modified such that (i) holds for all nodes
of Tl. Let x be a leaf of Tl+1 and (n, [q]) = r(x).
If [q] /∈ F/ ≈de then r̂ is not modified.
If [q] ∈ F/ ≈de, then we consider the states of r̂ that simulate q:

Let S = Ψ−1(x).
If S is empty, then we do not modify r̂.
If S is non empty, let (n, q̂) = r̂(y) for y ∈ S

30

If y is affected by a modification of a parent node of y, then we do not
modify r̂ for y. (This will be clear later on.)
If q̂ ∈ F , then no modifications of r̂ for y.
If q̂ /∈ F then we change r̂ for the subtree T̂ y as follows:

By definition of the quotient automaton there exists a state p′ ∈ [q] that is
an accepting state. Since q �de q̂ and q ≈de p′, it follows p′ �de q̂ by transitiv-
ity.
Then by lemma 5 follows that there exist a run t of Ap

′
on the input subtree

(v,Wn) and a mapping Ψt.

So we have a run t with the root node (ε, p′), p′ ∈ F and p′ �de q̂. By Lemma
4 follows that there exists a run t′ of Aq̂ on (v,Wn) such that on each path of
t′ at least one accepting state exists. Furthermore, there exists a mapping Ψt′ .

Finally, we modify r̂ for the subtree T̂ y:
We set r̂(y · z) := t′(z) for all nodes z of the domain of t′.
Moreover we redefine the mapping Ψ:
Ψ(x · z) := Ψt(Ψt′(z)) for all nodes z of the domain of t′. We exclude all nodes
of a path that starts at r̂(y) and ends at the first accepting state, for further
modifications.

The subtree substitution is done for all nodes of S. The modification is done
for all leaves of Tl+1. Consequently, the property (i) holds for all nodes of Tl+1.

By induction, the infinite modified construction of r̂ is an accepting run of
A on input v.

4.4 Solving Simulation Games

In the following, we compute the size of the different game graphs in order to
give time complexities for solving the simulation games.

Let A = (Σ, Q, qi, δ, F) be an ABTA on infinite k-trees, n the number of states,
l the number of letters and m the total number of minimal satisfying sets of all
the formulas δ(q, a). That means precisely: m = Σq∈Q,a∈Σ|mss(δ(q, a))|.

For ? ∈ {di, de, f} we show that the game graph of the simulation game G?A
has O(m(m + k · n)) vertices and O(k · n ·m2) edges. At first we estimate the
number of vertices of the game graph:

• The set S1 contains at most n2 positions.

• The set D1 has a position for each pair of a state and a satisfying set, so
n ·m positions.

31

• The set S2 contains a position for every pair of satisfying sets with the
same letter, hence |S2| ≤ m2.

• Lastly, the set D2 has for each pair of satisfying set and an element of
Nk ×Q a position, so at most m · k · n positions.

By definition of an ABTA, each state has at least one formula, hence n < m
holds true, hence |V ∗| is in O(m(m + kn)). Remark, for the delayed case, be-
cause of the bit b, the number of vertices is larger by at most a factor of 2.

Secondly, we estimate the number of edges of the game graph:

• S1 has n2 positions. A position of S1 has less than m edges, thus |ES1×D1 |
is in O(n2 ·m).

• D1 has n · m positions. A position of D1 has less than m edges, thus
|ED1×S2 | is in O(n ·m2).

• S2 has at most m2 positions. A position of S2 can have at most k ·n edges,
hence |ES2×D2 | is in O(m2 · k · n)

• D2 has at most m · k · n positions. A position of D2 can have k · n edges,
hence |ED2×S1 | is in O(m · k2 · n2)

Totally |Ef | is in O(mkn(m + kn)) and for the direct case, it’s no difference
because Edi is a subset of Ef . As already mentioned above, because of the bit
b, also |Ede| is larger by at most a factor of 2.

We consider the time complexities for computing the different simulation re-
lations.

The direct simulation game is an 1-color parity game that can be directly
translated to a simple reachability game. A reachability game is solvable in
linear time in the number of vertices and edges, thus the direct simulation
relation is computed in time O(mkn(m + kn))

The delayed simulation game is a 2-color parity game that is solvable in
time O(|V ||E|) (Theorem 2). Consequently, the delayed simulation relation is
computed in time O(m2kn(m+ kn)2).

The fair simulation game is a 3-color parity game that is also solvable in
time O(|V ||E|) (Theorem 2). Thus the fair simulation relation is also computed
in time O(m2kn(m+ kn)2).

32

5 Evaluation of the Minimization Techniques

This chapter describes our prototypical implementation, experiments and the
experimental results.

5.1 Prototypical Implementation

We briefly describe the main components of the prototype:

ABTA. We implemented ABTA on infinite 2-trees where all formulas of the
transition function δ are in disjunctive normal form. Furthermore an ABTA has
two distinct states qt and qf that are equivalent to true and false, respectively.

Generator of CTL-Formulas. It generates CTL-formulas with a certain
number of operators. The operators are chosen according to a probability dis-
tribution and the atomic propositions are chosen with equal probability. More
precisly a CTL formula is generated as follows::

Formula createFormula(numOp) {
if(numOp == 0) {

choose atomic proposition AP
return new AP;

}
else {

choose Operator op w.r.t. to distribution
numOp--
if(op unary)

return new Op(createFormula(numOp))
if(op is binary) {

choose a number n between 0 and numop
return new Op(createFormula(n), createFormula(numOp-n))
}

}
}

CTL to ABTA Translator. A CTL-formula is translated to an ABTA (on
2-trees) as described in [4, 6]. Additionally, the formulas of the transition func-
tion of the ABTA are put in disjunctive normal form.

Game Graph Construction. The constructions of the game graphs are
implemented as described in section 4.1.2.

Game Solver. First, we implemented the Jurdziński algorithm for solving
parity games (with at most 2 colors) [16]. For our experiments the algorithm
performs badly. Thus, we also implemented the classical fixpoint algorithm for
Büchi games [19], which performs much better.

33

ABTA Reducer. For a given set of states that are empty, the ABTA Reducer
removes the states and all transitions to these states. For a given set of states
that are universal, the ABTA Reducer removes the states and replaces all tran-
sitions to these states by a transition to the state qt.

ABTA Quotient. For a given simulation relation, it constructs the quotient
automaton as defined in section 4.3.

MH-Construction. We implemented the MH-construction for tree automata
(see section 2.3). Our construction algorithm firstly creates the initial state of
the NBTA. Then, starting at the initial state, it successively adds new reachable
states and transitions to the NBTA. Thus, the constructed NBTA contains only
necessary states.

5.2 Experiments

Since there exists neither previous experiments on minimization of tree au-
tomata nor any datasets of tree automata that we could use for benchmarks,
we decided to generate random CTL-formulas and translate them to ABTA as
described in the previous section.

We consider two types of experiments for ABTA:
The first type of experiment tests how much the minimization techniques

reduce ABTA. We apply the techniques in the following order on an ABTA A0:

• Elimination of empty states (A1)

• Elimination of universal states (A2)

• Direct Simulation-Based Quotienting (A3)

• Delayed Simulation-Based Quotienting (A4)

The idea of the described order is that we try to minimize the automaton as
much as possible using the cheap techniques until we apply the costly techniques.

The second type of experiment tests how much the minimization techniques
reduce blowups of ATBA caused by the MH-construction. The experiment is
as follows:

• An ABTA A0 is minimized as explained in the previous experiment (A4).

• We translate the minimized ABTA A4 to a NBTA N0 by MH-construction.

• The NBTA N0 is minimized as explained in the previous experiment (N4).

• We also translate the original ABTA A0 to a NBTA N ′0 by the MH-
construction and compare the sizes of N0 and N ′0 as well as N4 and N ′0.

The reduction of the ABTA is relatively cheap compared to the reduction of the
NBTA, because the MH-construction can incur an exponential blowup.

34

5.3 Results

For the first type of experiment, we consider the average difference of the state
space size of the original ABTA and the full minimized ABTA. Moreover, we
compute the average difference of state space size of ABTA after a single mini-
mization technique. In detail, we compute for each automaton:

Reduction by total ABTA Minimization: |A0|−|A4|
|A0|

Reduction by ABTA Empty States Elim.: |A0|−|A1|
|A0|

Reduction by ABTA Universal States Elim.: |A1|−|A2|
|A1|

Reduction by ABTA Direct Quotienting: |A2|−|A3|
|A2|

Reduction by ABTA Delayed Quotienting: |A3|−|A4|
|A3|

For each category, we compute an average value. If an ABTA is reduced to the
empty automaton by the Empty States Elimination, we do not consider them for
the computation of the average values of the further minimization techniques.
Similarly, if an automaton is reduced to the universal automaton by the Uni-
versal States Elimination.

For the second type of experiment, we additionally compute the state space
differences of the minimized MH-NBTA and the non-minimized MH-NBTA:

Red. by total NBTA Min.: |N0|−|N4|
|N0|

Red. by total ABTA Min. + MH.: |N ′
0|−|N0|
N ′

0

Red. by total ABTA Min. + MH + Red. by total NBTA Min.: |N ′
0|−|N4|
|N ′

0|

5.3.1 Experiments of Type 1

We run the experiment of type 1 on six types of ABTA or rather CTL-Formulas.
The number of different atomic propositions in a generated CTL-formula is al-
ways 2. The number of operators in a CTL-formula is either 10, 20 or 30. We
consider two probability distributions of the operators in the CTL-Formulas.
The first is ”with all operators”, whereas the second is ”without AG, EG, AF
and EF”.

The first distribution P1 is:

Neg: 20 %, AND: 20%, OR: 20%,
EX: 5 %, AX: 5 %, EU: 5 %, AU: 5 %
EG: 5 %, AG: 5 %, EF: 5 %, AF: 5 %

35

Exp. 1 (10 Op.) Exp. 2 (20 Op.) Exp. 3 (30 Op.)
ABTA Min.: 50 % (1000) 60 % (1000) 70 % (1000)

Empty S. E.: 36 % (1000) 42 % (1000) 52 % (1000)
Universal S. E.: 15 % (736) 24 % (735) 29 % (658)
Direct Quot.: 7 % (600) 7 % (554) 8 % (486)
Delayed Quot.: 2 % (600) 2 % (554) 2 % (486)

(The numbers in brackets are the numbers of ABTA on which the technique has
been applied)

Experiment 1 shows a total reduction of an ABTA of 50 % in average and by
increasing the number of operators for a formula, the total reductions increase
as well. (see Experiment 2 and 3)

Most of the reduction is achieved by the elimination of trivial states. For ex-
ample, in experiment 3, the elimination of empty states reduces 1000 ABTA by
52 % in average whereas 342 automata are minimized to the empty automaton.
Furthermore, the elimination of universal states reduces 658 ABTA by about
29 % in average whereas 172 automata are minimized to an universal automaton.

Now, we consider a second distribution P2:

Neg: 20 %, AND: 20 %, OR: 20 %,
EX: 10 %, AX: 10 %, EU: 10 %, AU: 10 %
EG: 0 %, AG: 0 %, EF: 0 %, AF: 0 %

Exp. 4 (10 Op.) Exp. 5 (20 Op.) Exp. 6 (30 Op.)
ABTA Min.: 8 % (1000) 13 % (1000) 16 % (1000)

Empty S. E.: 3 % (1000) 5 % (1000) 6 % (1000)
Universal S. E.: 2 % (979) 3 % (967) 4 % (964)
Direct Quot.: 3 % (937) 5 % (912) 6 % (915)
Delayed Quot.: 1 % (937) 1 % (912) 1 % (915)

Without the operators AG, EG, AF, EF, the total reductions of the ABTA
is at most 16 %. The reason for these relatively sparse reductions is that the
probability of unsatisfiable subformulas and tautologic subformulas in a CTL-
formula with AG, EG, AF, EF is much higher than without these operators.
As a result, the ABTA of experiment 1-3 have much more empty and universal
states than the ABTA of experiment 4-6.

5.3.2 Experiments of Type 2

For these experiments, we reduce the number of operators in a CTL-formula to
15 in order to avoid a time blowup. The number of different atomic propositions
in a CTL-formula is again 2. We use the same distributions of operators, namely
P1 and P2, as in the experiments of type 1.

36

Exp. 7 Exp. 8
(15 Op., P1) (15 Op., P2)

ABTA Min.: 55 % (1000) 10 % (1000)
NBTA Min.: 23 % (551) 33 % (917)
ABTA Min. + MH.: 60 % (1000) 10 % (1000)
ABTA Min. + MH. + NBTA Min.: 70 % (1000) 39 % (1000)

ABTA Empty States Elim.: 39 % (1000) 4 % (1000)
ABTA Universal States Elim.: 21 % (715) 3 % (972)
ABTA Direct Quot.: 6 % (551) 4 % (917)
ABTA Delayed Quot.: 2 % (551) 1 % (917)

NBTA Empty States Elim.: 4 % (551) 6 % (917)
NBTA Universal States Elim.: 0 % (537) 0 % (875)
NBTA Direct Quot.: 18 % (537) 26% (875)
NBTA Delayed Quot.: 4 % (537) 7 % (875)

As in experiment 1, the ABTA of experiment 7 are reduced by about 55 %
whereas 449 are reduced to the empty or universal automaton. Hence there are
also high average size difference between the MH-NBTA N0 and the MH-NBTA
N ′0 of 60 %. Furthermore, experiment 7 shows that the minimization of the
551 MH-NBTA leads to a reduction of 23 % in average whereas most of the
reduction is achieved by direct simulation-based quotienting.

All in all, the blowup of the MH-construction is reduced to 70 % due to
minimization. The simple elimination of trivial states on ABTA and the direct
simulation-based quotienting on the MH-NBTA contribute most of the reduc-
tion gain.

Experiment 8 shows almost no reductions due to the minimization tech-
niques for ABTA, but the 917 MH-NBTA are reduced by 33 % in average. As
in experiment 7, the direct simulation-based quotienting contributes most of
the reduction gain (26 %). Totally, for these ABTA, the blowup of the MH-
construction is reduced by 39 %.

6 Summary and Conclusions

In Chapter 3, we presented simple techniques for removing trivial states of an
ABTA. The detection of the trivial states is based on parity games, which are
modifications of the acceptance game for Büchi tree automata. We showed that
these games are correct and efficiently solvable in O(nm2), but incomplete for
ABTA.

In Chapter 4, we have adapted direct, delayed and fair simulation relations to
alternating Büchi tree automata and studied how useful they are for minimiza-
tion. As a result, simulation relations are even for tree automata an appropri-
ate method for checking language containment and state space reductions. We

37

showed that direct and delayed simulation-based quotienting on ABTA are lan-
guage preserving, as in the case of Büchi word automata. Also, we analyzed the
complexities for computing the simulation relations and we can state that they
can be computed efficiently, namely in O(mkn(m + kn)), O(m2kn(m+ kn)2)
and O(m2kn(m+ kn)2) for direct, delayed and fair simulation, respectively.

We have implemented a prototypical system for our methods. Chapter 5
describes this prototype and experiments for benchmarking the minimization
techniques. We investigated the average reduction of two types of ABTA and
the average reduction of the blowup of ABTA that can occur due to the Miyano-
Hayashi construction.

The simulation-based methods for ABTA and the delayed simulation-based
quotienting for the MH-NBTA did not achieve much reduction gains. Since MH-
NBTA can be relatively huge, the minimization techniques could be expensive.
Thus, in particular for delayed simulation-based quotienting, the reduction gain
compared to the cost might not pay off. Unlike, the elimination of trivial states
of certain ABTA and the direct simulation-based quotienting of MH-NBTA
achieved high reductions.

All in all, ABTA of type 1 were reduced by up to 70 % and the blowups
of ABTA of type 1 and type 2 were reduced by 70 % and 39 %, respectively.
Consequently, we conjecture that our minimization techniques might be of con-
siderable use for the ABTA employed in verification and synthesis processes.

38

References

[1] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi.
Alternating refinement relations. In CONCUR ’98: Proceedings of the 9th
International Conference on Concurrency Theory, pages 163–178, London,
UK, 1998. Springer-Verlag.

[2] J. Richard Büchi. Weak second-order arithmetic and finite automata.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 6:66–
92, 1960.

[3] J. Richard Büchi. On a decision method in restricted second-order arith-
metic. In E. Nagel, P. Suppes, and A. Tarski, editors, Logic, Methodology,
and Philosophy of Science: Proc. of the 1960 International Congress, pages
1–11. Stanford University Press, 1962.

[4] Orna Bernholtz and Moshe Y. Vardi. An automata-theoretic approach to
branching-time model checking. In Journal of the ACM, pages 142–155.
Springer-Verlag, 1994.

[5] J.A. Brzozowski and E. Leiss. Finite automata, and sequential networks.
volume 10, pages 19–25, 1980.

[6] Ahmed Saoudi David E. Muller and Paul E. Schupp. Weak alternating
automata give a simple explanation of why most temporal and dynamic
logics are decidable in exponential time. In In 3rd IEEE Ann. Symp. on
Logic in Computer Science, pages 422–427, 1988.

[7] David L. Dill, Alan J. Hu, and Howard Wong-Toi. Checking for language
inclusion using simulation preorders. In Computer Aided Verification, pages
255–265, 1991.

[8] E. Allen Emerson and Chin-Laung Lei. Temporal model checking under
generalized fairness constraints. In 18th Hawaii International Conference
on System Sciences, pages 277–288, 1985.

[9] E. Allen Emerson and Chin-Laung Lei. Modalities for model checking:
branching time logic strikes back. Sci. Comput. Program., 8(3):275–306,
1987.

[10] K. Etessami and G. Holzmann. Optimizing Büchi automata. In Proceedings
of 11th Int. Conf. on Concurrency Theory (CONCUR), 2000.

[11] Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair simula-
tion relations, parity games, and state space reduction for buechi automata.
In ICALP ’01: Proceedings of the 28th International Colloquium on Au-
tomata, Languages and Programming,, pages 694–707, London, UK, 2001.
Springer-Verlag.

39

[12] Carsten Fritz and Thomas Wilke. Simulation relations for alternating Büchi
automata. Theor. Comput. Sci., 338(1-3):275–314, 2005.

[13] Yuri Gurevich and Leo Harrington. Trees, automata, and games. In STOC
’82: Proceedings of the fourteenth annual ACM symposium on Theory of
computing, pages 60–65, New York, NY, USA, 1982. ACM.

[14] Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani. Fair
simulation. In In CONCUR 97: Theories of Concurrency, Lecture Notes
in Computer Science, volume 1243, pages 273–287. Springer-Verlag, 1997.

[15] Gerard J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279–295, 1997.

[16] Marcin Jurdziński. Small progress measures for solving parity games. In
Horst Reichel and Sophie Tison, editors, STACS 2000, 17th Annual Sym-
posium on Theoretical Aspects of Computer Science, Proceedings, volume
1770 of Lecture Notes in Computer Science, pages 290–301, Lille, France,
February 2000. Springer-Verlag.

[17] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. Journal of the ACM,
47(2):312–360, 2000.

[18] Leslie Lamport. ”Sometime” is sometimes ”not never”: on the temporal
logic of programs. In POPL ’80: Proceedings of the 7th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 174–
185, New York, NY, USA, 1980. ACM.

[19] Robert McNaughton. Infinite games played on finite graphs. Ann. Pure
Appl. Logic, 65(2):149–184, 1993.

[20] Robin Milner. An algebraic definition of simulation between programs. In
IJCAI, pages 481–489, 1971.

[21] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-
words. Theor. Comput. Sci., 32:321–330, 1984.

[22] David E. Muller and Paul E. Schupp. Simulating alternating tree automata
by nondeterministic automata: new results and new proofs of the theorems
of Rabin, McNaughton and Safra. Theor. Comput. Sci., 141(1-2):69–107,
1995.

[23] M.O. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the AMS, 141:1–35, 1969.

[24] Fabio Somenzi and Roderick Bloem. Efficient Büchi automata from LTL
formulae. In CAV 2000, LNCS, volume 1855, pages 247–263. Springer-
Verlag, 2000.

40

[25] Moshe Y. Vardi. Alternating automata and program verification. In In
Computer Science Today. LNCS, volume 1000, pages 471–485. Springer-
Verlag, 1995.

[26] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Banff Higher Order Workshop, pages 238–266, 1995.

41

