
Parity and Generalised Büchi Automata
Determinisation and Complementation

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of

Doctor in Philosophy

by

Praveen Thomas Methrayil Varghese

November 2014

Department of Computer Science

Thesis committee: Prof. Dr. Wolfgang Thomas and Dr. Dominik Wojtczak
Supervisory team: Dr. Sven Schewe (Primary) and Prof. Dr. Frank Wolter (Sec-
ondary)
Date of examination: 20 January 2015

ii

Abstract

In this thesis, we study the problems of determinisation and complementation of
finite automata on infinite words. We focus on two classes of automata that occur
naturally: generalised Büchi automata and nondeterministic parity automata. Gen-
eralised Büchi and parity automata occur naturally in model-checking, realisability
checking and synthesis procedures. We first review a tight determinisation procedure
for Büchi automata, which uses a simplification of Safra trees called history trees. As
Büchi automata are special types of both generalised Büchi and parity automata, we
adjust the data structure to arrive at suitably tight determinisation constructions for
both generalised Büchi and parity automata.

As the parity condition describes combinations of Büchi and CoBüchi conditions,
instead of immediately modifying the data structure to handle parity automata,we
arrive at a suitable data structure by first looking at a special case, Rabin automata
with one accepting pair. One pair Rabin automata correspond to parity automata
with three priorities and serve as a starting point to modify the structures that result
from Büchi determinisation: we then nest these structures to reflect the standard
parity condition and describe a direct determinisation construction.

The generalised Büchi condition is characterised by an accepting family with k
accepting sets. It is easy to extend classic determinisation constructions to handle
generalised Büchi automata by incorporating the degeneralization algorithm in the
determinisation construction. We extend the tight Büchi construction to do exactly
this.

Our determinisation constructions go to deterministic Rabin automata. It is
known that one can determinise to the more convenient parity condition by incor-
porating the standard Latest Appearance Record construction in the determinisation
procedure. We determinise to parity automata using this technique.

We prove lower bounds on these constructions. In the case of determinisation to
Rabin automata, our constructions are tight to the state. In the case of determini-
sation to parity, there is a constant factor ≤ 1.5 between upper and lower bounds
reducing to optimal(to the state) in the case of Büchi and 1-pair Rabin.

We also reconnect tight determinisation and complementation and provide con-
structions for complementing generalised Büchi and parity automata by starting with
our data structure for determinisation. We introduce suitable data structures for the
complementation procedures based on the data structure used for determinisation.
We prove lower bounds for both constructions that are tight upto an O(n) factor
where n is the number of states of the nondeterministic automaton that is comple-
mented.

iii

iv

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Sven Schewe. I started
my research based on his work about determinising Büchi automata and I am amazed
that this particular problem evolved into the papers we published and finally became
the backbone of this thesis. I owe my progress as a researcher to his supervision. I
am also thankful to him for his friendship, pleasant company and the coffee breaks
that brightened up the great British weather and that led to my coffee addiction.

My introduction to this line of research was Wolfgang Thomas’ excellent survey
on ‘Languages, Automata, and Logic’. It is my great privilege to have had such a
distinguished scientist as Wolfgang on my thesis examination committee along with
Dominik Wojtczak. Their examination of my thesis gave me more perspective on
my research and I thank them for their helpful comments which have improved my
thesis greatly.

It was good fun to work with Ashutosh Trivedi on strategy improvement. I learnt
a lot about a topic I had not worked on before and this work with Ashu and Sven
led to a paper at ICALP. I am especially grateful for his great company on several
evenings out in Liverpool.

I want to thank my colleagues in Liverpool – Petar Iliev, John Fearnley, Amir
Kermani, Anshul Gupta, Ana Ozaki, Will Gatens, Julio Lemos and André Hernich.
Thank you for all the inspiring, and even the random discussions over coffee, for the
reading group and for making my time as a Ph.D. student more pleasurable.

Nir Piterman got me started with ω-automata when I was a Master’s student at
Leicester. I would not have been a researcher were it not for his supervision of my
Master’s thesis and for this I am eternally indebted.

I wish to thank the EPSRC and the Department of Computer Science for support-
ing my Ph.D. studies financially, especially the Department of Computer Science for
providing a good research environment.

My time in Liverpool would have been a lot less enjoyable had I not met Gary,
Hannah, Olivia and Nahum. Thank you Worralls for providing a place for me to stay,
for feeding me, and for all the good times.

Finally, to my family. I dedicate this thesis to them. Mum, Dad and Monica, thank
you for everything.

v

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise, that this work was undertaken

during my period of study at the University of Liverpool and has not been submitted

for any other degree or professional qualification except as specified.

The first section of chapter 3 contains a construction from [Sch09b]. This con-

struction is modified to suit transition-labeled automata as input but the technical

details are almost the same.

The technical parts of this thesis are contained in Chapters 3, 4 and 5. These are

a result of joint research with Sven Schewe. Most of these results were published in

ATVA 2012([SV12]) and MFCS 2014 ([SV14a] and [SV14b]).

vii

viii

Contents

Abstract iii

Acknowledgements v

Declaration vii

1 Introduction 1

1.1 Determinisation of ω-automata . 4

1.1.1 Timeline of complexity results 6

1.2 Complementation of ω-automata . 7

1.2.1 Timeline of complexity results 10

1.3 Structure of thesis . 10

2 Preliminaries & problem statements 13

2.1 Preliminaries . 13

2.2 Current results for determinisation and complementation 17

2.3 Problem statements . 18

3 Determinisation constructions 19

3.1 Determinising Büchi automata . 19

3.1.1 History trees . 20

3.1.2 Construction . 21

3.1.3 Correctness . 25

3.2 Towards the determinisation of parity automata 29

3.2.1 Root history trees . 29

3.2.2 Construction . 30

3.3 Determinising parity automata . 36

3.3.1 Construction. 38

ix

3.3.2 Correctness . 41

3.4 Determinising generalised Büchi automata 47

3.4.1 Generalised history trees . 47

3.4.2 Determinisation construction 48

3.5 Estimations . 52

3.5.1 Estimation of the number of history trees 52

3.5.2 Estimation of the number of Root History Trees 52

3.5.3 Estimation of the number of generalised history trees 53

3.6 Determinising to parity automata . 54

3.6.1 From nondeterministic parity, 1-pair Rabin, and Büchi au-

tomata to deterministic parity automata 55

3.6.2 From Generalised Büchi automata to deterministic parity au-

tomata . 60

3.7 Summary . 62

4 Lower bounds for determinisation 63

4.1 Technical preliminaries . 63

4.1.1 Full parity automata . 63

4.1.2 Full Generalised Büchi automata 64

4.1.3 Language games . 64

4.1.4 Restricting the reachability set 65

4.2 Lower bounds for parity determinisation 67

4.2.1 To deterministic Rabin automata. 68

4.2.2 To deterministic parity automata. 73

4.3 Generalised Büchi lower bounds . 81

4.3.1 To deterministic Rabin automata 82

4.3.2 To deterministic parity automata 84

4.4 Summary . 86

5 Complementation 89

5.1 Complementing nondeterministic Generalised Büchi automata and

Büchi automata . 90

5.1.1 Complexity of complementing generalised Büchi automata . . . 93

5.2 Complementing parity automata . 95

5.2.1 Flattened nested history trees & marked flattened trees 97

5.2.2 Construction . 99

5.2.3 Correctness . 100

5.2.4 Lower bound and tightness . 105

x

6 Summary and discussion 113

6.1 Summary of results . 113

6.2 Discussion . 115

xi

xii

Chapter 1
Introduction

Finite automata on infinite structures and finite games of infinite duration are two

theories that have often influenced each other, both having been inspired by Church’s

realisability problem [Chu62]. The term "ω-automata" generally refers to finite au-

tomata that accept or reject words of infinite length, or, ω-words. ω-automata were

first introduced in Büchi’s decidability proof for the monadic second-order logic of

one successor (S1S) [Büc62]. Following from Büchi’s result, they have formed the

basis for the theories of model checking, realisability checking, and synthesis proce-

dures for linear time temporal logic (LTL) [Pnu77].

The ω-automata introduced by Büchi (that were subsequently named after him)

extend the well known theory of finite automata on finite words to languages over

infinite words. Büchi automata are the most studied form of ω-automata. They

extend finite automata in the sense that, while finite runs of finite automata are

accepting if an accepting state is visited at the end of the run, an infinite run of a

Büchi automaton is accepting if a final state is visited (or a final transition is taken)

infinitely many times during the course of the run. The Büchi acceptance condition

thus specifies a set of states(or transitions) that have to be visited(respectively, taken)

infinitely often.

Although the connection to finite automata on finite words might seem to sug-

gest that automata manipulations for Büchi automata are equally simple, this is un-

1

fortunately not the case. In particular, Büchi automata are not closed under de-

terminisation. While finite automata can simply be determinised with the subset

construction [RS59], it turns out that deterministic Büchi automata do not recognise

the same languages as nondeterministic Büchi automata. For example, deterministic

Büchi automata cannot recognise the simple ω-regular language that consists of all

infinite words that contain only finitely many 0’s over an alphabet {0, 1}.

As a consequence of McNaughton’s result, there arose a need for more spe-

cific acceptance conditions, such as Muller’s subset condition, Rabin’s pairs condi-

tion [Rab69] or its dual, the Streett condition [Str82], or the parity condition. Yan

established an nΩ(n) lower bound for the determinisation of Büchi automata [Yan08]

even for determinising to Muller automata, which implies that the standard subset,

or a breakpoint construction is not enough.

A related acceptance condition to the Büchi condition is the generalised Büchi

condition, which comprises of an accepting family. It requires that a final state (or

final transition) from each accepting set is visited (respectively, is taken) infinitely

many times. The standard translation from LTL to ω-automata [GPVW95] goes to

generalised Büchi automata with the acceptance condition on the transitions.

In this thesis, we study the problems of the determinisation and complementation

of nondeterministic Büchi, generalised Büchi, and parity automata. We have already

outlined the importance of Büchi automata in the context of verification. The stan-

dard translation from LTL to automata results in generalised Büchi automata. Parity

automata are also particularly important, given that the parity condition naturally

recognizes languages specified by fixed-point expressions. Although nondeterminis-

tic parity automata are as equally expressive as Büchi automata, as they are more

succinct, they can easily encode other conditions, such as the intersection of Büchi

and co-Büchi conditions.

We study transition-labeled automata in this thesis. Transition-based acceptance

mechanisms have proven to be a more natural target of automata transformations.

A generalisation of the ranking-based complementation procedures quoted above to

2

transition-based acceptance is straight forward, and the Safra-style determinisation

procedures from the literature [Saf88, Saf92, Pit07, Sch09b] have a natural represen-

tation with an acceptance condition on transitions. Their translation to state-based

acceptance is by multiplying the acceptance from the last transition to the statespace.

A similar observation can be made for other automata transformations, like the

removal of ε-transitions from translations of µ-calculi [Wil01, SF06a] and the treat-

ment of asynchronous systems [SF06b], where the state-space grows by multipli-

cation with the acceptance information (e.g., maximal priority on a finite sequence

of transitions), while it cannot grow in case of transition-based acceptance. Sim-

ilarly, tools like SPOT [Dur14] offer more concise automata with transition-based

acceptance mechanism as a translation from LTL. Using state-based acceptance in

the automaton that we want to determinise or complement would also complicate

the presentation of the complementation procedure. But first and foremost, using

transition-based acceptance provides cleaner results.

This is the case because in state-based acceptance, the role of the states is over-

loaded. In finite automata over infinite structures, each state represents the class of

tails of the word that can be accepted from this state. In state-based acceptance, they

have to account for the acceptance mechanism itself, too, while they are relieved

from this burden in transition-based acceptance. In complementation techniques

based on rankings, this results in a situation where states with certain properties,

such as final states for Büchi automata, can only occur with some ranks, but not with

all.

As transition-based acceptance separates these concerns, the presentation be-

comes cleaner. The natural downside is that, for example, we lose the nO(n) bound

[CZ11b] for parity complementation, as the number of priorities in a parity automa-

ton with transition-based acceptance can grow arbitrarily. But in return, we do get a

clean and simple complementation procedure.

3

1.1 Determinisation of ω-automata

The determinisation of ω-automata was a key step in Rabin’s extension of Büchi’s

proof to the case of trees [Rab69]. Rabin’s proof built on McNaughton’s dou-

bly exponential determinisation construction [McN66]. Safra was the first to in-

troduce singly-exponential determinisation constructions for Büchi [Saf88] and

Streett [Saf92] automata and current determinisation techniques [Pit07, Sch09b]

build on Safra’s work. For instance, Schewe’s determinisation technique for Büchi

automata yielding deterministic Rabin automata[Sch09b] builds on Safra’s [Saf88]

and Piterman’s [Pit07] determinisation procedures. It uses a separation of concern,

where the main acceptance mechanism, represented by history trees, is separated

from the formal acceptance condition, e.g., a Rabin (used by [Saf88, Saf92]) or par-

ity condition (used by [Pit07]). History trees can be seen as a simplification of Safra

trees [Saf88]. In a nutshell, they represent a family of breakpoint constructions:

sufficiently many to identify an accepting run, and sufficiently few to be concise.

There are also other constructions that tackle determinisation from a different

viewpoint. An example is Muller and Schupp’s [MS95] presentation of a nondeter-

minisation technique for alternating tree automata shows a connection to the de-

terminisation of finite automata on infinite words. Kähler and Wilke build on this

construction in [KW08]. Although they start from a different viewpoint, their method

seems to converge with the Safra-based constructions.

In this thesis, we adapt Schewe’s determinisation procedure [Sch09b] to deter-

minise parity automata. We investigate what is required to handle such an adap-

tation and devise a similar determinisation procedure for nondeterministic parity

automata.

We also consider generalised Büchi automata. There are several ways to deter-

minise a generalised Büchi automaton with n states and k accepting sets. One could

start with translating the resulting generalised Büchi automaton first to an ordinary

nondeterministic Büchi automaton with nk states and a single accepting set, result-

4

ing in a determinisation complexity of roughly (nk)O(nk) states, or one could treat it

as a Streett automaton, which is equally expensive and has a more complex deter-

minisation construction.

Schewe’s determinisation procedure [Sch09b] again proves to be an easy target

for generalisation, because it separates the representation of the history of a run

from the acceptance condition. To extend this technique from ordinary to gener-

alised Büchi, it suffices to apply a round-robin approach to all breakpoints under

consideration. That is, each subset is enriched by a natural number identifying the

accepting set, for which we currently seek to see the following breakpoint. Each time

a breakpoint is reached, we turn to the next accepting set. Note that this algorithm

is a generalisation in the narrower sense: in case that there is exactly one accept-

ing set, it behaves exactly as the determinisation procedure for Büchi automata in

[Sch09b]. An algorithm to determinise generalised Büchi automata to deterministic

parity automata using this method was used in [KPV06], similarly extending Piter-

man’s construction [Pit07, LW09].

The constructions in this thesis provide Rabin automata as output. We give es-

timations of the size of the deterministic automata. In the case of nondeterministic

generalised Büchi automata, we find that for an automaton with n states and k ac-

cepting sets, we get a deterministic Rabin automaton with ghtk(n) states and 2n − 1

Rabin pairs. The function ghtk(n)(enumerating the number of possible states of the

deterministic automaton) is approximately (1.65n)n for k = 1, (3.13n)n for k = 2,

and (4.62n)n for k = 3, and converges against (1.47kn)n for large k. These bounds

can also be used to establish smaller maximal sizes of minimal models, which is

useful for Safraless determinisation procedures [KV05, FS13, KPV06]. For the trans-

formation to deterministic parity automata from [Sch09b], we obtain an automaton

with O(n!2 kn) states and 2n+ 1 priorities.

In the case of nondeterministic parity automata, we do not provide a similar

estimation for the size of the deterministic automata (except for the simple cases of

5

Büchi and 1-pair Rabin automata), but we show tightness up to a constant factor of

1.5.

Our constructions lead to deterministic Rabin automata as targets. While these

constructions are tight with respect to the number of states of the deterministic

automaton, the acceptance condition is exponential in the number of Rabin pairs.

Determinising to parity automata seems to be an even more attractive target since

emptiness games for parity automata [Sch07, JPZ08] have a lower computational

complexity compared to emptiness games for Streett or Rabin automata [PP06]. We

therefore show how we can obtain deterministic parity automata in each case by

using our construction to deterministic Rabin automata as an intermediate step.

Colcombet and Zdanowski [CZ09] showed that Schewe’s determinisation pro-

cedure for Büchi automata is optimal. We extend this lower bound to generalised

Büchi automata and parity automata generalising their techniques, showing that the

determinisation procedures are optimal.

1.1.1 Timeline of complexity results

We give here a timeline of the sequence of results with respect to the determinisation

problem for Büchi automata.

Target automaton Complexity
1966 - McNaughton Deterministic Muller 22O(n)

1988 - Safra Deterministic Rabin nO(n), ≈ 12n n2n

2006 - Piterman Deterministic parity ≈ n!nn

2009 - Liu and Wang, separately -Schewe Deterministic parity ≈ n!2

2009 - Schewe Deterministic Rabin trace ≈ (1.65n)n

2009 - Colcombet and Zdanowski Deterministic Rabin trace θ(1.65n)n

Table 1.1: Determinisation timeline for Büchi automata

In the case of Büchi determinisation, the best current determinisation proce-

dure that determinises to Rabin automata is Schewe’s construction [Sch09b]. A

tight matching bound for this construction is shown by Colcombet and Zdanowski in

[CZ09]. The best current determinisation procedure that produces parity automata

6

as output is Piterman’s construction [Pit07]. We show in this thesis that the con-

struction in [Pit07] is optimal.

For generalised Büchi automata, a construction that is similar to Piterman’s Büchi

determinisation construction is shown in [KPV06]. This is the construction with the

best upper bound. We provide a matching lower bound for this construction. We also

provide matching upper and lower bounds for the determinisation of generalised

Büchi automata to deterministic Rabin automata.

There are two ways to determinise parity automata. One could convert them first

to Büchi automata and then apply one of the above constructions on them. The other

way is to directly determinise. We provide the first direct determinisation procedure

for parity automata along with tight bounds for the construction.

1.2 Complementation of ω-automata

The earliest results on ω-automata involved the complementation problem. Büchi’s

seminal paper [Büc62] on the correspondence between logic and automata showed

that Büchi automata are closed under complementation and introduced a comple-

mentation algorithm that uses Ramsey theory. Later results in the field of formal veri-

fication established the importance of the complementation problem for ω-automata,

for e.g., the language inclusion problem uses complementation [Kur94]. Another

important use of complementation is in checking the correctness of translation tech-

niques [Var07, TTH13a]. The GOAL tool [TTH13a] shows this with a test suite that

incorporates recent algorithms [Saf88, Tho99, KV01, Pit07] for Büchi complementa-

tion.

Given the importance of this problem, it is not surprising that the complemen-

tation of ω-automata is much researched. In particular, there has been a long and

fruitful quest for the exact complexity of complementation algorithms for Büchi au-

tomata [Büc62, SS78, Péc86, PSVW87, Saf88, Mic88, Tho99, Löd99, KV01, GKSV03,

7

FKV06, Pit07, Var07, Yan08]. We will highlight some of the important results with

respect to this problem now.

The first important result with respect to the complementation of ω− automata

is Büchi’s proof that nondeterministic Büchi automata are closed under complemen-

tation. Using a Ramsey-based argument Büchi came up with a doubly-exponential

complementation algorithm [Büc62]. This is much harder than complementing fi-

nite automata on finite words — an exponential determinisation procedure followed

by a reversal of final states yields an efficient complementation algorithm that is ex-

ponential. The complexity of the determinisation problem for ω-automata rules out

an analogous algorithm with similar complexity.

Further results on the complexity of the complementation problem followed in

the late 1980s, starting with the discovery of an EXPTIME upper bound [Péc86,

PSVW87]. There was a caveat: the complementation techniques used produced

automata with up to 2O(n2) states, meaning that there was still an exponential gap

to the lower bounds of Sakoda and Sipser for the case of automata on finite words.

Safra’s brilliant algorithm for the determinisation of Büchi automata suggested

a nO(n) bound for Büchi complementation, an upper bound that was seemingly

matched by Max Michel’s [Mic88] Ω(n!) lower bound implying that Büchi comple-

mentation is in nθ(n), suggesting that Safra’s determinisation procedure also resulted

in tight complementation.

However, Vardi [Var07] rightly pointed out that this impression of tightness was

in fact not true, because the big-Oh notation in the exponent hides an nθ(n) gap

between upper and lower bounds.

It turns out that complementation procedures for ω-automata are more efficient

than determinisation, contrary to the case of finite words. By studying alternating

automata, complementation procedures that bypassed determinisation were found.

The gap between upper ((6n)n) and lower bounds (from Michel) was then nar-

rowed down to 2θ(n) by techniques that observe the run graphs of alternating au-

tomata [KV01].

8

A further refinement of the above complementation technique builds on "tight

level rankings" [FKV06, Yan08] improving the upper bound to O
(
(0.96n)n

)
.

Yan [Yan08] using full automata improved the lower bound for complementation to

Ω
(
(0.76n)n

)
. Finally, Schewe [Sch09a] provided a matching upper bound, showing

tightness up to an O(n2) factor reducing to an O(n) factor for trace languages.

For Rabin, Streett, and parity automata, there has been much progress [CZL09,

CZ11b, CZ11a], in particular establishing an nθ(n) bound for parity complementa-

tion with state-based acceptance, which has been a great improvement and pushed

tightness of parity complementation to the level known from Büchi complementation

since the late 80s [Saf88, Mic88].

In this thesis, we discuss a bridge between optimal determinisation and tight

complementation. We show how the nondeterministic power of an automaton can

be exploited by using a more concise data structure compared to determinisation (flat

trees instead of general ones). In the case of generalised Büchi automata, this bridge

again results in a generalisation of the Büchi complementation procedure discussed

in [Sch09a] in the narrower sense: for one accepting set, the resulting automata

coincide. We also provide a matching lower bound: we show for alphabets Lkn that

the size of a generalised Büchi automaton that recognises the complement of a full

generalised Büchi automaton with n states and k accepting sets must be larger than

|Lkn|, while the ordinary Büchi automaton we construct is smaller than |Lk+1
n+1|. For

large k – that is, if k is not small compared to n – |Lkn| is approximately
(
kn
e

)n. This

improves significantly over the
(
Ω(nk)

)n bound established by Yan [Yan08].

We then establish tight bounds for the complementation of parity automata with

transition-based acceptance. We get a clean and simple complementation procedure

based on a data structure we call flattened nested history trees (FNHTs), which is

inspired by a generalisation of history trees to multiple levels, one for each even

priority≥ 2. We show that any procedure that determinises full parity automata with

states Q and maximal priority π has at least fnht(Q, π)/2 states, where fnht(Q, π) is

the set of FNHTs for a given set Q of states and maximal priority π of the parity

9

automaton that is to be complemented. Our complementation construction uses a

marker in addition for its acceptance mechanism. Essentially, it is used to mark some

position of interest in an FNHT. It accounts for the O(n) gap between the upper and

lower bound. We show that, for π ≥ 2 (and hence for Büchi automata upwards) the

number of states of our complementation construction is bounded by 4n + 1 times

the lower bound.

1.2.1 Timeline of complexity results

We show here the timeline of results with respect to Büchi complementation.

Complexity
1966 - Büchi 22O(n)

1986 - Pecuchet 2O(n2)

1987 - Sistla, Vardi, Volper 2O(n2)

1988 - Safra nO(n)

1988 - Michel nΩ(n)

1991 - Klarlund O
(
(6n)n

)
1997 - Kupferman, Vardi O

(
(6n)n

)
2004 - Friedgut, Kupferman, Vardi o

(
(1.06n)n

)
2006 - Yan ω

(
(0.76n)n

)
2006 - Friedgut, Kupferman, Vardi o

(
(0.97n)n

)
2009 - Schewe o

(
(0.76n)n

)
Table 1.2: Timeline of complementation complexity results

In this thesis, we introduce direct complementation procedures for generalised

Büchi and parity automata and provide tight bounds.

1.3 Structure of thesis

In Chapter 2, we define the necessary ideas needed for the problems of determinisa-

tion and complementation. We describe different acceptance types of automata and

mention the folk results in this field.

In Chapter 3, we tackle the determinisation of several types of automata. We

first review the tight Büchi construction. We then take a step towards the determini-

sation of parity automata by looking at the determinisation of a special case: Rabin

10

automata with one accepting pair. We then expand the data structure required to

describe the state of the deterministic automaton for the case of parity determinisa-

tion and provide a construction to directly determinise parity automata. Next, we

provide a construction to determinise generalised Büchi automata. All these con-

structions provide Rabin automata as output. We give estimations of the size of the

deterministic automata. We then show how we can determinise to deterministic

parity automata and we give estimations for these procedures.

In Chapter 4, we prove lower bounds for our constructions.

In Chapter 5, we discuss a bridge between optimal determinisation and tight

complementation and show tight bounds for our complementation procedures.

In Chapter 6, we discuss our results.

11

12

Chapter 2
Preliminaries & problem statements

2.1 Preliminaries

We denote the set of non-negative integers by ω, i.e. ω = {0, 1, 2, 3, ...}. For a finite

alphabet Σ, an infinite word α is an infinite sequence α0α1α2 · · · of letters from Σ.

We sometimes interpret ω-words as functions α : i 7→ αi, and use Σω to denote the

ω-words over Σ.

Automata on infinite words. ω-automata are finite automata that are interpreted

over infinite words and recognise ω-regular languages L ⊆ Σω. Nondeterministic

ω-automata are quintuples N = (Q,Σ, I, T,F), where,

• Q is a finite set of states,

• I is a non-empty subset I ⊆ Q of initial states,

• Σ is a finite alphabet,

• T : Q× Σ×Q is a transition relation that maps states and input letters to sets

of successor states and,

• F is an acceptance component. In this thesis, we consider Rabin, Streett, parity,

Büchi and generalised Büchi acceptance.

13

Runs and transitions. A run ρ of a nondeterministic ω-automaton N on an input

word α is an infinite sequence ρ : ω → Q of states ofN , also denoted ρ = q0q1q2 · · · ∈

Qω, such that the first symbol of ρ is an initial state q0 ∈ I and, for all i ∈ ω,

(qi, αi, qi+1) ∈ T is a valid transition.

For a run ρ on a word α, we denote with ρ : i 7→
(
ρ(i), α(i), ρ(i+1)

)
the transitions

of ρ. Let infin(ρ) = {q ∈ Q | ∀i ∈ ω ∃j > i such that ρ(j) = q} denote the set of

all states that occur infinitely often during the run ρ. Likewise, let infin(ρ) = {t ∈

T | ∀i ∈ ω ∃j > i such that ρ(j) = t} denote the set of all transitions that are taken

infinitely many times in ρ.

For technical convenience we also allow for finite runs q0q1q2 . . . qn with T∩{qn}×

{α(n)} ×Q = ∅. Naturally, no finite run satisfies any ω-acceptance condition. Finite

runs are rejecting, and have no influence on the language of an automaton.

Acceptance conditions. In this thesis, we use acceptance conditions over transi-

tions. Acceptance mechanisms over states can be defined accordingly. Rabin au-

tomata are ω-automata, whose acceptance is referring to a family of pairs {(Ai, Ri) |

i ∈ J}, with Ai, Ri ⊆ T , of accepting and rejecting transitions for all indices i

of some index set J . A run ρ of a Rabin automaton is accepting if there is an in-

dex i ∈ J , such that infinitely many accepting transitions t ∈ Ai, but only finitely

many rejecting transitions t ∈ Rj occur in ρ. That is, if there is an i ∈ J such that

infin(ρ) ∩Ai 6= ∅ = infin(ρ) ∩Ri.

ω-automata that use the complementary Streett condition are called Streett au-

tomata. Their acceptance is defined by a family of pairs {(Gi, Bi) | i ∈ J}, with

Gi, Bi ⊆ T , of good and bad transitions for all indices i of some index set J . A run

ρ of a Streett automaton is accepting if, for all indices i ∈ J , some good transition

t ∈ Gi or no bad transition t ∈ Bj occur infinitely often in ρ. That is, if, for all i ∈ J ,

infin(ρ) ∩Gi 6= ∅ or infin(ρ) ∩Bi = ∅ holds.

One-pair Rabin automata R1 =
(
Q,Σ, I, T, (A,R)

)
, are Rabin automata with a

14

singleton index set, such that we directly refer to the only pair (A,R). They are of

special technical interest in this paper.

Parity automata (first introduced by Mostowski in [Mos84]) are ω-automata,

whose acceptance is defined by a priority function pri : T → Π that maps transi-

tions to a finite set Π ⊂ ω of non-negative integers. A run ρ of a parity automaton

is accepting if lim supn→∞ pri
(
ρ(n)

)
is even, that is, if the highest priority that occurs

infinitely often in the transitions of ρ is even. Parity automata can be viewed as spe-

cial Rabin, or as special Streett automata. In older works, the parity condition was

referred to as Rabin chain condition—because one can represent them by choosing

Ai as the set of states with priority ≤ 2i and Ri as the sets of states with priorities

≤ 2i − 1, resulting in a chain Ai ⊆ Ri ⊆ Ai+1 ⊆ . . .—or a Streett chain condition—

where Gi is the set of states with priority ≥ 2i, and Bi is the set of states with priority

≥ 2i− 1. Some works also refer to the parity condition as the Mostowski condition.

Parity automata with Π ⊆ {1, 2} are called Büchi automata. They can also be

viewed as one-pair Rabin automata with an empty set of rejecting states R = ∅.

Büchi automata are denoted B = (Q,Σ, I, T, F), where F ⊆ T are called the final

or accepting transitions. A run is accepting if it contains infinitely many accepting

transitions. B is thus a rendering of the parity automaton, where pri : t 7→ 2 if t ∈ F

and pri : t 7→ 1 if t /∈ F .

We assume without loss of generality that the set Π of priorities satisfies that

min Π ∈ {0, 1}. If this is not the case, we can simply change pri accordingly to

pri′ : t 7→ pri(t)− 2 several times until this constraint is satisfied. We likewise assume

that Π has no holes, that is, Π = {i ∈ ω | max Π ≥ i ≥ min Π}. If there is a hole

h /∈ Π with max Π > h > min Π, we can change pri to pri′ : t 7→ pri(t) if pri(t) < h and

pri′ : t 7→ pri(t)−2 if pri(t) > h. Obviously, these changes do not affect the acceptance

of any run, and applying finitely many of these changes brings Π into this normal

form.

The different priorities have a natural order <, where i � j if i is even and j

is odd; i is even and i > j; or j is odd and i < j. For a non-empty set Π′ ⊆ Π

15

of priorities, optΠ′ = {i ∈ Π′ | ∀j ∈ Π′. i < j} denotes the optimal priority for

acceptance.

Finally we define generalised Büchi automata that include the acceptance compo-

nent Fi, where Fi is a family of accepting (or final) sets. A run ρ of a generalised

Büchi automaton is accepting if it contains infinitely many transitions from all final

sets (∀i ∈ [k] (where k is the cardinality of Fi), inf (ρ) ∩ Fi 6= ∅).

For all types of automata, a word α is accepted by an automaton A if, and only

if, it has an accepting run, and its language L(A) is the set of words it accepts.

Deterministic automata. We call an automaton (Q,Σ, I, T,F) deterministic if I is

singleton and T contains at most one target node for all pairs of states and input

letters, that is, if (q, α, r), (q, α, s) ∈ T implies r = s. Deterministic automata are

denoted (Q,Σ, q0, δ,F), where q0 is the only initial state and δ is the partial function

with δ : (q, α) 7→ r ⇔ (q, α, r) ∈ T .

As deterministic automata can block, we also allow them to accept immediately.

Technically, one can use a state>which every automaton has. From>, all transitions

go back to >, and sequences that contain one (and thus almost only) > states are

accepting. This state is not counted to the state-space Q. If we want to include it, we

explicitly write Q>.

Theorem 2.1.1 (McNaughton’s Theorem) Let Σ be an alphabet and L ⊆ Σω be a

Büchi recognisable language. Then L is recognised by a deterministic Muller automaton

(and therefore by a deterministic Rabin or parity automaton). [McN66]

Determinisation. For ω-automata, determinisation is a consequence of Mc-

Naughton’s theorem. Given a nondeterministic automaton A recognising a language

L(A), determinisation is a procedure performed on A that returns a deterministic

automaton D recognising the language L(A).

16

Complementation. Given a nondeterministic automatonA recognising a language

L(A), complementation is a procedure performed on A that returns a an automaton

C recognising the complementary language L(A).

2.2 Current results for determinisation and complementa-

tion

Theorem 2.2.1 Given a nondeterministic Büchi automaton with n states, we obtain a

deterministic Rabin automaton with 2O(n log n) states and n Rabin pairs. [Saf88]

The above result establishes asymptotic upper bounds for both determinisation and

complementation of Büchi automata.

Theorem 2.2.2 Given a nondeterministic Büchi automaton with n states, we obtain a

deterministic parity automaton with O(n!2) states and a 2n parity index. [Pit07]

Theorem 2.2.3 Given a nondeterministic Büchi automaton with n states, we obtain a

deterministic Rabin automaton with approximately (1.65n)n states and 2n − 1 Rabin

pairs. [Sch09b]

Theorem 2.2.4 The determinisation construction described in [Sch09b] that takes a

nondeterministic Büchi automaton with n states and returns a eterministic Rabin au-

tomaton with approximately (1.65n)n states and 2n−1 Rabin pairs is tight with respect

to the number of states. [CZ09]

Theorem 2.2.5 The problem of complementing a Büchi automaton is in Ω((0.76n)n).

[Yan08]

Theorem 2.2.6 Given a nondeterministic Büchi automaton with n states, we construct

a Büchi automaton with o
(
(0.76n)n

)
states that accepts the complement language. This

construction meets the lower bound in [Yan08] modulo a factor of O(n2). [Sch09a]

17

Note that the parameter n stands for the number of states in the above state-

ments. Note also that we are primarily concerned with state complexity in this thesis.

Optimising for two parameters, i.e., states and transitions is another question that is

interesting from a technical standpoint.

2.3 Problem statements

In this thesis, we will study the following problems:

1. We are given a nondeterministic parity automaton P. Can we directly deter-

minise P again to a parity automaton without first translating to nondetermin-

istic Büchi automata?

2. Can we prove tight lower bounds for this construction?

3. Can we devise a tight complementation construction to complement P?

4. Given a nondeterministic generalised Büchi automaton GB, can we devise sim-

ilarly tight determinisation and complementation constructions?

18

Chapter 3
Determinisation constructions

In this chapter, we study the problem of determinisation of parity automata and gen-

eralised Büchi automata. We first review the tight construction of Büchi automata

from [Sch09b]. We then take a step towards the determinisation of parity automata

by extending the Büchi determinisation algorithm to a slightly more succinct accep-

tance condition. We then generalise this algorithm to determinise parity automata.

In a different extension, we extend the Büchi determinisation algorithm to deter-

minise generalised Büchi automata. The results in Sections 3.2, 3.3, 3.4 and 3.5 are

published in [SV14a] and [SV12].

3.1 Determinising Büchi automata

In this section, we outline a variant ([Sch09b]) of Safra’s determinisation

construction[Saf88] for Büchi automata. This construction was proved to be tight

in [CZ09]. It is a variant of Safra’s construction in the sense that there is a slight

difference in the data structure used to describe the states of the deterministic au-

tomaton. The construction itself does not differ from Safra’s except with respect to

the changes the difference in the data structure brings to the construction.

19

3.1.1 History trees

Omega automata can have infinitely many possible runs on a given word. Safra trees

introduced in [Saf88] are a succinct representation of the possible initial prefixes of

these runs of a Büchi automaton B on an input word α. History trees, introduced

in [Sch09b] are slightly modified Safra trees and achieve the same objectives. The

main difference between Safra trees and history trees is the omission of explicit node

names.

Definition 3.1.1 A history tree is an ordered labelled tree (T , l), where T is a finite,

prefix closed subset of finite sequences of natural numbers ω. Every element v ∈ T is

called a node. Prefix closedness implies that, if a node v = n1 . . . njnj+1 ∈ T is in

T , then v′ = n1 . . . nj is also in T . We call v′ the predecessor of v, denoted pred(v).

The empty sequence ε ∈ T is called the root of the ordered tree T . Obviously, ε has no

predecessor.

We further require T to be order closed with respect to siblings: if a node v =

n1 . . . nj is in T , then v′ = n1 . . . nj−1i is also in T for all i ∈ ω with i < nj . In this

case, we call v′ an older sibling of v (and v a younger sibling of v′). We denote the set

of older siblings of v by os(v).

A history tree is a tree labelled with sets of automata states. That is, l : T →

2Qr{∅} is a labelling function, which maps nodes of T to non-empty sets of automata

states. For Büchi automata, the labelling is subject to the following criteria.

1. The label of each node is a subset of the label of its predecessor:

l(v) ⊆ l(pred(v)) holds for all ε 6= v ∈ T .

2. The intersection of the labels of two siblings is disjoint:

∀v, v′∈T . v 6=v′ ∧ pred(v)=pred(v′)⇒ l(v)∩l(v′) = ∅.

3. The union of the labels of all siblings is strictly contained in the label of their

predecessor:

∀v ∈ T ∃q ∈ l(v) ∀v′ ∈ T . v = pred(v′)⇒ q /∈ l(v′).

20

We denote the number of history trees for Büchi automata having n states with

ht(n). An estimation for the number of history trees produced when determinising a

Büchi automaton is given in Subsection 3.5.1.

3.1.2 Construction

Let B = (Q,Σ, I, T, F) be a nondeterministic Büchi automaton with |Q| = n

states. We will construct an equivalent deterministic Rabin automaton D =

(D,Σ, d0, δ, {(Ai, Ri) | i ∈ J}) where,

• D is the set of history trees over Q,

• d0 is the history tree ({ε}, l : ε 7→ I),

• J is the set of nodes that occur in some ordered tree of size n,

• for every tree d ∈ D and letter σ ∈ Σ, the transition d′ = ∆(d, σ) is the result

of the transition mechanism described below.

Transition mechanism

We will illustrate in parallel the transition mechanism using the example fragment

from Figure 3.1 on reading a letter σ. The starting history tree is shown in Figure

3.2.

We determine ∆:
(
(T , l), σ

)
7→ (T ′, l′) as follows:

1. Update of node labels (subset constructions).

We update l to the function l1 by assigning, for all v ∈ T , l1 : v 7→ {q ∈ Q |

∃q′ ∈ l(v). (q′, σ, q) ∈ T}, i.e., to the σ successors of l(v).

2. Splitting of run threads / spawning new children.

In this step, we spawn new children for every node in the history tree. For

all nodes, we spawn a child labelled with the set of states reached through

accepting transitions.

21

a

e

b

gf

dc

Figure 3.1: Transition graph for the example fragment of a Büchi automaton on
reading the letter σ. Double arrows represent accepting transitions

a,b,c,d,e,f,g

b,e,f c d,g

e f g

0 1 2

0 1 0

Figure 3.2: Starting example history tree

a,b,c,d,e,f,g

b,c,d d e,f,g

b b,c e,f

0 1 2

0 1 0

Figure 3.3: In Step 1, we update the labels of all nodes in a history tree by performing
subset constructions on every node.

22

a,b,c,d,e,f,g

b,c,d d e,f,g c,f,g

b b,c c e,f f,g

c

0 1 2 3

0 1 2 0 0 1

0 0 0

Figure 3.4: In Step 2, we spawn new children for every node in the history tree. A
child node is labelled with it’s parent’s label minus the set of states that do not have
an incoming accepting transition. If there is no state in the label of the parent that
can be reached through an accepting transition, then the label of the child will be
empty, eg. node 010. Although not part of this step, we show in red the states that
are duplicated in younger siblings that are marked for removal in the next step

Thus, for every node ε ∈ d with c children, we spawn a new child vc and

expand l1 to vc by assigning l1 : vc 7→ {q ∈ Q | ∃q′ ∈ l(v). (q′, σ, q) ∈ A}. We

use Tn to denote the extended tree that includes the new children.

3. Removing states from labels – horizontal pruning.

We obtain a function l2 from l1 by removing, for every node v with label l(v) =

Q′ and all states q ∈ Q′, q from the labels of all younger siblings of v and all of

their descendants.

4. Identifying breakpoints – vertical pruning.

We denote with Te ⊆ Tn the set of all nodes v whose label l2(v) is now equal

to the union of the labels of its children. We obtain Tv from Tn by removing all

descendants of nodes in Te, and restrict the domain of l2 accordingly.

During the run of an automaton, a point is reached from which accepting states

are visited again and again. We call such a point a breakpoint. Nodes in Tv ∩

Te represent the breakpoints reached during the infinite run ρ and are called

accepting, that is, the transition of D will be in Av for exactly the v ∈ Tv ∩ Te.

23

a,b,c,d,e,f,g

b,c,d e,f,g

b c e,f g

c

0 1 2 3

0 1 2
0 0 1

0 0 0

Figure 3.5: In Step 3, we remove from the label of younger siblings and their descen-
dants, those states that are already present in an older sibling.

a,b,c,d,e,f,g

b,c,d e,f,g

b c

0 1 2 3

0 1 2
0

0 1

0 0 0

Figure 3.6: In Step 4, for every node whose label is equal to the union of its de-
scendants, we remove the descendants of such a node and mark them (in green) as
breakpoints.

24

a,b,c,d,e,f,g

b,c,d e,f,g

b c

0 2

0 1

Figure 3.7: In Step 5, we remove the empty nodes. The resulting tree may not be
ordered.

5. Removing nodes with empty label.

We denote with Tr = {v ∈ Tv | l2(v) 6= ∅} the subtree of Tv that consists of the

nodes with non-empty label and restrict the domain of l2 accordingly.

6. Reordering.

To repair the orderedness, we call ‖v‖ = |os(v) ∩ Tr| the number of

(still existing) older siblings of v, and map v = n1 . . . nj to v′ =

‖n1‖ ‖n1n2‖ ‖n1n2n3‖ . . . ‖v‖, denoted rename(v).

For T ′ = rename(Tr), we update a pair (Tr, l2) from Step 5 to d′ =
(
T ′, l′

)
with

l′ : rename(v) 7→ l2(v).

We call a node v ∈ T ′ ∩ T stable if v = rename(v), and we call all nodes in J

rejecting if they are not stable. That is, the transition will be in Rv exactly for

those v ∈ J , such that v is not a stable node in T ∩ T ′.

3.1.3 Correctness

In order to establish the correctness of our determinisation construction, we need to

prove that L(B) = L(D), that is, we need to ascertain that the ω-language accepted

by the nondeterministic Büchi automaton is equivalent to the ω-language accepted

by the deterministic Rabin automaton.

Lemma 3.1.2 [L(B) ⊆ L(D)] Given that there is an accepting run of B on an ω-word

25

a,b,c,d,e,f,g

b,c,d e,f,g

b c

0 1

0 1

Figure 3.8: In Step 6, we reorder the tree and consider only those breakpoints that
have not been reordered to characterise the current history tree in the Rabin accep-
tance condition. For example, this history tree is added to the accepting set with
index 001, A001. As the node 01 was reordered from 02, it is considered rejecting
and indicates that this tree will be added to the rejecting set R01.

α, there is a node v ∈ J that is stable infinitely often from some point in the run and

always accepting eventually during the run of D on α.

Notation. For a state q of B and a history tree d = (T , l), we call a node v the host

node of q, denoted host(q, d), if q ∈ l(v), but not in l(vc) for any child vc of v.

Proof idea. The idea is that the state of each accepting run is eventually ‘trapped’ in

the same node of the history tree, and this node must be accepting infinitely often.

Let d0, d1 . . . be the run of D on α and q0, q1, . . . an accepting run of B on α. Then we

can define a sequence v0, v1, . . . with vi = host(qi, di), and there must be a longest

eventually stable prefix v in this sequence.

An inductive argument can then be exploited to show that, once this prefix v is

henceforth stable, the index v cannot be rejecting. The assumption that there is a

point in time where v is stable but never again accepting leads to a contradiction.

Once the transition (qi, α(i), qi+1) is accepting, qi+1 ∈ li+1(vc) for some c ∈ ω and

for di+1 = (Ti+1, li+1). As v is never again accepting or rejecting, we can show for

all j > i that, if qj ∈ lj(vcj), then qj+1 ∈ lj+1(vcj+1) for some cj+1 ≤ cj . This

monotonicity leads to a contradiction with the assumption that v is the longest stable

prefix.

Proof. We first fix a run that is accepting ρ = q0q1 . . . of B on an input word α, and

26

let ρD = d0d1 . . . be the run of D on α. We then define the related sequence of host

nodes ϑ = v0v1v2 . . . = host(q0, d0)host(q1, d1)host(q2, d2)

We define s = lim infn→∞ |vn| to be the shortest length occurring infinitely often

of those host nodes. We follow this run and argue that the initial sequence of length s

of the nodes in ϑ eventually stabilises. Let i0 < i1 < i2 < . . . be an infinite ascending

chain of indices such that

1. (qj , α(j), qj+1) ∈ T is a transition for any j ≥ i0,

2. the length |vj | ≥ s of the j-th node is not smaller than s for all j ≥ i0, and

3. the length |vj | = s is equal to s for all indices j ∈ {i0, i1, i2, . . .} in this chain.

(1), (2) and (3) together imply that when we follow the run of the deterministic

automaton in positions i0, i1, i2, . . ., the host nodes vi0 , vi1 , vi2 , . . . form a descending

chain when the single nodes vi are compared by lexicographic order. As the domain

is finite, almost all elements of the descending chain are equal, say vi := π. In

particular, π ∈ J is stable infinitely often from some point onwards.

We now assume for contradiction that this stable prefix π is accepting only finitely

often. We choose an index i from the above defined ascending chain i0 < i1 < i2 <

. . . such that

1. π is stable for all j ≥ i and

2. π is not accepting for any j ≥ i.

Note that π is the host of qi for di, and qj ∈ lj(π) holds for all j ≥ i.

As ρ is accepting, there is a smallest index j > i such that (qj−1, α(j− 1), qj) ∈ A.

Now, as π is stable but not accepting for all k ≥ i (and hence for all k ≥ j), qk must

henceforth be in the label of a child of π in dk, which contradicts the assumption that

infinitely many nodes in ϑ have length s = |π|.

Thus, π is eventually stable infinitely often and always accepting eventually. 2

27

Lemma 3.1.3 [L(D) ⊆ L(B)] Given that there is a node v ∈ J , which is eventually

stable infinitely often and always accepting eventually for an ω-word α, then there is an

accepting run of B on α.

Notation. For an ω-word α and j ≥ i, we denote with α[i, j[the word α(i)α(i +

1)α(i+ 2) . . . α(j − 1).

We denote with Q1 →α Q2 for a finite word α = α1 . . . αj−1 that there is, for all

qj ∈ Q2 a sequence q1 . . . qj with q1 ∈ Q1 and (qi, αi, qi+1) ∈ T for all 1 ≤ i < j.

If, for all qj ∈ Q2, there is such a sequence that contains a transition in F , we write

Q1 ⇒α Q2.

Proof. Let α ∈ L(D). Then there is a v that is eventually stable stable infinitely

often from some point and always accepting eventually in the run ρD of D on α. We

pick such a v.

The proof idea is the usual way of building a tree of initial sequences of runs. Let

i0 < i1 < i2 < . . . be an infinite ascending chain of indices such that

• v is stable for all transitions (dj−1, α(j − 1), dj) with j ≥ i0, and

• the chain i0 < i1 < i2 < . . . contains exactly those indices i ≥ i0 such that

(di−1, α(i− 1), di) is accepting.

Let di = (Ti, li) for all i ∈ ω. By construction, we have

• I →α[0,i0[li0(v), and

• lij (v)⇒α[ij ,ij+1[lij+1(v).

Using this observation, we can build a tree of initial sequences of runs as follows:

we build a tree of initial sequences of runs of B that contains a sequence q0q1q2 . . . qij

for any j ∈ ω if, and only if,

• (qi, α(i), qi+1) ∈ T is a transition of B for all i < ij , and

• for all k < j there is an i ∈ [ik, ik+1[such that (qi, α(i), qi+1) ∈ F is an accepting

transition.

28

By construction, this tree has the following properties:

• it is infinite,

• it is finitely branching,

• for all j ∈ ω, a branch of length > ij contains at least j accepting transitions.

Exploiting König’s lemma, the first two properties provide us with an infinite

path, which is a run of B on α. The third property then implies that this run is

accepting. α is therefore in the language of B. 2

The lemmata 3.1.2 and 3.1.3 together provide the following corollary.

Corollary 3.1.4 L(R) = L(D).

3.2 Towards the determinisation of parity automata

We will now start to extend the construction in the previous section to directly de-

terminise parity automata.

Since the parity condition is in fact, a nested condition, it makes sense to nest

history trees to handle the parity condition. However, the parity condition is a nest-

ing of Büchi and coBüchi conditions, and for this reason, we will need to nest trees

that handle the coBüchi condition in addition to the Büchi condition. The simplest

acceptance condition that is a combination of Büchi and coBüchi is the Rabin con-

dition with one pair. This also corresponds to a parity condition with 3 colours. We

will describe how to modify history trees to handle this acceptance condition and

also show a determinisation construction for this acceptance condition.

3.2.1 Root history trees

For one-pair Rabin automata, it suffices to adjust this data structure slightly.

29

Definition 3.2.1 (Root History Tree) A root history tree is a tree labelled with sets

of automata states. That is, l : T → 2Qr {∅} is a labelling function, which maps nodes

of T to non-empty sets of automata states.

For 1-pair Rabin automata, the labelling is subject to the following criteria.

1. The label of each node is a subset of the label of its predecessor:

l(v) ⊆ l(pred(v)) holds for all ε 6= v ∈ T .

2. The intersection of the labels of two siblings is disjoint:

∀v, v′∈T . v 6=v′ ∧ pred(v)=pred(v′)⇒ l(v)∩l(v′) = ∅.

3. The union of the labels of all siblings is contained, but not necessarily strictly

contained in the label of their predecessor:

∀v ∈ T r{ε} ∃q ∈ l(v) ∀v′ ∈ T . v = pred(v′)⇒ q /∈ l(v′).

4. The label of the root ε equals the union of its children’s labels:

l(ε) =
⋃
{l(v) | v ∈ T ∩ ω}.

Thus, a root history tree (RHT) satisfies (1) and (2) from the definition of history

trees, and a relaxed version of (3) that allows for non-strict containment of the label

of the root.

Note that the 1-pair Rabin condition has an accepting and a rejecting compo-

nent. Our modification allows for a transition step where only the youngest child

of the root contains states which are reachable through rejecting transitions. All

other children will contain successors reachable only through accepting and neutral

transitions as in the Büchi construction.

3.2.2 Construction

Let R1 = (Q,Σ, I, T, (A,R)) be a nondeterministic one-pair Rabin automaton with

|Q| = n states. We first construct a language equivalent deterministic Rabin automa-

ton D1 = (D,Σ, d0,∆, {(Ai, Ri) | i ∈ J}) where,

30

• D is the set of RHTs over Q,

• d0 is the history tree ({ε, 0}, l : ε 7→ I, l : 0 7→ I),

• J is the set of nodes 6= ε that occur in some RHT of size n + 1 (due to the

exemption for the root in Rule (4) in the definition of RHTs, an RHT can contain

at most n+ 1 nodes), and

• for every tree d ∈ D and letter σ ∈ Σ, the transition d′ = ∆(d, σ) is the result

of the sequence of the transition mechanism described below.

The index set is the set of nodes, and, for each index, the accepting and reject-

ing sets refer to this node.

Transition mechanism for determinising one-pair Rabin Automata

We determine ∆:
(
(T , l), σ

)
7→ (T ′, l′) as follows:

1. Update of node labels (subset constructions).

The root of a history tree d collects the momentarily reachable states Qr ⊆ Q

of the automaton R1. In the first step of the construction, we update the label

of the root to the set of reachable states upon reading a letter σ ∈ Σ, using

the classical subset construction. We update the label of every other node

of the RHT d to reflect the successors reachable through accepting or neutral

transitions.

For ε, we update l to the function l1 by assigning l1 : ε 7→ {q′ ∈ Q | ∃q ∈

l(ε). (q, σ, q′) ∈ T}, and for all ε 6= v ∈ T , we update l to the function l1 by

assigning l1 : v 7→ {q′ ∈ Q | ∃q ∈ l(v). (q, σ, q′) ∈ T rR}.

2. Splitting of run threads / spawning new children.

In this step, we spawn new children for every node in the RHT. For nodes

other than the root ε, we spawn a child labelled with the set of states reachable

through accepting transitions; for the root ε, we spawn a child labelled like the

root.

31

Thus, for every node ε 6= v ∈ d with c children, we spawn a new child vc and

expand l1 to vc by assigning l1 : vc 7→ {q ∈ Q | ∃q′ ∈ l(v). (q′, σ, q) ∈ A}. If

ε has c children, we spawn a new child c of the root ε and expand l1 to c by

assigning l1 : c 7→ l1(ε). We use Tn to denote the extended tree that includes

the new children.

3. Removing states from labels – horizontal pruning.

We obtain a function l2 from l1 by removing, for every node v with label l(v) =

Q′ and all states q ∈ Q′, q from the labels of all younger siblings of v and all of

their descendants.

4. Identifying breakpoints – vertical pruning.

We denote with Te ⊆ Tn the set of all nodes v 6= εwhose label l2(v) is now equal

to the union of the labels of its children. We obtain Tv from Tn by removing all

descendants of nodes in Te, and restrict the domain of l2 accordingly.

Nodes in Tv ∩ Te represent the breakpoints reached during the infinite run ρ

and are called accepting, that is, the transition of D1 will be in Av for exactly

the v ∈ Tv ∩ Te. Note that the root cannot be accepting.

5. Removing nodes with empty label.

We denote with Tr = {v ∈ Tv | l2(v) 6= ∅} the subtree of Tv that consists of the

nodes with non-empty label and restrict the domain of l2 accordingly.

6. Reordering.

To repair the orderedness, we call ‖v‖ = |os(v) ∩ Tr| the number of

(still existing) older siblings of v, and map v = n1 . . . nj to v′ =

‖n1‖ ‖n1n2‖ ‖n1n2n3‖ . . . ‖v‖, denoted rename(v).

For T ′ = rename(Tr), we update a pair (Tr, l2) from Step 5 to d′ =
(
T ′, l′

)
with

l′ : rename(v) 7→ l2(v).

We call a node v ∈ T ′ ∩ T stable if v = rename(v), and we call all nodes in J

32

rejecting if they are not stable. That is, the transition will be in Rv exactly for

those v ∈ J , such that v is not a stable node in T ∩ T ′.

Note that this construction is a generalisation of the same construction for Büchi

automata: if R = ∅, then the label of 0 is always the label of ε in this construction,

and the node 1 is not part of any reachable RHT. (We would merely write 0 in front

of every node of a history tree.)

Correctness

The correctness proof of this construction follows the same lines as the correctness

proof of the Büchi construction.

Lemma 3.2.2 [L(R1) ⊆ L(D1)] Given that there is an accepting run of R1 on an ω-

word α, there is a node v ∈ J that is eventually always stable and always eventually

accepting in the run of D1 on α.

Proof idea. The proof idea and notation are the same as for Büchi determinisation:

the state of each accepting run is eventually ‘trapped’ in the same node of the RHT,

and this node must be accepting infinitely often. Let d0, d1 . . . be the run of D1 on α

and q0, q1, . . . an accepting run of R1 on α. Then we can define a sequence v0, v1, . . .

with vi = host(qi, di), and there must be a longest eventually stable prefix v in this

sequence.

An inductive argument can then be exploited to show that, once this prefix v is

henceforth stable, the index v cannot be rejecting. The assumption that there is a

point in time where v is stable but never again accepting can lead to a contradiction.

Once the transition (qi, α(i), qi+1) is accepting, qi+1 ∈ li+1(vc) for some c ∈ ω and

for di+1 = (Ti+1, li+1). As v is never again accepting or rejecting, we can show for

all j > i that, if qj ∈ lj(vcj), then qj+1 ∈ lj+1(vcj+1) for some cj+1 ≤ cj . This

33

monotonicity leads to a contradiction with the assumption that v is the longest stable

prefix.

Proof. We first fix a run that is accepting ρ = q0q1 . . . of R1 on an input word α, and

let ρD1 = d0d1 . . . be the run of D1 on α. We then define the related sequence of host

nodes ϑ = v0v1v2 . . . = host(q0, d0)host(q1, d1)host(q2, d2)

We define s = lim infn→∞ |vn| to be the shortest length occurring infinitely often

of those host nodes. Note that the root cannot be the host node of any state, as it is

always labelled by the union of the labels of its children.

We follow the run and argue that the initial sequence of length s of the nodes

in ϑ eventually stabilises. Let i0 < i1 < i2 < . . . be an infinite ascending chain of

indices such that

1. (qj , α(j), qj+1) ∈ T rR is a neutral or accepting transition for any j ≥ i0,

2. the length |vj | ≥ s of the j-th node is not smaller than s for all j ≥ i0, and

3. the length |vj | = s is equal to s for all indices j ∈ {i0, i1, i2, . . .} in this chain.

(1), (2) and (3) together imply that when we follow the run of the deterministic

automaton in positions i0, i1, i2, . . ., the host nodes vi0 , vi1 , vi2 , . . . form a descending

chain when the single nodes vi are compared by lexicographic order. As the domain

is finite, almost all elements of the descending chain are equal, say vi := π. In

particular, π ∈ J is stable infinitely often from some point onwards.

We now assume for contradiction that this stable prefix π is accepting only finitely

many times. We choose an index i from the chain i0 < i1 < i2 < . . . such that

1. π is stable for all j ≥ i and

2. π is not accepting for any j ≥ i.

Note that π is the host of qi for di, and qj ∈ lj(π) holds for all j ≥ i.

As ρ is accepting, there is a smallest index j > i such that (qj−1, α(j− 1), qj) ∈ A.

Now, as π is stable but not accepting for all k ≥ i (and hence for all k ≥ j), qk must

34

henceforth be in the label of a child of π in dk, which contradicts the assumption that

infinitely many nodes in ϑ have length s = |π|.

Thus, π is eventually stable infinitely often and always accepting eventually. 2

Lemma 3.2.3 [L(D1) ⊆ L(R1)] Given that there is a node v ∈ J , which is eventually

stable infinitely often and always accepting eventually for an ω-word α, then there is an

accepting run of R1 on α.

Notation. The notation is the same as for Büchi determinisation except for the

following minor adjustment. If, for all qj ∈ Q2, there is such a sequence that contains

a transition in A but no transition in R, we write Q1 ⇒α Q2.

Proof. Let α ∈ L(D1). Then there is a v that is eventually always stable and always

eventually accepting in the run ρD1 of D1 on α. We pick such a v.

Let 1 < i0 < i1 < i2 < . . . be an infinite ascending chain of indices such that

• v is stable for all transitions (dj−1, α(j − 1), dj) with j ≥ i0, and

• the chain i0 < i1 < i2 < . . . contains exactly those indices i ≥ i0 such that

(di−1, α(i− 1), di) is accepting.

Let di = (Ti, li) for all i ∈ ω. By construction, we have

• I →α[0,i0[li0(v), and

• lij (v)⇒α[ij ,ij+1[lij+1(v).

Using this observation, we can build a tree of initial sequences of runs as fol-

lows: we build a tree of initial sequences of runs of R1 that contains a sequence

q0q1q2 . . . qij for any j ∈ ω iff

• (qi, α(i), qi+1) ∈ T is a transition of R1 for all i < ij ,

• (qi, α(i), qi+1) /∈ R is not rejecting for all i ≥ i0 − 1, and

• for all k < j there is an i ∈ [ik, ik+1[such that (qi, α(i), qi+1) ∈ A is an accepting

transition.

35

By construction, this tree has the following properties:

• it is infinite,

• it is finitely branching,

• no branch contains more than i0 rejecting transitions, and,

• for all j ∈ ω, a branch of length > ij contains at least j accepting transitions.

Exploiting König’s lemma, the first two properties provide us with an infinite

path, which is a run of R1 on α. The last two properties then imply that this run is

accepting. α is therefore in the language of R1. 2

The lemmata 3.2.2 and 3.2.3 together provide the following corollary.

Corollary 3.2.4 L(R1) = L(D1).

3.3 Determinising parity automata

Having outlined a determinisation construction for one-pair Rabin automata using

root history trees, we proceed to define nested history trees (NHTs), the data structure

we use for determinising parity automata.

We assume that we have a parity automaton P = (Q,Σ, I, T, pri : T → Π). Note

that the priority function pri can also be expressed as pri : T → [π], where [π] ∈ Π

and we select e = 2b0.5πc.

Definition 3.3.1 (Nested history trees) A nested history tree is a triple (T , l, λ),

where T is a finite, prefix closed subset of finite sequences of natural numbers and a

special symbol s (for stepchild), ω ∪ {s}. We refer to all other children vc, c ∈ ω of a

node v as its natural children. We call l(v) the label of the node v ∈ T , and λ(v) its

level.

A node v 6= ε is called a Rabin root, if, and only if it ends in s. The root ε is called a

Rabin root if, and only if π > e. A node v ∈ T is called a base node if, and only if it is

not a Rabin root and λ(v) = 2. The set of base nodes is denoted base(T).

36

• The label l(v) of each node v 6= ε is a subset of the label of its predecessor:

l(v) ⊆ l(pred(v)) holds for all ε 6= v ∈ T .

• The intersection of the labels of two siblings is disjoint:

∀v, v′∈T . v 6=v′ ∧ pred(v)=pred(v′)⇒ l(v)∩l(v′) = ∅.

• For all base nodes, the union of the labels of all siblings is strictly contained in

the label of their predecessor:

∀v∈base(T) ∃q∈l(v) ∀v′∈T . v=pred(v′)⇒ q /∈l(v′).

• A node v ∈ T has a stepchild if, and only if v is neither a base-node, nor a Rabin

root.

• The union of the labels of all siblings of a non-base node equals the union of its

children’s labels:

∀v∈T r base(T), l(v) = {q ∈ l(v′) | v′ ∈ T and v = pred(v′)} holds.

• The level of the root is λ(ε) = e.

• The level of a stepchild is 2 smaller than the level of its parent:

for all vs ∈ T , λ(vs) = λ(v)− 2 holds.

• The level of all other children equals the level of its parent:

for all i ∈ ω and vi ∈ T , λ(vi) = λ(v) holds.

While the definition sounds rather involved, it is (for odd π) a nesting of RHTs.

Indeed, for π = 3, we simply get the RHTs, and λ is the constant function with

domain {2}. For odd π > 3, removing all nodes that contain an s somewhere in the

sequence again resemble RHTs, while the sub-trees rooted in a node vs such that v

does not contain a s resemble NHTs whose root has level π − 3.

The transition mechanism from the previous section is adjusted accordingly. For

each level a (note that levels are always even), we define three sets of transitions for

the parity automaton P: the rejecting transitions Ra = {t ∈ T | pri(t) > a and pri(t)

37

root with level λ = b c2c

child with λ = b c2c λ = b c2c
stepchild with λ = b c2c − 2

λ = 2

0 1
s

Figure 3.9: Abstract illustration of an NHT showing the differences in levels between
children and stepchildren.

is odd}; the accepting transitions Aa = {t ∈ T | pri(t) ≥ a and pri(t) is even}, and

the (at least) neutral transitions, Na = T rRa.

3.3.1 Construction.

Let P =
(
P,Σ, I, T, {pri : P → [π]

)
be a nondeterministic parity automaton with

|P | = n states.

We construct a language equivalent deterministic Rabin automaton Rπ =

(D,Σ, d0,∆, {(Ai, Ri) | i ∈ J}) where,

• D is the set of NHTs over P (i.e., with l(ε) ⊆ P) whose root has level e, where

e = π if π is even, and e = π − 1 if π is odd,

• d0 is the NHT we obtain by starting with ({ε}, l : ε 7→ I, λ : ε 7→ e), and

performing Step 7 from the transition construction until an NHT is produced.

• J is the set of nodes v that occur in some NHT of level e over P , and

• for every tree d ∈ D and letter σ ∈ Σ, the transition d′ = ∆(d, σ) is the result

of the sequence of transformations described below.

Transition mechanism for determinising parity automata.

Note that we do not define the update of λ, but use λ. This can be done because the

level of the root always remains λ(ε) = e; the level λ(v) of all nodes v is therefore

38

defined by the number of s occurring in v. Likewise, the property of v being a base-

node or a Rabin root is, for a given π, a property of v and independent of the labelling

function.

Starting from an NHT d = (T , l, λ), we define the transitions ∆ : (d, σ) 7→ d′ as

follows:

1. Update of node labels (subset constructions).

For the root, we continue to use l1(ε) = {q′ ∈ Q | ∃q ∈ l(ε). (q, σ, q′) ∈ T}.

For other nodes v ∈ T that are not Rabin roots, we use l1(v) = {q′ ∈ Q | ∃q ∈

l(v). (q, σ, q′) ∈ Nλ(v)}.

For the remaining Rabin roots vs ∈ T , we use l1(vs) = {q′ ∈ Q | ∃q ∈

l(vs). (q, σ, q′) ∈ Nλ(v)}. That is, we use the neutral transition of the higher

level of the parent of the Rabin node.

2. Splitting of run threads / spawning new children.

In this step, we spawn new children for every node in the NHT. For nodes

v ∈ T that are not Rabin roots, we spawn a child labelled with the set of states

reachable through accepting transitions. For a Rabin root v ∈ T , we spawn a

new child labelled like the root.

Thus, for every node v ∈ T which is not a Rabin root and has c natural children,

we spawn a new child vc and expand l1 to vc by assigning l1 : vc 7→ {q ∈ Q |

∃q′ ∈ l(v). (q′, σ, q) ∈ Aλ(v)}. If a Rabin root v has c natural children, we

spawn a new child vc of the Rabin root v and expand l1 to vc by assigning

l1 : vc 7→ l1(v). We use Tn to denote the extended tree that includes the new

children.

3. Removing states from labels – horizontal pruning.

We obtain a function l2 from l1 by removing, for every node v with label l(v) =

Q′ and all states q ∈ Q′, q from the labels of all younger siblings of v and all of

their descendants.

39

Stepchildren are always treated as the youngest sibling, irrespective of the order

of creation.

4. Identifying breakpoints – vertical pruning.

We denote with Te ⊆ Tn the set of all nodes v 6= ε whose label l2(v) is now

equal to the union of the labels of its natural children. We obtain Tv from

Tn by removing all descendants of nodes in Te, and restrict the domain of l2

accordingly.

Nodes in Tv∩Te represent the breakpoints reached during the infinite run ρ and

are called accepting. That is, the transition of Rπ will be in Av for exactly the

v ∈ Tv ∩ Te. Note that Rabin roots cannot be accepting as this would destroy

the nestedness of the data structure.

5. Removing nodes with empty label.

We denote with Tr = {v ∈ Tv | l2(v) 6= ∅} the subtree of Tv that consists of the

nodes with non-empty label and restrict the domain of l2 accordingly.

6. Reordering.

To repair the orderedness, we call ‖v‖ = |os(v) ∩ Tr| the number of

(still existing) older siblings of v, and map v = n1 . . . nj to v′ =

‖n1‖ ‖n1n2‖ ‖n1n2n3‖ . . . ‖v‖, denoted rename(v).

For To = rename(Tr), we update a pair (Tr, l2) from Step 5 to d′ =
(
To, l′

)
with

l′ : rename(v) 7→ l2(v).

We call a node v ∈ To ∩ T stable if v = rename(v), and we call all nodes in J

rejecting if they are not stable. That is, the transition will be in Rv exactly for

those v ∈ J , such that v is not a stable node in T ∩ T ′.

7. Repairing nestedness.

We initialise T ′ to To and then add recursively for

40

• Rabin roots v without children a child v0 to T ′ and expand l′ by assigning

l′ : v0 7→ l′(v), and for

• nodes v, which are neither Rabin roots nor base-nodes, without children

a child vs to T ′ and expand l′ by assigning l′ : vs 7→ l′(v)

until we have constructed an NHT d′ = (T ′, l′, λ′).

3.3.2 Correctness

Lemma 3.3.2 L(P) ⊆ L(Rπ)

Notation. For a state q of P, an NHT d = (T , l, λ) and an even number a ≤ e, we

call a node v′ the a host node of q, denoted hosta(q, d), if q ∈ l(v′), but not in l(v′c)

for any natural child v′c of v′, and λ(v′) = a.

Let ρ = q0, q1, q2 . . . be an accepting run of P with even level a =

lim infi→∞ pri
(
qi, α(i), qi+1

)
on an ω-word α, let d0d1d2 . . . be the run of Rπ on α,

and let vi = hosta(qi, di) for all i ∈ ω.

Proof idea. The core idea of the proof is again that the state of each accepting run

is eventually ‘trapped’ in a maximal initial sequence v of a-hosts, with the additional

constraint that neither v nor any of its ancestors are infinitely often rejecting, and

the transitions of the run of P are henceforth in Na.

We show by contradiction that v is accepting infinitely often. For λ(v) = a, the

proof is essentially the same as for one-Rabin determinisation. For λ(v) > a, the

proof is altered by a case distinction, where one case assumes that, for some index

i > 0 such that, for all j ≥ i, v is a prefix of all vj , (qj−1, α(j − 1), qj) ∈ Na, and

(dj−1, α(j−1), dj) /∈ Rv∪Av, qi is in the label of a natural child vc of v. This provides

the induction basis – in the one-pair Rabin case, the basis is provided through the

accepting transition of the one-pair Rabin automaton, and we have no corresponding

transition with even priority ≥ λ(v) – by definition. If no such i exists, we choose an

i that satisfies the above requirements except that qi is in the label of a natural child

41

vc of v. We can then infer that the label of vs also henceforth contains qi. As a Rabin

root whose parent is not accepting or rejecting, vs is not rejecting either.

Proof. We fix an accepting run ρ = q0q1 . . . of P on an input word α, and use a =

lim infi→∞
(
(qi, α(i), qi+1)

)
to refer to the dominating even priority of its transitions

ρ. We also let ρRπ = d0d1 . . . be the run of Rπ on α. We then define the related

sequences of host nodes ϑ = v0v1v2 . . . = hosta(q0, d0)hosta(q1, d1)hosta(q2, d2)

Note that Rabin roots cannot be the ath host node of any state, as it is always

labelled by the union of the labels of its children, and its children have the same

level as the Rabin root itself.

• Let v′ be the longest sequence, which is the initial sequence of almost all vi,

and

• Let v the longest initial sequence of v′, such that, for no initial sequence v′′ of

v (including v itself), infinitely many transitions (di, α(i), di+1) are in Ra.

We first observe that such a node v exists: as qi ∈ li(ε) for di = (Ti, li, λi) for all

i ∈ ω, ε satisfies all requirements except for maximality, such that a maximal element

v exists. We now distinguish two cases.

Case 1: ‘a = λ(v)’

The first case is that the level of the node v equals the dominating priority of ρ.

For this case, we can argue as in the one-Rabin pair case: if the transition is infinitely

often in the set Av of Rπ, then ρRπ is accepting. Otherwise we choose a point i ∈ ω

with the following properties:

• for all j ≥ i, (qj , α(j), qj+1) ∈ Na,

• for all j ≥ i and all initial sequences w of v, (dj , α(j), dj+1) /∈ Rw,

• for all j ≥ i, (dj , α(j), dj+1) /∈ Av, and

• pri(qi, α(i), qi+1) = a.

We can now build a simple inductive argument with the following ingredients.

42

Induction basis:

There is a k ∈ ω such that qi+1 ∈ li+1(vk).

The induction basis holds as the transition (qi, α(i), qi+1) is in Aa and the node

v is stable and non-accepting in (di, α(i), di+1).

Induction step:

if, for some k ∈ ω and j > i, qj ∈ lj(vk), then

• there is a k′ ≤ k such that qj+1 ∈ lj+1(vk′), and

• if k = k′ then (dj , α(j), dj+1) /∈ Rvk.

To see this, qj+1 is added to the ‘l1(vk)’ from Step 1 of the transition mechanism

of the transition (dj , α(j), dj+1). As v is stable but not accepting, the only two

reasons for qj+1 /∈ lj+1(vk) are that

• there is, for some k′′ < k, a q ∈ lj(vk′′) with and (q, α(j), qj+1) ∈ Nλ(v)

(note that λ(v) = λ(vk) = λ(vk′′) = a), or

• for some k′′ < k, the node vk′′ is removed in Step 5 of the transition

mechanism of the transition (dj , α(j), dj+1).

In both cases (and their combination), we have k′ < k. If neither is the case,

then (dj , α(j), dj+1) /∈ Rvk (as rename(vk) = vk holds in the transition mecha-

nism).

The position k ∈ ω of the child vk with qj ∈ l(vk) can thus only be decreased

finitely many times (and λ(vk) = a for all k ∈ ω). For some k ∈ ω, vk is therefore

a prefix of almost all vi of ϑ. Once stable, it is henceforth no more rejecting. This

contradicts the assumption that v is the longest such sequence.

Case 2: ‘a > λ(v)’:

The second case is that the level of v is strictly greater than the dominating prior-

ity of ρ. We argue along similar lines. If the transition is infinitely often in the set Av

of Rπ, then ρRπ is accepting. Otherwise we choose a point i ∈ ω with the following

properties:

43

• for all j ≥ i, (qj , α(j), qj+1) ∈ Na„

• for all j ≥ i and all initial sequences w of v, (dj , α(j), dj+1) /∈ Rw, and

• for all j ≥ i, (dj , α(j), dj+1) /∈ Av.

The difference to the previous argument is that the third prerequisite,

‘pri(qi, α(i), qi+1) = a’, holds no longer. This was used for the induction basis. We

replace this by a distinction of two sub-cases.

The first one is, that we do have an induction basis: we can choose the i such that

there is a k ∈ ω such that qi+1 ∈ li+1(vk). The rest of the argument can be copied for

this case:

Induction step:

if, for some k ∈ ω and j > i, qj ∈ lj(vk), then

• there is a k′ ≤ k such that qj+1 ∈ lj+1(vk′), and

• if k = k′ then (dj , α(j), dj+1) /∈ Rvk.

To see this, qj+1 is added to the ‘l1(vk)’ from Step 1 of the transition mechanism

of the transition (dj , α(j), dj+1). As v is stable but not accepting, the two only

reason for qj+1 /∈ lj+1(vk) are that

• there is, for some k′′ < k, a q ∈ lj(vk′′) with and (q, α(j), qj+1) ∈ Nλ(v)

(note that λ(v) = λ(vk) = λ(vk′′) = a), or

• for some k′′ < k, the node vk′′ is removed in Step 5 of the transition

mechanism of the transition (dj , α(j), dj+1).

In both cases (and their combination), we have k′ < k. If neither is the case,

then (dj , α(j), dj+1) /∈ Rvk (as rename(vk) = vk holds in the transition mecha-

nism).

The position k ∈ ω of the child vk with qj ∈ l(vk) can thus only be decreased

finitely many times (and λ(vk) = a for all k ∈ ω). For some k ∈ ω, vk is therefore

44

a prefix of almost all vi of ϑ. Once stable, it is henceforth no more rejecting. This

contradicts the assumption that v is the longest such sequence.

The other sub-case is that no such i exists. We then choose i such that the two

remaining conditions are met. As λ(v) > a ≥ 2 holds, the union of the labels of the

children of v must be the same as the label of v. Consequently, we have qj ∈ l(vs)

for all j > i. It remains to show that vs is not rejecting infinitely many times. But the

only ways a Rabin root can be rejecting are that either its parent node is accepting

(the breakpoint of Step 4 from the transition mechanism) or not stable (Step 5 with

Step 3, removing states from the label that occur in younger siblings) in a transition.

But both are excluded in the definition of i.

Finally, we note that, for all vi in ϑ, λ(vi) = a holds by construction. Conse-

quently, λ(v′i) ≥ a holds for all initial sequences v′i of vi. In particular, we have

λ(v) ≥ a, such that the above case distinction is complete. 2

Lemma 3.3.3 L(Rπ) ⊆ L(P)

The proof of this lemma is essentially the proof of Lemma 3.2.3 where, for the

priority a = λ(v) chosen to be the level of the accepting index v, Aa takes the role of

the accepting set A from the one-pair Rabin automaton.

Notation. We denote with Q1 ⇒α
a Q2 for a finite word α = α1 . . . αj−1 that there

is, for all qj ∈ Q2, a sequence q1 . . . qj with

• q1 ∈ Q1,

• (qi, αi, qi+1) ∈ Na for all 1 ≤ i < j, and

• (qi, αi, qi+1) ∈ Aa for some 1 ≤ i < j.

Proof. Let α ∈ L(Rπ). Then there is a v that is eventually always stable and always

eventually accepting in the run ρRπ of Rπ on α. We pick such a v.

Let 1 < i0 < i1 < i2 < . . . be an infinite ascending chain of indices such that

45

• v is stable for all transitions (dj−1, α(j − 1), dj) with j ≥ i0, and

• the chain i0 < i1 < i2 < . . . contains exactly those indices i ≥ i0 such that

(di−1, α(i− 1), di) is accepting.

Let di = (Ti, li, λi) for all i ∈ ω. By construction, we have

• I →α[0,i0[li0(v), and

• lij (v)⇒α[ij ,ij+1[
a lij+1(v).

Using this observation, we can build a tree of initial sequences of runs as follows:

we build a tree of initial sequences of runs of P that contains a sequence q0q1q2 . . . qij

for any j ∈ ω if, and only if

• (qi, α(i), qi+1) ∈ T is a transition of P for all i < ij ,

• (qi, α(i), qi+1) ∈ Na is not rejecting for all i ≥ i0 − 1, and

• for all k < j there is an i ∈ [ik, ik+1[such that (qi, α(i), qi+1) ∈ Aa is an

accepting transition.

By construction, this tree has the following properties:

• it is infinite,

• it is finitely branching,

• no branch contains more than i0 transitions with odd priority > a, and,

• for all j ∈ ω, a branch of length > ij contains at least j transitions with even

priority ≥ a.

Exploiting König’s lemma, the first two properties provide us with an infinite

path, which is a run of P on α. The last two properties then imply that this run is

accepting. α is therefore in the language of P. 2

The lemmata 3.3.2 and 3.3.3 together provide the following corollary

Corollary 3.3.4 L(P) = L(Rπ).

46

3.4 Determinising generalised Büchi automata

Generalised Büchi automata are Büchi automata with multiple accepting sets. The

determinisation construction described in this section is a generalisation of the deter-

minisation construction for nondeterministic Büchi automata presented in 3.1, which

in turn is a variation of Safra’s [Saf88]. We first define the structure that captures the

acceptance mechanism of our deterministic Rabin automaton. We adapt history trees

defined previously to handle the determinisation of generalised Büchi automata.

3.4.1 Generalised history trees

For a generalised history tree G = (T , l, h), (T , l) is the history tree introduced in

3.1. Generalised history trees are obtained by enriching history trees with the second

labelling function, h, that is used to relate nodes with a particular accepting set.

Definition 3.4.1 (Generalised History Tree) A generalised history tree G over Q for

k accepting sets is a triple G = (T , l, h) such that:

• T is an ordered tree,

• l : T → 2Q r {∅} is a labelling function such that

1. l(v) (l(pred(v)) holds for all ε 6= v ∈ T ,

2. the intersection of the labels of two siblings is disjoint

(∀v, v′ ∈ T . v 6= v′ ∧ pred(v) = pred(v′)⇒ l(v) ∩ l(v′) = ∅), and

3. the union of the labels of all siblings is strictly contained in the label of their

predecessor

(∀v ∈ T ∃q ∈ l(v) ∀v′ ∈ T . v = pred(v′)⇒ q /∈ l(v′)), and

• h : T → [k] is a function that labels every node with a natural number from [k].

We call Fh(v) the active accepting set of v.

47

3.4.2 Determinisation construction

Let GB = (Q,Σ, I, T, {Fi | i ∈ [k]}) be a generalised Büchi automaton with |Q| = n

states and k accepting sets. We will construct an equivalent deterministic Rabin

automaton RG = (D,Σ, d0, δ, {(Ai, Ri) | i ∈ J}) where,

• D is the set of generalised history trees over Q.

• d0 is the generalised history tree ({ε}, l : ε 7→ I, h : ε 7→ 1).

• J is the set of nodes that occur in some ordered tree of size n.

• For every tree d ∈ D and letter σ ∈ Σ, the transition d′ = δ(d, σ) is the result of

the following sequence of transformations:

Transition mechanism

We determine ∆:
(
(T , l, h), σ

)
7→ (T ′, l′, h′) as follows:

1. Raw update of l.

We update l to the function l1 by assigning, for all v ∈ T , l1 : v 7→ {q ∈ Q |

∃q′ ∈ l(v). (q′, σ, q) ∈ T}, i.e., to the σ successors of l(v).

2. Sprouting new children.

For every node v ∈ d with c children, we sprout a new child vc. Let Tn be

the tree of new children. Then we define, for all v in Tn, l1 : v 7→
{
q ∈ Q |

∃q′ ∈ l
(
pred(v)

)
. (q′, σ, q) ∈ Fh(pred(v))

}
, i.e., to the σ successors of the active

accepting sets of their parents, and extend h to T ′n = T ∪ Tn by h : v 7→ 1 for

all v ∈ Tn

3. Stealing of labels.

We obtain a function l2 from l1 by removing, for every node v with label l(v) =

Q′ and all states q ∈ Q′, q from the labels of all younger siblings of v and all of

their descendants.

48

4. Identifying breakpoints.

We denote with Te ⊆ T ′n the set of all nodes v whose label l2(v) is now equal

to the union of the labels of its children. We obtain Tv from T ′n by removing

all descendants of nodes in Te, and restrict the domain of l2 and h accordingly.

(The resulting tree T ′ may no longer be ordered.)

Nodes in Tv ∩ Te are called accepting. We obtain h1 from h by choosing h : v 7→

h(v) + 1 for accepting nodes v with h(k) 6= k, h1 : v 7→ 1 for accepting nodes v

with h(k) = k, and h1 : v 7→ h(v) for all non-accepting nodes.

The transition is in Av if, and only if v is accepting.

5. Removing nodes with empty label.

We denote with Tr = {v ∈ Tv | l2(v) 6= ∅} the subtree of Tv that consists of the

nodes with non-empty label and restrict the domain of l2 accordingly.

6. Reordering.

To repair the orderedness, we call ‖v‖ = |os(v) ∩ Tr| the number of

(still existing) older siblings of v, and map v = n1 . . . nj to v′ =

‖n1‖ ‖n1n2‖ ‖n1n2n3‖ . . . ‖v‖, denoted rename(v).

For T ′ = rename(Tr), we update a triple (Tr, l2, h1) from the previous step to

d′ =
(
T ′, l′, h′

)
with l′ : rename(v) 7→ l2(v) and h′ : rename(v) 7→ h1(v).

We call a node v ∈ T ′ ∩ T stable if v = rename(v), and we call all nodes in

J rejecting if they are not stable. The transition is in Rv if, and only if v is

rejecting.

Correctness

The correctness and completeness proofs of this determinisation construction are

similar to the proofs for Büchi determinisation.

49

Lemma 3.4.2 [L(GB) ⊆ L(RG)] Given that there is an accepting run of GB, there is

a node that is stable infinitely often from some point in the run and always accepting

eventually during the run of RG on α

Proof. We first fix a run that is accepting ρ = q0q1 . . . of GB on an input word α,

and let ρD = d0d1 . . . be the run of RG on α. We then define the related sequence of

host nodes ϑ = v0v1v2 . . . = host(q0, d0)host(q1, d1)host(q2, d2) We define l to be

the shortest length occurring infinitely often |vi| of those host nodes.

The idea for proving correctness is that we need to show that the states in each

accepting run are eventually trapped in the same node of the generalised history tree.

This requires an inductive argument to show that there is some sequence induced

during the run (in this case, the sequence v of host nodes), which once established

that it is the longest stable prefix at some point during the run, then this prefix can

be shown to never be rejecting by way of contradiction.

We follow the run ρ and claim that there is a longest eventually stable prefix of

the nodes in ϑ of length l. Now, we extract an infinite ascending chain of indices

i0 < i1 < i2 < . . . such that

1. the length |vj | ≥ l of the j-th node is not smaller than l for all j ≥ i0, and

2. the length |vj | ≥ l of the j-th node is equal to l = |vi| for all indices i ∈

{i0, i1, i2, . . .} in this chain.

(1) and (2) together imply that when we follow the run of the deterministic

automaton in positions i0, i1, i2, . . ., the host nodes vi0 , vi1 , vi2 , . . . form a descending

chain when the single nodes vi are compared by lexicographic order.

As the domain is finite, almost all elements of the descending chain are equal,

say vi := π. In particular, π is stable infinitely often from some point onwards.

Now that we have a claim that there is a longest eventually stable prefix, we now

assume for contradiction, that this stable prefix π is accepting only finitely often and

that it becomes rejecting from some point in time. We choose some index i from the

50

chain i0 < i1 < i2 < . . . such that the longest stable prefix π is stable for all positions

j ≥ i. (Note that π is the host of qi for di, and qj ∈ lj(π) holds for all j ≥ i.)

As ρ is accepting, there is a smallest index j > i such that (qj−1, α(j − 1), qj) ∈

Fhi(π). Now, as π is not accepting, qi must henceforth be in the label of a child of π,

which contradicts the assumption that infinitely many nodes in ϑ have length |π|.

Thus, π is eventually stable infinitely often and always accepting eventually. 2

Lemma 3.4.3 [L(RG) ⊆ L(GB)] Given that there is a node v ∈ d (where d is a

generalised history tree) which is eventually stable infinitely often and always accepting

eventually for an ω-word α, then there is an accepting run of GB on α.

Notation. The notation is the same as in Section 3.1.3 with the following minor

modification. If, for all qj ∈ Q2, there is such a sequence that contains a transition in

Fa, we write Q1 ⇒α
a Q2.

Proof. Let α ∈ L(RG). Then there is a v that is eventually always stable and always

eventually accepting in the run ρRG of RG on α. We pick such a v.

Let i0 < i1 < i2 < . . . be an infinite ascending chain of indices such that

• v is stable for all transitions (dj , α(j), dj+1) with j ≥ i0, and

• the chain i0 < i1 < i2 < . . . contains exactly those indices i ≥ i0 such that

(di−1, α(i − 1), di) is accepting; this implies that h is updated exactly at these

indices.

Let di = (Ti, li, hi) for all i ∈ ω. By construction, we have

• I →α[0,i0[li0(v), and

• lij (v)⇒α[ij ,ij+1[
hij

lij+1(v).

Exploiting König’s lemma, this provides us with the existence of a run of GB on α

that visits all accepting sets Fi of GB infinitely many times. [Note that the value of

51

h is circulating in the successive sequences of the run.] This run is accepting, and α

therefore in the language of GB. 2

The lemmata 3.4.2 and 3.4.3 together provide the following corollary

Corollary 3.4.4 L(GB) = L(RG)

3.5 Estimations

In this subsection, we provide estimations for the number of states of a deterministic

automaton arising from our constructions. We provide estimations for the case of

determinising 1-pair Rabin automata and generalised Büchi automata. It is easy to

extend current results for estimating history trees[Sch09b] to these cases, especially

for 1-pair Rabin automata.

3.5.1 Estimation of the number of history trees

Schewe’s estimation of the number of history trees for a given Büchi automaton is

the current best estimation for this problem. He estimates the number #ht(n) of

history trees for Büchi automata with n states to be in o
(
(1.65n)n

)
[Sch09b].

3.5.2 Estimation of the number of Root History Trees

Let #ht(n) and #rht(n) be the number of history trees and RHTs, respectively, over

sets with n states. First, #rht(n) ≥ #ht(n) holds, because the sub-tree rooted in

0 of an RHT is a history tree. Second, #ht(n + 1) ≥ #rht(n), because adding the

additional state to l(ε) turns an RHT into a history tree. With an estimation similar

to that of history trees [Sch09b], we get:

Theorem 3.5.1 The number of root history tree #rht(n), grows at a speed such that

inf
{
c | #rht(n) ∈ O

(
(cn)n

)}
= inf

{
c | #ht(n) ∈ O

(
(cn)n

)}
≈ 1.65.

In Subsection3.5.1, it was shown that #ht(n) grows at a speed, such that inf
{
c |

#ht(n) ∈ O
(
(cn)n

)}
≈ 1.65. We argue that #rht(n) does not only grow in the same

52

speed, it even holds that there is only a small constant factor between #ht(n) and

#rht(n).

First, there is obviously a bijection between RHTs overQ and the subset of history

trees over Q∪{qd}, where qd /∈ Q is a fresh dummy state, and qd is the only state that

is hosted by the root. We estimate this size by the number of history trees, where qd

is hosted by the root ε of the history tree.

To keep the estimation simple, it is easy to see that the share of history trees with

< 1
3n nodes diminishes to 0, as the number of trees with n nodes grows much faster

than the number of trees with < 1
3n nodes and the number of functions from [n] onto

[n], n!, grows much faster than the functions from [n] to [1
3n]. So we can assume for

our estimation that the tree has at least 1
3n nodes, such that the share of trees where

qd is in the root is at most < 3
n .

The limit limn→∞
#ht(n+1)
n#ht(n) converges to (1 + c

n)n = ec for c ≈ 1.65. Thus, we get

the following estimation:

limn→∞
#rht(n)
#ht(n) ≤ limn→∞ 3#ht(n+1)

n#ht(n) 3ec < 3ec.

3.5.3 Estimation of the number of generalised history trees

The parameter ghtk(n) can be estimated in a similar way as the number of history

trees for the determinisation of Büchi automata, as generalised history trees are, just

like history trees, ordered trees with further functions on the set of nodes of the tree.

From [Sch09b], we have that ht(n) ∈ supx>0O
(
m(x) · 4β(x)

)
⊂ o

(
(1.65n)n

)
,

where n is the number of states of the nondeterministic Büchi automaton and m is

the size of a history tree.

Using the functions from above, ghtk(n) ∈ supx>0O
(
m(x)·kβ(x) ·4β(x)

)
, providing

(1.65n)n, for k = 1, (3.13n)n for k = 2, and (4.62n)n for k = 3.1

This value converges against

(1.47kn)n

1The values for the constants in the estimates are given from evaluating the equations for different
values of k.

53

for large k.

Note that for all deterministic automata produced by our constructions, there

may be up to 2n − 1 Rabin pairs.

For estimating nested history trees, simply multiplying the size of the data struc-

ture by the number of priorities gives an (nk)O(nk) upper bound, which is comparable

to current trivial upper bounds derived from converting parity automata to Büchi au-

tomata and then determinising. Finding a tighter estimate for the number of nested

history trees is a good question for future work.

3.6 Determinising to parity automata

In this section, we show that starting from our determinisation constructions de-

scribed previously, we can determinise to deterministic parity automata. We also

provide size estimations for the constructions. Most of these results are published in

[SV14a] and [SV12].

Deterministic parity automata seem to be a nice target when determinising ω-

automata given that algorithms that solve parity games (e.g, for acceptance games

of alternating and emptiness games of nondeterministic parity tree automata) have

a lower complexity when compared to solving Rabin games. For Büchi and Streett

automata, determinisation to parity automata was first shown by Piterman in [Pit07].

For applications that involve co-determinisation, the parity condition also avoids the

intermediate Streett condition.

Safra’s determinisation construction (and younger variants) intuitively enforces

a parity-like order on the nodes of history trees. Index Appearance Records are a

variant of Latest Appearance Records first introduced in [McN66]. By storing the

order in which nodes are introduced during the construction, we can capture the

Index Appearance Records construction that is traditionally used to convert Rabin

or Streett automata to parity automata. To achieve this, we augment the states of

the deterministic automaton (GHTs, RHTs or NHTs) with a later introduction record

54

a,b,c,d,e,f,g

b,e,f c d,g

e f g

1 4 5

2 3 6

Figure 3.10: Example ordered tree with numbers denoting order of appearance. The
corresponding LIR is [0 1 2 3 4 5 6]

(LIR), an abstraction of the order in which the non-Rabin nodes of the ordered trees

are introduced. (As Rabin roots are but redundant information, they are omitted in

this representation.)

3.6.1 From nondeterministic parity, 1-pair Rabin, and Büchi automata

to deterministic parity automata

We show how this construction works for determinising parity automata to determin-

istic parity automata. As the parity condition subsumes the 1-pair Rabin condition,

which in turn subsumes the Büchi condition, this construction works for the deter-

minisation of automata that express all the above acceptance conditions.

For an ordered tree T with m nodes that are not Rabin roots, an LIR is a sequence

v1, v2, . . . vm that contains the nodes of T that are not Rabin root nodes, such that,

each node appears after its ancestors and older siblings.

For example, consider the ordered tree given in Figure 3.10 where the numbers

leading to the states describe its ordering with respect to time of generation of the

node. The LIR corresponding to the ordered tree is [0123456]. 0 denotes the root.

For convenience in the lower bound proof, we represent a node v ∈ T of an NHT

d = (T , l, λ) in the LIR by a triple (Sv, πv, Pv) where Sv = l(v), is the label of v,

πv = λ(v) the level of v, and Pv = {q ∈ Q | v = hostπv(q, d)} is the set of states πv

hosted by v. The v can be reconstructed by the order and level. We call the possible

55

a,b,c,d,e,f,g

b,c,d d e,f,g c,f,g

b b,c c e,f f,g

c

1 4 5 7

2 3 8 9 6 10

11 12 13

Figure 3.11: This figure shows an example transition on reading a letter σ just like
the examples shown for the construction to Rabin automata. The corresponding LIR
is now [0 1 2 3 4 5 6 7 8 9 10 11 12 13]. We will skip several steps like deleting
duplicates horizontally and vertically and go straight to the next step where nodes
are deleted for purposes of illustration of the LIR.

sequences of these triples LIR-NHTs. Obviously, each LIR-NHT defines an NHT, but

not the other way round.

Definition 3.6.1 (LIR-NHT) A finite sequence (S1, π1, P1)(S2, π2, P2)(S3, π3, P3) . . .

(Sk, πk, Pk) of triples is a LIR-NHT if it satisfies the following requirements for all i ∈ [k].

1. Pi ⊆ Si,

2. {Pi} ∪ {Sj | j>i, πi=πj , and Sj∩Si 6=∅} partitions Si.

3. {Sj | j > i, πi = πj + 2, and Sj ∩ Pi 6= ∅} partition Pi.

4. If the highest priority of P is even, then πi = e implies Si ⊆ S1. (In this case, the

lowest level construction is Büchi and the first triple always refers to the root.)

5. For πi < e, there is a j < i with Si ⊆ Pj .

To define the transitions of D, we can work in two steps. First, we identify, for

each position i of a state N = (S1, π1, P1)(S2, π2, P2)(S3, π3, P3) . . . of D, the node vi

of the NHT d = (T , l, λ) for the same input letter. We then perform the transition(
d, σ, (T ′, l′, λ′)

)
on this Rabin automaton. We are then first interested in the set of

56

a,b,c,d,e,f,g

b,c,d e,f,g

b c

1 5

2 3

Figure 3.12: Here, some nodes have been deleted. Node 5 still remains and its
position in the LIR is advanced. The LIR now looks like this: [0 1 2 3 5 4 6 7 8 9 10
11 12 13]. The transition leading to this state is now labelled with priority 6 as the
smallest node position in the LIR that is either accepting or rejecting is position 3.

non-rejecting nodes from this transition and their indices. These indices are moved

to the left, otherwise maintaining their order. All remaining vertices of T ′ are added

at the right, maintaining orderedness.

The priority of the transition is determined by the smallest position i in the se-

quence, where the related node in the underlying tree is accepting or rejecting.

It is therefore more convenient to use a min-parity condition, where the parity of

lim infn→∞ pri(ρ) determines acceptance of a run ρ. As this means smaller numbers

have higher priority, pri is representing the opposite of a priority function, and we

refer to the priority as the co-priority for clear distinction.

If the smallest node is rejecting, the transition has co-priority 2i − 1, if it is ac-

cepting (and not rejecting), then the transition has co-priority 2i, and if no such node

exists, then the transition has co-priority ne+ 1.

In case the nondeterministic automaton is Büchi or 1-pair Rabin, when we aug-

ment a LIR to a history tree/RHT, the LIR-NHT reduces to the order in which the

nodes of the history tree/RHT are introduced.

Lemma 3.6.2 Given a nondeterministic parity automaton P with |P | = n states and

maximal priority π, we can construct a language equivalent deterministic parity au-

tomaton D with ne + 1 priorities for e = 2b0.5πc, whose states are the LIR-NHTs de-

scribed above.

57

Proof. We use our determinisation technique from Section 3.3 to construct a de-

terministic parity automaton, whose states consist of the LIR-NHTs, i.e., the NHTs

augmented with the Later Introduction Records, with the parity index on the transi-

tions from the states of the automata.

First, we observe that P is language equivalent to the deterministic Rabin au-

tomaton Rπ from the construction of Section 3.3 by Corollary 3.3.4.

Let α be a word in the language L(Rπ) of the automaton Rπ. By definition of

acceptance, we have an index v such that the node v is a node, which is eventually

always stable and always eventually accepting in the transitions of the run of Rπ on

α. Note that v cannot be a Rabin root, as Rabin roots cannot be accepting.

Once stable, the position of this node in the LIR is non-increasing, and it decreases

exactly when a node at a smaller position is deleted. This can obviously happen only

finitely many times, and the position will thus eventually stabilise at some position

p. Moreover, all positions ≤ p will then be henceforth stable.

Then, by our construction, it is easy to see that henceforth no transition can have

a co-priority < 2p. At the same time, for each following transition where v is accept-

ing in the deterministic Rabin automaton, the respective transition of the run of P

has a priority ≤ 2p. (At some node that is represented in a position ≤ 2p, an accept-

ing or rejecting event happens.) These two observations provide, together with the

fact that these priorities ≤ 2p must occur infinitely many times by the deterministic

Rabin automaton being accepting, that the dominating priority of the run is an even

priority ≤ 2p.

In the other direction, let 2i be the dominant priority for a run of our DPA D

on a word α. This leads to a scenario where all positions ≤ i eventually maintain

their positions in the LIR. The respective nodes they represent remain stable, but not

accepting, from then on in the transitions of the run of Rπ on α.

Observe that all older siblings (and ancestors, except for the omitted Rabin root)

of a node v of an NHT are represented on a smaller position than v. The node

58

corresponding to the position i is always eventually accepting in the transitions of

Rπ on α, such that α is accepted by Rπ. 2

Size estimation for determinisation of 1-pair Rabin and Büchi automata to par-

ity automata

Lemma 3.6.3 A deterministic parity automaton resulting from determinising a one-

pair Rabin automaton R1 has O(n!2) states

Proof. Let |Q| = n be the number of states of our nondeterministic one-pair Rabin

automaton. We explicitly represent (for the sake of evaluating the state-space) the

tree structure of an RHT/LIR pair with m nodes by a sequence of m − 1 integers

i1, i2 . . . im such that ij points to the position < j of the parent of the node vj in the

LIR v1, v2, . . . vm. There are (m−1)! such sequences. There is an obvious bijection be-

tween this representation of an LIR and its original definition. Thus, for an RHT/LIR

pair with n+ 1 nodes, we can have up to n! such RHT/LIR pairs just by virtue of the

order of introduction of the nodes.

To more accurately evaluate the number of states, we have to consider the way

RHTs are labelled. The root is always labelled with the complete set of reachable

states.

We first consider the case where the root is labelled with all |n| states of the

nondeterministic one-pair Rabin automaton R1.

For history trees with m nodes over n = |Q| states and n states labelling the

root, Let t(n,m) denote the number of such trees augmented with later introduction

record.

First of all, t(n, n+1) = (n! ·n!) holds : For such a tree, there can be up to n! onto

functions that resemble the labelling of states of the deterministic automaton and n!

RHTs augmented with LIRs.

For every m ≤ (n + 1), the following is a coarse estimation from [Sch09b] pro-

viding t(n,m− 1) ≤ 1
2 t(n,m). Hence,

∑n
i=1 t(n, i) ≤ 2(n! · n!).

59

We next consider the case where the root is not labelled with all |n| states of

the nondeterministic one-pair Rabin automaton R1. Now, we let t′(n,m) denote the

number of root history trees with m nodes over n states augmented with LIRS. We

now have t′(n, n) = (n−1)!n! and, by a similar analysis to the case of t, we also have

t′(n,m− 1) ≤ 1
2 t
′(n,m) for every m ≤ n, and hence

∑n−1
i=1 t

′(n, i) ≤ 2(n− 1)!n!.

Overall, the number of Root History Trees augmented with LIRs is
∑n

i=1 t(n, i) +∑n−1
i=1 t

′(n, i) ≤ O(n!2). The number of states of the resulting deterministic parity

automaton is O(n!2), which equates to a linear increase in size when compared with

a deterministic parity automaton resulting from the determinisation of a language

equivalent nondeterministic Büchi automaton instead of a nondeterministic one-pair

Rabin automaton. 2

Lemma 3.6.4 A deterministic parity automaton resulting from determinising a Büchi

automaton B has O
(
n!(n− 1!)

)
states.

A similar estimation for the case of determinising Büchi automata to parity au-

tomata would result in O
(
(n−1)!n!

)
states, when the acceptance condition is placed

on the transitions rather than the states. This is because over a set of n states, an RHT

has a redundant root node when compared to a history tree over the same number

of states.

3.6.2 From Generalised Büchi automata to deterministic parity au-

tomata

LIRs can similarly be augmented to generalised history trees to describe a deter-

minisation construction from generalised Büchi automata to deterministic parity au-

tomata. A GHT/LIR pair is again a sequence v1, v2, . . . vm that contains the nodes

of T from the generalised history tree G = (T , l, h). Every node appears after its

parents and older siblings.

Theorem 3.6.5 Given a nondeterministic generalised Büchi automaton GB with |Q| =

60

n states and k accepting sets, one can construct a language equivalent deterministic

parity automaton D with O
(
n!(n− 1!)kn

)
states and 2n priorities.

Proof. First, we observe that the counting of GHT/LIR pairs is almost identical to

the counting of history tree/LIR pairs. The distinguishing component in this case is

the function h : T → [k] which labels every node of a generalised history tree with a

natural number. The inclusion of h multiplies the state-space by kn. We thus have at

mostO
(
n!(n−1!)kn

)
states of the deterministic automaton through our construction.

We use our determinisation technique from Section 3.4 to construct a determin-

istic parity automaton, whose states are the GHT/LIR pairs and the parity index on

the transitions from the states of the automaton. The priority of a transition from a

state is determined by the smallest position i in the LIR that is either accepting or

rejecting. If the smallest node is rejecting, the transition has co-priority 2i − 1, if it

is accepting (and not rejecting), then the transition has co-priority 2i. If no node is

accepting or rejecting, the co-priority is 2n+ 1.

We observe that GB is language equivalent to the deterministic Rabin automaton

RG from the construction of Section 3.4 by Corollary 3.4.4. Let α be a word in

the language L(RG) of the automaton RG . By definition of acceptance, we have an

index v such that the node v is a node, which is eventually always stable and always

eventually accepting in the transitions of the run of RG on α.

Once stable, the position of this node in the LIR is non-increasing, and it decreases

exactly when a node at a smaller position is deleted. This can obviously happen only

finitely many times, and the position will thus eventually stabilise at some position

p. Moreover, all positions ≤ p will then be henceforth stable.

Then, by our construction, it is easy to see that henceforth no transition can

have a co-priority < 2p. At the same time, for each following transition where v is

accepting in the deterministic Rabin automaton, the respective transition of the run

of GB is accepting infinitely often. These two observations provide, together with the

fact that these priorities ≤ 2p must occur infinitely many times by the deterministic

61

Rabin automaton being accepting, that the dominating priority of the run is an even

priority ≤ 2p.

In the other direction, let 2i be the dominant priority for a run of our DPA D

on a word α. This leads to a scenario where all positions ≤ i eventually maintain

their positions in the LIR. The respective nodes they represent remain stable, but not

accepting, from then on in the transitions of the run of RG on α.

Observe that all older siblings (and ancestors) of a node v of a GHT are repre-

sented on a smaller position than v. The node corresponding to the position i is

always eventually accepting in the transitions of RG on α, such that α is accepted by

RG . 2

3.7 Summary

Building on the current tight construction for the determinisation of Büchi automata,

we have introduced determinisation constructions for the following cases:

1. Determinising from a nondeterministic parity(consequently, the special-case of

1-pair Rabin) automaton to a deterministic Rabin automaton.

2. Determinising from a nondeterministic generalised Büchi automaton to a de-

terministic Rabin automaton.

3. Determinising from a nondeterministic parity(consequently, the special-case of

1-pair Rabin) automaton to a deterministic parity automaton.

4. Determinising from a nondeterministic generalised Büchi automaton to a de-

terministic parity automaton.

In the next chapter, we will show lower bounds for these constructions.

62

Chapter 4
Lower bounds for determinisation

In this chapter, we provide lower bounds for our constructions. We use a family of

automata called full automata that can simulate every automaton of the same size.

We adapt a technique used to prove an exact lower bound for Büchi determinisa-

tion in [CZ09], to prove exact lower bounds for parity automata and generalised

Büchi automata. We also provide a tight lower bound for determinisation to parity

automata. The arguments for these techniques are more involved than for Büchi

determinisation. Most of the results presented here were published in [SV14a] and

[SV12].

4.1 Technical preliminaries

4.1.1 Full parity automata

Our lower bound proof builds on full automata (cf. [Yan08]), like the ones used in

[CZ09] to establish a lower bound for the translation from nondeterministic Büchi

to deterministic Rabin automata.

A parity automaton Pπn =
(
Q,Σπ

n, I, T, pri
)

with n states is called full if its alpha-

bet Σπ
n = Q×Q> → 2[π] is the set of functions from Q×Q> to sets of priorities [π],

and

• I = Q,

63

• T =
{(
q, σ, q′) | q ∈ Q, q′ ∈ Q>, σ(q, q′) 6= ∅

}
,

• pri : (q, σ, q′) 7→ opt
(
σ(q, q′)

)
for all q, q′ ∈ Q with σ(q, q′) 6= ∅, where opt

returns the highest even number of a set, and the lowest odd number if the set

contains no even numbers.

(q, σ,>) encodes immediate acceptance from state q. Every nondeterministic par-

ity automaton with priorities ≤ π can be viewed as a language restriction (by alpha-

bet restriction) of Pπn . Pπn therefore recognises the hardest language recognisable by

any parity automata with n states and maximal priority π.

4.1.2 Full Generalised Büchi automata

A generalised Büchi automaton Bkn = (Σ, Q, I, T, {Fi | i ∈ [k]}) is called full if

• Σk
n = Q×Q> → 2[k+1], |Q| = n, and I = Q,

• T = {(q, σ, q′) | ∃i ∈ [k + 1]. (q, i, q′) ∈ σ}, and

• Fi = {(q, σ, q′) | (q, i, q′) ∈ σ}.

4.1.3 Language games

A language game is an initialised two player game G = (V,E, v0,L), which is played

between a verifier and a spoiler on a star-shaped directed labelled multi-graph (V,E)

without self-loops. It has a finite set V of vertices, but a potentially infinite set of

edges.

The centre of the star, which we refer to by c ∈ V , is the only vertex of the verifier,

while all other vertices are owned by the spoiler. Besides the centre, the game has

a second distinguished vertex, the initial vertex v0, where a play of the game starts.

The remaining vertices W = V r{v0, c} are called the working vertices. Like v0, they

are owned by the spoiler.

The edges are labelled by finite words over an alphabet Σ. Edges leaving the

centre vertex are labelled by the empty word ε, and there is exactly one edge leaving

64

via each working vertex, and no outgoing edge to the initial vertex. The set of these

outgoing edges is thus {(c, ε, v) | v ∈ W}. The edges that lead back to the centre

vertex are labelled with non-empty words.

The players play out a run of the game in the usual way by placing a pebble on the

initial vertex v0, letting the owner of that vertex select an outgoing edge, moving the

pebble along it, and so forth. This way, an infinite sequence of edges is produced,

and concatenating the finite words by which they are labelled provides an infinite

word w over Σ. The verifier has the objective to construct a word in L, while the

spoiler has the antagonistic objective to construct a word in Σω r L.

Theorem 4.1.1 [CZ09] If the verifier wins a language game for a language recognised

by a deterministic Rabin automaton R with r states, then he wins the language game

using a strategy with memory r.

This is because he can simply run R as a witness automaton. Intuitively, the

verifier would play on the product of R and G. This is a Rabin game, and if the

verifier wins, then he wins memoryless [Kla94, Zie98]. Thus, the states of R can

serve as the memory in G: the verifier will simply make the decision defined by the

decision he made in the product game.

Corollary 4.1.2 If the verifier wins a language game for a language recognised by a

deterministic Rabin automaton R with r < |W | states, then he wins the language game

played on a reduced graph, where the set of his outgoing edges is reduced to r edges of

his choice before playing the otherwise unchanged game.

These are simply the at most r edges chosen by the verifier under the at most r

different memory states.

4.1.4 Restricting the reachability set

Estimating the size of deterministic Rabin, Streett, or parity automata that recognise

the same language as a nondeterministic automaton (either a parity automaton with

65

n states and maximal priority π, or a generalised Büchi automaton with n states and

k accepting sets) reduces to estimating the size of the deterministic Rabin, Streett,

or parity automata that recognises the language of Pπn or Bkn. A useful property of

this language is that we can focus on states with different sets of reachable states

independently. We use reach(u) to denote the states reachable by a word u ∈ Σ∗ in

Pπn , resp. Bkn that is not immediately accepted by Pπn , resp. Bkn (that is, such that

> is not reachable on u). reach(u) can be defined inductively: reach(ε) = I, and

reach(va) =
{
q′ ∈ Q | ∃q ∈ reach(v). (q, σ, q′) ∈ T

}
for all words v ∈ Σ∗ and all

letters a ∈ Σ. This allows us to extend a useful observation from [CZ09]: states refer

to reachability sets. Moreover, the states for each reachablity set can be considered

independently.

Notation. In this section, we use ρ(s, u) to refer to a finite part of the run of a

deterministic automaton that starts in a state s upon reading a word u ∈ Σπ
n

+ or

a word u ∈ Σk
n

+, respectively. If this finite part of the run ends in a state s′, we

also write ρ(s, u, s′). In particular, ρ(s, u, s′) implies that s′ is reached from s when

reading u. For Rabin automata, an index i is accepting resp. rejecting for ρ(s, u, s′), if

it is accepting resp. rejecting in some transition in this sequence of a run. For parity

automata, the co-priority of ρ(s, u, s′) is the smallest co-priority that occurs in any

transition in the respective sequence of a run.

Lemma 4.1.3 Let A be a deterministic Rabin1, Streett, or parity (or, more gener-

ally, Muller) automaton that recognises the language of Pπn or its complement. Then

ρ(s0, u, s) and ρ(s0, v, s) imply reach(u) = reach(v) or reach(u) 3 > ∈ reach(v).

Proof. Assume for contradiction that this is not the case. We select two words

u, v ∈ Σ∗ with ρ(s0, u, s) and ρ(s0, v, s). Let σ∅ : (q, q′) 7→ ∅∀(q, q′) ∈ Q×Q>.

If reach(u) 3 > /∈ reach(v), then vσ∅ω is accepted, and uσ∅ω is rejected by Pπn .

1for Rabin automata, this has been shown in [CZ09]

66

If > /∈ reach(u) ∪ reach(v) and q ∈ reach(u) r reach(v), then we use σq : (q, q) 7→

{2} and σq : (q′, q′′) 7→ ∅ if (q′, q′′) 6= (q, q). Then uσq
ω is accepted, while vσqω is

rejected by Pπn .

Doing the same with u and v reversed provides us with the required contradic-

tion. 2

A similar argument can be used for deterministic automata that recognise the

language of Bkn. As a consequence, we can focus on sets of states with the same

reachability set.

4.2 Lower bounds for parity determinisation

Now we establish the optimality of our determinisation to Rabin automata. In Sub-

Section 3.3, we introduced a construction to determinise parity automata to deter-

ministic Rabin automata. We show that the Rabin automata produced using Corol-

lary 3.3.4 and recognising the same language as Pπn cannot be minimized further by

using the language of Pπn as the target language.

We also show that our determinisation to parity automata is optimal up to a small

constant factor. What is more, this lower bound extends to the more liberal Streett

acceptance condition.

The technique we employ is similar to [CZ09], in that we use the states (for Ra-

bin automata) or a large share of the states (for parity automata) of the resulting

automaton as memory in a game, and argue that it can be won, but not with less

memory. Just as in [CZ09], we use a game where this memory is a lower bound for

the size of a deterministic Rabin automaton that recognises the language of a full

nondeterministic automaton (see below). To estimate the size of a minimal Streett

automaton, we use the complement language instead. Consequently, we get a dual

result: a lower bound for a Rabin automaton that recognises the complement lan-

guage. By duality, this bound is also the lower bound for a deterministic Streett

67

automaton that recognises the language of this full automaton. As the parity condi-

tion is a special Streett condition, this lower bound extends to parity automata.

To establish that the deterministic parity automaton Dπn from Lemma 3.6.2 can-

not be 50% larger than any deterministic Streett – and thus in particular than any

deterministic parity – automaton that recognises the language of Dπn, we use the

complement language of Pπn as our target language.

We therefore get a bound on the smallest size of a Rabin automaton that recog-

nises the complement of the language of Pπn , and hence for a Streett automaton that

recognises Pπn . Having an upper bound for parity that matches this lower bound

for the more general Streett condition, we can infer tightness of our determinisation

construction for both classes of automata.

4.2.1 To deterministic Rabin automata.

To establish the lower bound, it is easier to use triples (Sv, πv, Pv) for each node v ∈ T

of an NHT (T , l, λ). By abuse of notation, we refer to the triple by T (v) (and thus

to the state of the DRA by T), to label by TS(v) and to {q ∈Q | v = hostλ(v)(q, T)}

by TP (v).

To define the edges leaving a spoiler vertex T , we refer to the finite part of a run

of Rπn that starts in T when reading a word u ∈ Σπ
n

+ by ρ(T , u). If this finite part of

the run ends in T ′, we also write ρ(T , u, T ′). In particular, ρ(T , u, T ′) implies that T ′

is reached from T when reading u. The accepting and rejecting nodes of ρ(T , u, T ′)

are the union of the accepting and rejecting nodes, respectively, of the individual

transitions in this section of the run.

Definition 4.2.1 (Relevant change) In a finite part ρ(T , u, T ′), of our Rabin au-

tomaton Rπn the relevant change is the minimal position v w.r.t. lexicographic order,

where

• the node has been accepting or rejecting during the piece of the run, or

• where T (v) 6= T ′(v).

68

We call the node v the relevant change, and we call it

• rejecting, if ρ(T , u, T ′) is rejecting at v,

• accepting, if ρ(T , u, T ′) is accepting but not rejecting at v,

• growing, if it is not rejecting and T ′S(v)) TS(v), and

• shrinking, if it is not rejecting, T ′S(v) = TS(v) and T ′P (v) (TP (v).

We use a set of language games, one for each subset S ⊆ Q of the states Q of Pπn

with two or more states. The vertices of such a language game consist of the centre

vertex, the initial vertex, and the working states W . These working states consist of

the states of Rπn with reach(T) = S. The target language is the language of all words

accepted by Rπn, and we have the following edges:

• there is an edge (v0, u, c) for all u ∈ Σπ
n

+ with ρ(T0, u, T) and T ∈W ,

• (c, ε, T) for all T ∈W , and

• (T , u, c) if ρ(T , u, T ′) is accepting, growing, or shrinking, and T ′ ∈W .

Lemma 4.2.2 The verifier wins these language games.

Proof. The verifier can simply use the strategy to monitor the state that the monitor

DRA Rπn from Corollary 3.3.4 would be in. He then has the winning strategy to play

(c, ε, T) when the automaton is in state T .

To see that he wins the game with this strategy, we consider the run of Rπn on the

word defined by the play (v0, u0, c)(c, ε, T1)(T1, u1, c)(c, ε, T2) . . ., which refers to the

word u0u1u2

The segments ρ(Ti, ui, Ti+1) of the run have, for all i ≥ 1, an accepting, growing,

or shrinking relevant change.

Let us consider the relevant changes of these segments. There is a – with re-

spect to lexicographic order – minimal one vmin that occurs infinitely often. Let us

69

choose a position i in the play such that no lexicographic smaller than v′ is hence-

forth a relevant change. Then no node smaller than or equal to v (with respect to

the lexicographic order) can henceforth be rejecting.

Clearly, if v is infinitely often accepting, then the verifier wins.

Let us assume for contradiction that there is a j > i such that v is not accept-

ing from position j onwards. Then, the set of states in Tl(v) must henceforth grow

monotonously with l, and grow strictly every time v is growing. As this can only hap-

pen finitely many times, there is a k > j such that v is henceforth neither accepting

nor growing.

Then, the set of pure states in Tl(v) must henceforth shrink monotonously with l,

and shrink strictly every time v is shrinking.

As this can only happen finitely often, this provides us with the required contra-

diction. 2

To establish that a minimal Rabin automaton that recognises the language of Rπn

cannot be smaller than Rπn, we show that the verifier needs all edges to win each of

these games.

For this, we recall the structure of the strategy that the verifier applies: he would

useRπn as a witness automaton, moving to the vertex that represents the state T that

Rπn would be in upon reading the finite word produced so far.

If one of his outgoing edges is removed, then there is one such state, say T , he

cannot respond to properly. Instead, he would have to go to a different state T ′. We

show that, irrespective of the states T and T ′ 6= T chosen, the spoiler can produce a

word u ∈ Σπ
n

+ such that (T , u, c) is an edge in G and ρ(T ′, u, T) is not accepting in

any position.

If the spoiler has such an option, then she can use Rπn as a witness automaton:

whenever it is her move, she chooses an edge with the properties described above.

Lemma 4.2.3 Let T and T ′ be two different states of Rπn with reach(T) = reach(T ′).

Then there is a word u ∈ Σπ
n

+ such that no node in ρ(T , u, T) is accepting and

ρ(T ′, u, T) has an accepting, growing, or shrinking relevant change.

70

Proof. We first identify the minimal position v in which T and T ′ are different, and

the set P of all lexicographic smaller positions that are part of T (and thus of T ′).

We use a word u = σv that consists of an initial letter, in which all nodes but P

are rejecting when staring in T and the nodes in P are neither accepting nor rejecting

when staring in T or T ′. In the second phase, we re-build T without making any

node in P accepting or rejecting.

Now let T (v) = (Sv, πv, Pv), T ′(v) = (S′v, πv, P
′
v), and T (v) = (Sv, πv, Pv) for all

v′ ∈ P . (Recall that the priority is defined by the position in the tree.)

We now distinguish four cases:

1. There is an s ∈ S′v r Sv,

2. S′v = Sv and there is an s ∈ Pv r P ′v,

3. Sv) S′v, and

4. S′v = Sv and Pv (P ′v.

We select the first letter of our word as follows.

1. If there is an s ∈ S′v r Sv, then we can fix such an s and select the first letter of

our word as follows:

• We let πv ∈ σ(s, s′) for all s′ ∈ Sv.

• For all v′ ∈ P , all s′ ∈ Pv′ , and all s′′ ∈ Sv′ , we let πv′ − 1 ∈ σ(s′, s′′).

• If π is odd, we let π ∈ σ(s′, s′′) for all s′, s′′ ∈ reach(T) (in order to

maintain the set of reachable states).

No further priority is included in any set σ(s′, s′′) for s′, s′′ ∈ Q and s′′ ∈ Q>.

This letter σ is chosen such that no node in P is accepting or rejecting in δ(T , σ)

or δ(T ′, σ). While v is accepting in δ(T ′, σ), it is rejecting in δ(T , σ). All other

positions are rejecting in these transitions.

2. If S′v = Sv and there is an s ∈ Pv rP ′v, then we can fix such an s and select the

first letter of our word as follows:

71

• We let πv − 1 ∈ σ(s, s′) for all s′ ∈ Sp.

• For all v′ ∈ P , all s′ ∈ Pv′ , and all s′′ ∈ Sv′ , we let πv′ − 1 ∈ σ(s′, s′′).

• If π is odd, we let π ∈ σ(s′, s′′) for all s′, s′′ ∈ reach(T) (in order to

maintain the set of reachable states).

No further priority is included in any set σ(s′, s′′) for s′, s′′ ∈ Q and s′′ ∈ Q>.

This letter σ is chosen such that no node in P is accepting or rejecting in δ(T , σ)

or δ(T ′, σ). While v is accepting in δ(T ′, σ), it is neither accepting nor rejecting

in δ(T , σ). All other positions are rejecting in these transitions.

3. If Sv) S′v, then we can fix an s ∈ Pv and select the first letter of our word as

follows:

• We let πv − 1 ∈ σ(s, s′) for all s′ ∈ Sv.

• For all v′ ∈ P , all s′ ∈ Pv′ , and all s′′ ∈ Sv′ , we let πv′ − 1 ∈ σ(s′, s′′).

• If π is odd, we let π ∈ σ(s′, s′′) for all s′, s′′ ∈ reach(T) (in order to

maintain the set of reachable states).

No further priority is included in any set σ(s′, s′′) for s′, s′′ ∈ Q and s′′ ∈ Q>.

This letter σ is chosen such that no node in P is accepting or rejecting in δ(T , σ)

or δ(T ′, σ). While v is not rejecting (but may or may not be accepting) in

δ(T ′, σ), it is neither accepting nor rejecting in δ(T , σ). All other positions are

rejecting in these transitions.

4. If Sv = S′v and Pv ⊆ P ′v, then we can fix an s ∈ Pv and select the first letter of

our word as follows:

• We let πv − 1 ∈ σ(s, s′) for all s′ ∈ Sv.

• For all v′ ∈ P , all s′ ∈ Pv′ , and all s′′ ∈ Sv′ , we let πv′ − 1 ∈ σ(s′, s′′).

• If π is odd, we let π ∈ σ(s′, s′′) for all s′, s′′ ∈ reach(T) (in order to

maintain the set of reachable states).

72

No further priority is included in any set σ(s′, s′′) for s′, s′′ ∈ Q and s′′ ∈ Q>.

This letter σ is chosen such that neither v nor any node in P is accepting

or rejecting in δ(T , σ) or δ(T ′, σ). All other positions are rejecting in these

transitions.

Note that ∆(T , σ) = ∆(T ′, σ) holds in all those cases. Starting with this letter,

we can continue to build a word to reconstruct T . Note that all we have to avoid

during this construction is to make v or a node in P accepting.

The resulting fragments ρ(T ′, u, T) are accepting in cases (1) and (2), growing

in case (3), and shrinking in case (4), such that (T ′, u, T) is a transition, while

ρ(T , u, T) does not contain any accepting node. 2

Corollary 4.2.4 If any outgoing edge is removed from the verifier’s centre vertex in any

of these games, then the spoiler wins the language game.

Together with Lemmata 4.1.3 and 4.2.2, Corollary 4.2.4 provides:

Theorem 4.2.5 The full deterministic Rabin automaton Rπn is the smallest determinis-

tic Rabin automaton that recognises the language of the full parity automaton Pπn .

4.2.2 To deterministic parity automata.

For our language game, we use a subset of the states of Dπn, which we call the spiked

states and a fresh initial vertex as the spoiler vertices. Dπn is obtained by determinising

the full parity automaton Pπn using the construction in SubSection 3.6.1. We call a

state of Dπn spiked, if its last position is a triple of the form ({q}, 2, {q}). This is a mild

restriction and owed to the fourth case of the proof of Lemma 4.2.9. Most states are

spiked.

Lemma 4.2.6 Dπn has more than twice as many spiked as unspiked states.

Proof. Each unspiked state ends in a triple (P, 2, P) with |P | ≥ 2. We can simply

replace it by |P | pairs of triples, (P, 2, P r {q}), ({q}, 2, {q}), for each q ∈ P . The

73

resulting state is spiked. Each non-spiked state produced at least two spiked states,

each spiked state is produced by at most one state, and not every spiked state can be

produced this way, e.g., states N with |reach(N)| = 1 cannot. 2

To define the edges leaving a spoiler vertex N , we refer to the finite part of a run

of Dπn that starts in N when reading a word u ∈ Σπ
n

+ by ρ(N, u). If this finite part of

the run ends in N ′, we also write ρ(N, u,N ′). In particular, ρ(N, u,N ′) implies that

N ′ is reached from N when reading u. The co-priority of ρ(N, u,N ′) is the smallest

co-priority that occurs in the respective sequence of a run.

Definition 4.2.7 (Relevant change) In ρ(N, u,N ′), the relevant change is the mini-

mal position i, where

• the co-priority of ρ(N, u,N ′) is 2i − 1 or 2i i.e., position i was accepting or de-

stroyed), or

• the i-th position of N and N ′ differ.

For N =
{

(Sj , πj , Pj)
}
j≤m and N ′ =

{
(S′j , π

′
j , P

′
j)
}
j≤m′ , we call the relevant change i

• rejecting, if the co-priority of ρ(N, u,N ′) is 2i− 1,

• shrinking, if S′i (Si,

• defying if S′i = Si and the co-priority of ρ(N, u,N ′) is 2i+ 1, and

• purifying, if S′i=Si, P
′
i)Pi, and the co-priority is >2i.

We use a language game, whose vertices consist of the centre vertex, the initial

vertex, and and the working vertices W , which form a subset of the spiked states of

Dπn. Following Lemma 4.1.3, we will, for each S ⊆ Q with |S| ≥ 2, use an individual

game where W contains a spiked state N iff S is the set of states reachable in N

(reach(N) = S). The target language is the complement language of Dπn, and we

have the following edges:

• there is an edge (v0, u, c) for all u ∈ Σπ
n

+ such that there is a spiked state

N ∈W such that ρ(N0, u,N), where N0 is the initial state of Dπn,

74

• (c, ε,N) for all spiked states N of Dπn that are working states of the game, and

• (N, u, c) if ρ(N, u,N ′) is rejecting, shrinking, defying, or purifying, and N ′ is

spiked.

Lemma 4.2.8 The verifier wins all of these language games.

Proof. In the language game for each S ⊆ Q, the verifier can simply use the strategy

to monitor the state that the monitor DPA Dπn from Lemma 3.6.2 would be in. He

then wins by playing (c, ε,N) when the automaton is in state N .

To see that he wins the game, we consider the run of Dπn on the word defined

by the play (v0, u0, c)(c, ε,N1)(N1, u1, c)(c, ε,N2) . . ., which refers to the word w =

u0u1u2

The run ρ of Dπn on w can be decomposed into the finite segments ρ(Ni, ui, Ni+1)

for all i ≥ 0. For all i ≥ 1, their relevant changes are rejecting, shrinking, defying, or

purifying.

Clearly, there is a minimal one imin that occurs infinitely often. Consequently, no

co-priority smaller than 2imin − 1 can occur infinitely many times in ρ.

We can now distinguish four cases.

1. Assume that there are infinitely many rejecting relevant changes imin. Then the

co-priority 2imin − 1 occurs infinitely often in ρ, and the ω word w is rejected.

2. Assume that finitely many of the relevant changes with change priority imin are

rejecting, but infinitely many are shrinking. Then we can choose a position

in the play where henceforth no relevant change with priority < imin, and

no rejecting relevant change with priority imin occurs. Consequently, the set

of states at position imin of Ni would henceforth shrink monotonously with

growing i, and would infinitely often shrink strictly. But this is a contradiction.

3. Assume that finitely many of the relevant changes with change priority imin are

rejecting or shrinking, but infinitely many are defying. Then we can choose a

position in the play where henceforth no relevant change with change priority

75

< imin, and no rejecting or shrinking relevant change with change priority

imin occurs. From this time onwards, no co-priority ≤ 2imin can occur on any

segment of the run, while the co-priority 2imin + 1 occurs infinitely often.

4. Assume that finitely many of the relevant changes with change priority imin

are rejecting, shrinking, or defying. Then we can choose a position in the

play where henceforth no relevant change j with j < imin, and no rejecting,

shrinking, or defying relevant change with relevant change imin occurs. Con-

sequently, the set of pure states at position imin of Ni would henceforth grow

monotonously with growing i, and would infinitely often grow strictly. This is

a contradiction, however.

2

To establish that the minimal size of a Rabin automaton that recognises the com-

plement language of Dπn cannot be significantly smaller than Dπ
n, we will show that

the verifier needs all edges to win this game.

For this, we recall the structure of the strategy that the verifier applies: he would

use Dπn as a witness automaton, moving to the vertex that represents the state Dπn

would be in upon reading the finite word produced so far. If one of his outgoing

edges is removed, then there is one such state, say N , he cannot respond to properly.

Instead, he would have to go to a different state N ′.

We show that, irrespective of the state N that becomes unreachable and N ′ 6= N

chosen, the spoiler can produce a word u ∈ Σπ
n

+ such that (N ′, u, c) is a transition in

G and ρ(N, u,N) has even co-priority.

If the spoiler has such an option, then she can use Dπn as a witness automaton:

initially, she selects an edge (v0, u, c) such that ρ(N0, u,N) holds; henceforth she

chooses, whenever she is in a vertex N , an edge (N ′, u, c) such that ρ(N, u,N) holds,

returning the run to N with dominating even co-priority. Thus, she can make sure

that the constructed word is accepted.

76

Lemma 4.2.9 Let N and N ′ be two different spiked states of Dπn with reach(N) =

reach(N ′). Then there is a word u ∈ Σπ
n

+ such that the lowest co-priority occurring

in ρ(N, u,N) is even and ρ(N ′, u,N) has a rejecting, shrinking, defying, or purifying

relevant change.

Proof. Let N =
{

(Si, πi, Pi)
}
i≤m and N ′ =

{
(S′i, π

′
i, P
′
i)
}
i≤m′ . As N 6= N ′, there is2

a minimal imin ≤ min{m,m′} such that (Simin , πimin , Pimin) 6= (S′imin
, π′imin

, P ′imin
).

We will construct a word u such that

• ρ(N, u,N) and ρ(N ′, u,N) are fragments of runs,

• the minimal co-priority of ρ(N, u,N), is even, and

• iminwill be the relevant change in ρ(N ′, u,N); it will be rejecting, shrinking,

defying, or purifying.

We distinguish four cases.

1. Let us assume that there is an s ∈ Simin rS′imin
. In this case, we choose such an

s, and select the first letter σimin of u such that

• πimin ∈ σimin(s, s′) for all s′ ∈ Simin ,

• πi − 1 ∈ σimin(s′, s′′) for all i < imin, s′ ∈ Pi, and s′′ ∈ Si, and

• if π is odd3, π ∈ σimin(s′, s′′) for all s′, s′′ ∈ reach(N).

No further priority is included in any set σimin(s′, s′′) for s′, s′′ ∈ Q and s′′ ∈ Q>.

Starting with σ is the central step. The transition from N reading σ has co-

priority 2imin, the transition from N ′ reading σ has co-priority 2imin − 1. Note

that during the transition, all nodes in the history trees underlying N and N ′

2Note that a spiked state N ′ cannot simply be longer than a spiked state N with reach(N) =
reach(N ′) (or vice versa): assuming thatN is an initial sequence ofN ′. Then the rules (1), (2), (3), and
(5) imply that S′

m+1 must be disjoint with all Si for i ≤ m, which contradicts reach(N) = reach(N ′).
3If the highest priority π of the defining NPA Pcn is odd, then S1 might be a strict subset of reach(N).

This part is then an easy way to make sure that all states in reach(N) remain reachable. If π is even,
then we have a tree on the lowest level, S1 = reach(N).

77

that refer to a position < imin are the same. They are also stable and non-

accepting during this transition. However, while the node the position imin of

N refers to is accepting, the node position imin of N ′ refers to is not stable.

(Note that N and N ′ could refer to the same underlying tree.) The resulting

state is the same for N and N ′.

The next letters are to rebuild N . For all i = imin +1 to m, we append a further

letter σi to our partially constructed word u. We choose a state s ∈ Pi and

define σi as follows:

• πi ∈ σi(s, s′) for all s′ ∈ Si,

• πj−1 ∈ σi(s′, s′′) for all j<i, s′∈Pj and s′′∈Sj , and

• if π is odd, π ∈ σimin(s′, s′′) for all s′, s′′ ∈ reach(N).

No further priority is included in any set σimin(s′, s′′) for s′, s′′ ∈ Q and s′′ ∈ Q>.

Clearly, reading i from a state that agrees with N on all positions < i before

reading σi, the resulting state will agree on all positions ≤ i with N after this

transition.

The transition has a co-priority ≥ 2i − 1 > 2imin. Thus, the word u =

σiminσimin+1σimin+2 . . . σm has the required properties; in particular ρ(N ′, u,N)

has rejecting relevant change i.

In the remaining cases we have Simin ⊆ S′imin
. Note that this implies πimin =

π′imin
.

2. The next case is Simin = S′imin
and there is a state s ∈ P ′imin

rPimin . In this case,

we fix such an s and start our word u with the letter σimin that satisfies

• πimin − 1 ∈ σimin(s, s′) for all s′ ∈ Simin ,

• πi − 1 ∈ σimin(s′, s′′) for all i < imin, s′ ∈ Pi, and s′′ ∈ Si, and,

• if π is odd, π ∈ σimin(s′, s′′) for all s′, s′′ ∈ reach(N).

78

No further priority is included in any set σimin(s′, s′′) for s′, s′′ ∈ Q and s′′ ∈ Q>.

Starting u with this letter σimin is again the central step. The transition

from N has co-priority 2imin, while the transition from N ′ has co-priority

2imin + 1. We can now continue u in the same manner as above and use

u = σiminσimin+1σimin+2 . . . σm, and u will again satisfy the constraints; in par-

ticular ρ(N ′, u,N) has a defying relevant change i.

3. In the next case, Simin (S′imin
, we fix an s ∈ Simin and start our word u with

the letter σimin that satisfies

• πimin ∈ σimin(s, s′) for all s′ ∈ Simin ,

• πi − 1 ∈ σimin(s′, s′′) for all i < imin, s′ ∈ Pi, and s′′ ∈ Si, and,

• if π is odd, π ∈ σimin(s′, s′′) for all s′, s′′ ∈ reach(N).

No further priority is included in any set σimin(s′, s′′) for s′, s′′ ∈ Q and s′′ ∈ Q>.

Starting u with this letter σimin is again the central step. The transition from

N or N ′ reading σ has co-priority 2imin. We can again continue u in the same

manner as above and use u = σiminσimin+1σimin+2 . . . σm, and uwill again satisfy

the constraints; in particular ρ(N ′, u,N) has shrinking relevant change i.

4. In the last case we have Simin = S′imin
and P ′imin

(Pimin . We first note that this

implies |Pimin | ≥ 2. The restriction to spiked states then provides imin < m. We

can therefore refer to position imin + 1 of N .

We choose an s ∈ Pimin+1 and start our word uwith the letter σimin that satisfies

• πimin+1 ∈ σimin(s, s′) for all s′ ∈ Simin ,

• πi − 1 ∈ σimin(s′, s′′) for all i ≤ imin, s′ ∈ P ′i , and s′′ ∈ Si, and,

• if π is odd, π ∈ σimin(s′, s′′) for all s′, s′′ ∈ reach(N).

No further priority is included in any set σimin(s′, s′′) for s′, s′′ ∈ Q and s′′ ∈ Q>.

Then the effect on N is obvious: the transition from N reading σ has co-

priority 2imin + 2. Starting from N ′, the same state is reached. The co-priority

79

is 2imin + 2 if N ′ has a position (S′imin+1, π
′
imin+1, P

′
imin+1) with s ∈ Simin+1

and π′imin+1 = πimin+1, and 2imin + 1 otherwise. (Note that, for the case that

s ∈ P ′imin
, this would imply πimin = πimin+1 + 2.)

We can again continue u in the same manner as above, although this results

in the slightly shorter word u = σimin+1σimin+2σimin+3 . . . σm. The word u will

again satisfy the constraints; in particular ρ(N ′, u,N) has purifying relevant

change i and ρ(N, u,N) has co-priority 2imin + 2.

2

Lemma 4.2.10 If any outgoing edge is removed from the verifier’s centre vertex in any

of these games, then the spoiler wins the language game.

Proof. If the spoiler has such an option, then she can useDπn as a witness automaton.

Let N be the spiked state, to whom the outgoing edge from the centre is removed.

Initially, the spoiler plays a word u0 with ρ(N0, u0, N) by choosing the edge

(v0, u0, c) from the initial vertex, such that N is reached from the initial state

of Dπn. Henceforth she plays, whenever she is in a vertex N ′, the word

u from the previous lemma by choosing the edge (N ′, u, c). This way, the

two players construct a play (v0, u0, c)(c, ε,N1)(N1, u1, c)(c, ε,N2)(N2, u2, c)(c, ε,N3)

(N3, u3, c)(c, ε,N4)(N4, u4, c)

For every i ≥ 1, the segment ρ(Ni, ui, Ni+1) of the run of Dπn on the word w =

u0u1u2u3u4 . . . has even minimal co-priority. Thus, the co-priority of the overall run

is even. 2

Together, the Lemmata 4.2.8, 4.2.10, and 4.1.3 provide:

Theorem 4.2.11 Every Rabin automaton R =
(
S,Σπ

n, s0, δ, R
)

that recognises the

complement language of Pπn must, for each non-empty subset4 S ⊆ Q of the states

Q of Pπn , have at least as many states s with reach(s) = S as Dπn has spiked states N

with reach(N) = S.
4For each q∈Q there is only a single state N of Dπn with reach(N) = {q}.

80

Corollary 4.2.12 Every Rabin automaton that recognises the complement language of

Pπn must contain at least as many states as Dπn has spiked states.

By dualisation and the observation that parity automata are special Streett au-

tomata we simply get:

Corollary 4.2.13 A deterministic Streett or parity automaton that recognises the lan-

guage of Pπn must have at least as many states as Dπn has spiked states.

The restriction to spiked states is minor – using the estimation of Lemma 4.2.6,

we get:

Theorem 4.2.14 Dπn has less than 1.5 times as many states as the smallest determinis-

tic Streett (or parity) automaton that recognises the language of Pπn .

State sizes for two parameters are usually not crisp to represent. But for the

simple base cases, Büchi and one pair Rabin automata, we get very nice results: it

establishes that the known upper bound for determinising Büchi to parity automata

[Sch09b] are tight and Piterman’s algorithm for it [Pit07] is optimal modulo a factor

of 3n, where 2n stem from the fact that [Pit07] uses state based acceptance. With

Lemmata 3.6.3 and 3.6.4 we get:

Corollary 4.2.15 The determinisation of Büchi automata to Streett or parity automata

leads to θ(n!(n − 1)!) states, and the determinisation of one-pair Rabin automata to

Streett or parity automata leads to θ(n!2) states.

4.3 Generalised Büchi lower bounds

In this section, we extend the same lower bound techniques to the determinisation

of generalised Büchi automata.

81

4.3.1 To deterministic Rabin automata

We show that the function ghtk(n), that maps n to the number of generalised history

trees for k accepting sets—and hence to the number of states of the resulting deter-

ministic Rabin automaton obtained by our determinisation construction—is also a

lower bound for the number of states needed for language equivalent deterministic

Rabin automata.

On determinisation of the full generalised Büchi automaton Bkn, we get the de-

terministic Rabin automaton Rkn whose states are the GHTs (triples T , l, h = d for all

d ∈ D) that have previously been defined.

We use a set of language games, one for each subset S ⊆ Q of the states Q of Bkn

with two or more states. The vertices of such a language game consist of the centre

vertex, the initial vertex, and the working states W . These working states consist of

the states of our deterministic Rabin automaton Rkn with reach(d) = S. To define the

edges leaving a spoiler vertex d, we refer to the finite part of a run of Rkn that starts

in d when reading a word u ∈ Σk
n

+ by ρ(d, u). If this finite part of the run ends in

d′, we also write ρ(d, u, d′). In particular, ρ(T , u, T ′) implies that T ′ is reached from

T when reading u. The accepting and rejecting nodes of ρ(d, u, d′) are the union of

the accepting and rejecting nodes, respectively, of the individual transitions in this

section of the run. The target language is the language of all words accepted by Rkn,

and we have the following edges:

• there is an edge (v0, u, c) for all u ∈ Σπ
n

+ with ρ(d0, u, d) and d ∈W ,

• (c, ε, d) for all d ∈W , and

• (d, u, c) if there is a node v ∈ d that is accepting in ρ(d, u, d′) , and d′ ∈W .

Lemma 4.3.1 The verifier wins these language games.

The verifier can simply use the strategy to monitor the state that the monitor

DRA Rkn from Corollary 3.4.4 would be in. He then has the winning strategy to play

(c, ε, d) when the automaton is in state d.

82

To establish that the minimal Rabin automaton that recognises the language of

Rkn cannot be smaller than Rkn, we show that the verifier needs all edges to win each

of these games.

For this, we recall the structure of the strategy that the verifier applies: he would

use Rkn as a witness automaton, moving to the vertex that represents the state d that

Rkn would be in upon reading the finite word produced so far.

If one of his outgoing edges is removed, then there is one such state, say d, he

cannot respond to properly. Instead, he would have to go to a different state d′. We

show that, irrespective of the states d and d′ 6= d chosen, the spoiler can produce a

word u ∈ Σk
n

+ such that (d, u, c) is an edge in G and ρ(d′, u, d) is not accepting in

any position.

If the spoiler has such an option, then she can use Rkn as a witness automaton:

whenever it is her move, she chooses an edge with the properties described above.

Lemma 4.3.2 Let d and d′ be two different states of Rkn with reach(d) = reach(d′).

Then there is a word u ∈ Σk
n

+ such that no node in ρ(d, u, d) is accepting.

Proof. We distinguish two cases. First, we assume that d = (T , l, h) and d′ =

(T , l, h′). This is the easy part: we can simply use a node v ∈ T such that h(v) 6=

h′(v), but this does not hold for any descendant of v. We then choose Q′ = {q ∈ S |

v = host(q, d)} to be the set of nodes hosted by v. (Note that these are the same for

d and d′.)

In this case, we can simply play the one letter word α = ε∪{(q, h′(v), q) | q ∈ Q′},

which satisfies all the properties from above: clearly the transition is profitable for

d′ (as v is accepting in the respective transition ρ(d′, α, d′′) whereas ρ(d, u, d) holds

while none of the nodes of T is accepting.

Now we assume that d = (T , l, h) and d′ = (T ′, l′, h′) with (T ′, l′) 6= (T , l). But

for this case, we can almost use the same strategy for choosing a finite word u as for

ordinary history trees [CZ09]. The extra challenge is that, when reconstructing d, it

is not enough to spawn a new child, we also have to update h, which can be done

83

using a sequence of letters like the letter α from above after reconstructing a node v.

2

With the help of this lemma, we can have the following corollary.

Corollary 4.3.3 If any outgoing edge is removed from the verifier’s centre vertex in any

of these games, then the spoiler wins the language game.

A winning strategy for the spoiler is as follows. From the initial vertex, the spoiler

plays a word u corresponding to ρ(d0, u, d), where d0 is the initial state of the deter-

ministic Rabin automaton. A good response from the verifier would be to move to d.

But d has been removed and the verifier has to move to a different game state, say d′

for some d′ 6= d. The spoiler responds according to Lemma 4.3.2. Using this strategy,

the spoiler ensures that, when the play gets infinite, there is no node that is always

eventually accepting and the deterministic Rabin automaton DG does not accept this

word and the spoiler wins.

Together with Lemmata 4.1.3 and 4.3.1, Corollary 4.3.3 provides:

Theorem 4.3.4 The full deterministic Rabin automaton Rkn is the smallest determinis-

tic Rabin automaton that recognises the language of the full generalised Büchi automa-

ton Bkn. Rkn has size at least ghtk(n).

4.3.2 To deterministic parity automata

We find a lower bound for determinising generalised Büchi to parity automata in a

similar way to the case of parity determinisation. We use the complement language

of Bkn as our target language.

Lemma 4.3.5 We can reuse the language games from Subsection 4.2.2 to prove a lower

bound for the determinisation of generalised Büchi automata to parity automata.

Proof. Let Tv be a state of a deterministic parity automaton produced by determinis-

ing a nondeterministic parity automaton. Let dv be a state of the deterministic parity

84

automaton produced as a result of our construction for generalised Büchi automata.

For a letter α and a state Tv (or dv), ρ(Tv, α) (or ρ(dv, α)) is a transition that produces

the state Tv+1 (or respectively dv+1).

By our determinisation mechanism in Sections 3.6.1 and 3.6.2, there is a mini-

mum position p in the underlying tree where there is a difference in the LIRs of the

new state Tv+1 (or respectively dv+1) produced by the transition from the previous

state Tv (or dv). It is easy to to find a mapping between this position p in the NHT Tv

and a position p in the GHT dv. This describes an injection to the triples (Sk, πk, Pk)

from LIR-GHTs dk. We can thus reuse the language games from Subsection 4.2.2 to

prove a lower bound for the determinisation of generalised Büchi automata to parity

automata. The target language is the complement language of Bkn over Σk
n analogous

to the complement language of Dπn in Section 4.2.2. 2

The following lemmata are stated without proof in order to avoid repeating the

same arguments from Subsection 4.2.2.

Lemma 4.3.6 The verifier wins all of these language games.

Lemma 4.3.7 Let N and N ′ be two different spiked states of Bkn with reach(N) =

reach(N ′). Then there is a word u ∈ Σk
n

+ such that the lowest co-priority occurring

in ρ(N, u,N) is even and ρ(N ′, u,N) has a rejecting, shrinking, defying, or purifying

relevant change.

Lemma 4.3.8 If any outgoing edge is removed from the verifier’s centre vertex in any

of these games, then the spoiler wins the language game.

Together, the Lemmata 4.3.6, 4.3.8, and 4.1.3 provide:

Theorem 4.3.9 Every Rabin automaton R =
(
S,Σk

n, s0, δ, R
)

that recognises the com-

plement language of Bkn must, for each non-empty subset5 S ⊆ Q of the states Q of

Bkn, have at least as many states s with reach(s) = S as Dkn has spiked states N with

reach(N) = S.
5For each q∈Q there is only a single state N of Bkn with reach(N) = {q}.

85

Corollary 4.3.10 Every Rabin automaton that recognises the complement language of

Bkn must contain at least as many states as Dkn has spiked states.

By dualisation and the observation that parity automata are special Streett au-

tomata we simply get:

Corollary 4.3.11 A deterministic Streett or parity automaton that recognises the lan-

guage of Bkn must have at least as many states as Dkn has spiked states.

The restriction to spiked states is minor – using the estimation of Lemma 4.2.6,

we get:

Theorem 4.3.12 Dkn has less than 1.5 times as many states as the smallest determinis-

tic Streett (or parity) automaton that recognises the language of Bkn.

4.4 Summary

In this chapter, we have established the following results.

1. We showed that our determinisation construction from nondeterministic parity

automata (and consequently, 1-pair Rabin) to deterministic Rabin automata

was optimal.

2. We showed that our determinisation construction from nondeterministic parity

automata to deterministic parity automata was tight upto a small constant fac-

tor of 1.5. In the case of determinising 1-pair Rabin automata to deterministic

parity automata, we have matching upper and lower bounds.

3. We showed that Piterman’s determinisation construction from nondetermin-

istic Büchi automata with state-based acceptance condition to deterministic

parity automata was optimal modulo 3n.

4. We showed that our determinisation construction from nondeterministic gen-

eralised Büchi automata to deterministic Rabin automata was optimal.

86

5. We showed that our determinisation construction from nondeterministic gener-

alised Büchi automata to deterministic parity automata was tight upto a small

constant factor of 1.5.

In the next chapter, we will introduce complementation constructions for parity

and generalised Büchi automata that use the data structures arising from determini-

sation and show that they are tight.

87

88

Chapter 5
Complementation

The complementation problem for any automaton A recognising a language L(A)

is a procedure performed on A that returns an automaton C recognising the com-

plementary language L(A). In the case of automata on finite words, complementa-

tion is easy. In fact, complementing a nondeterministic finite automaton is as easy

as determinising the given automaton and dualising it. For ω-automata, while this

procedure still works, it turns out that there are more efficient ways[Var07] to com-

plement ω-automata. For example, the problem of Büchi complementation is in

o
(
(0.76n)n

)
[Sch09a], while Büchi determinisation is in θ(1.65n)n[Sch09b] which is

a significant gap.

In this chapter, we consider the problem of complementation for nondeterminis-

tic parity and generalised Büchi automata. The usual way of complementing these

automata is to convert them first to Büchi automata and then apply the tight com-

plementation procedure[Sch09a] based on tight level rankings.

Instead of going through tight level rankings, we try to reconnect determinisa-

tion and complementation as in the case of automata on finite words. We devise

succinct structures for complementation inspired by the structures we use for our

tight determinisation constructions. In other words, we connect determinisation and

complementation and still avoid the full complexity of determinisation that would

otherwise be the case.

89

5.1 Complementing nondeterministic Generalised Büchi

automata and Büchi automata

In order to construct a concise data structure for complementation, we first show

that we can cut acceptance into two phases: a finite phase where we track only the

reachable states, and an infinite phase where we also track acceptance. We then use

this simple observation to devise an abstract complementation procedure, and then

suggest a succinct data structure for it.

Let A be a nondeterministic generalised Büchi automaton recognising the lan-

guage L(A). Let D be a deterministic Rabin automaton that also recognises L(A).

We first argue that acceptance of a word α · α′ with α ∈ Σ∗ and α′ ∈ Σω depends

only on α′ and the states reachable through α.

Lemma 5.1.1 If I →α Q⇔ I →β Q then α · α′ ∈ L(A)⇔ β · α′ ∈ L(A).

Proof. It is easy to see how an accepting run of A on α · α′ can be turned into an

accepting run on β · α′, and vice versa. 2

This provides us with the following abstract description of a nondeterministic

acceptance mechanism for the complement language of A.

1. When reading an ω-word α, we first keep track of the reachable states R for a

finite amount of time. (subset construction)

2. Eventually, we swap to a tree that consists only of nodes that are henceforth

stable, and that are the only nodes that are henceforth stable, such that none

of these nodes is henceforth accepting.

3. We verify the property described in (2).

Lemma 5.1.2 The abstract decision procedure accepts an input word iff it is rejected by

the deterministic Rabin automaton D.

Proof. The ‘only if’ direction follows directly from the previous lemma.

90

For the ‘if’ direction, we can guess a point i in the run of D on α where all

eventually stable nodes are introduced and stable, and none of them is henceforth

accepting. We claim that we can simply guess this point of time, but instead of going

to the respective generalised tree di = (T , l, h), we go to d′i = (T ′, l′, h′), where T ′ is

the restriction of T to the henceforth stable states, and l′ and h′ are the restrictions of

l and h to T ′. (Note that the subtree of henceforth stable nodes is always ordered.)

Clearly, all nodes in T ′ are stable, and none of them are accepting in the future. It

remains to show that none of their descendants is stable. Assume one of the children

a node v ∈ T ′ spawns eventually is stable. We now consider a part of the ‘run’ of

our mechanism starting at i, d′id
′
i+1d

′
i+2 Invoking König’s Lemma, we get a run

ρ = q0q1 . . . such that, for some j > i and for all m > j, some vj = host(qj , d
′
j),

which is a true descendant of v, is the host of qj . Using a simple inductive argument

that exploits that v is henceforth stable but not accepting, this implies for the run

ρ = d0d1 . . . that, for the same j > i and for all m > j, some v′j = host(qj , d
′
j), which

is a true descendant of v, is a host of qj . This implies in turn that some descendant

of v is eventually stable and thus leads to a contradiction. 2

A similar argument holds for the deterministic Rabin automaton that is the result

of determinising a nondeterministic Büchi automaton.

We call an ordered tree flat if it contains only nodes of length ≤ 1.

Lemma 5.1.3 We can restrict the choice in (2) to flat trees.

Proof. If we rearrange the nodes in T following the “stealing and hosting order”,

that is, mapping a node v with length ≥ 1 to a smaller node v′ with length ≥ 1 if

either v′ is an ancestor of v or an initial sequence of v is an older sibling of an initial

sequence of v′, then this describes a unique bijection b : T → F , where F is the

flat tree with |T | = |F|, and we choose d′i = (F , l′ : b(v) 7→ l(pred(b(v))) ∪ l(v) r

l(pred(v)), h′ : b(v) 7→ h(v)) instead of di = (T , l, h). (The complicated looking l′ :

b(v) 7→ l(pred(b(v)))∪l(v)rl(pred(v)) just means v = host(q, di)⇔ b(v) = host(q, d′i),

that is, the hosts are moved, not the full label.)

91

It is easy to see that, if we compare two runs starting in di and d′i on any word,

they keep this relation. 2

To obtain a succinct data structure for the second phase of the run, we do not

follow the precise development of the individual new children of the henceforth

stable nodes, but rather follow simple subset constructions. One subset that is kept

for all stable nodes is the union of the nodes of its children. Note that, to keep track

of this union, it is not necessary to keep track of the distribution of these sets to the

different children (let alone their descendants).

To check that all children spawned at a particular point j in a run will eventually

be deleted, one can keep track of an additional subset: the union of all labels of

nodes of children that already existed in j. If this subset runs empty, then all of these

children have been removed. Vice versa, if all of these children are removed, then

this subset runs empty.

Note that these subsets are, in contrast to the nodes in the flat generalised history

tree (or history tree), not numbered. For efficiency, note that it suffices to use the

second subset for only one of the nodes in the flat trees at a time, changing this node

in a round robin fashion.

Theorem 5.1.4 The algorithm outlined above describes a nondeterministic Büchi au-

tomaton that recognises the complement of the language of A.

The trees and sets we need can be encoded using the following data structure.

We first enrich the set of states by a fresh marker m, used to mark the extra subset

for new children in the stable node under consideration, to Qm = Q∪ {m}. We then

add the normal subsets that capture the label of all children as a child of each stable

state as a single child of this state. For a single stable state that we currently track,

we add a (possibly second and then younger) child for new children. The labelling

is as described above, except that m is added to the label for new children (which

otherwise might be empty) and its ancestors.

When we are complementing ordinary Büchi automata, the above data structure

92

is clearly a flat tree. Additionally, when we are complementing generalised Büchi

automata, we can now choose h : v → k + 1 for all non-stable nodes v in this tree.

As this naming convention clearly identifies these nodes, we can represent the tree

as a flat tree.

5.1.1 Complexity of complementing generalised Büchi automata

In this section, we establish lower bounds for the complementation of generalised

Büchi automata and show that the construction we outlined tightly meets these lower

bounds. Our lower bound proof builds on full automata, defined in Section 4.1.2. A

generalised Büchi automaton Bkn = (Σ, Q, I, T, {Fi | i ∈ [k]}) is called full if

• Σk
n = 2Q×[k+1]×Q, |Q| = n, and I = Q,

• T = {(q, σ, q′) | ∃i ∈ [k + 1]. (q, i, q′) ∈ σ}, and

• Fi = {(q, σ, q′) | (q, i, q′) ∈ σ}.

As each generalised Büchi automaton with n states and k accepting sets can be

viewed as a language restriction (by alphabet projection) of a full automaton, full

automata are useful tools in establishing lower bounds. We show that, for each Bkn,

there is a family of Lkn ⊆ Σk
n such that aω is not in the language of Bkn for any a ∈ Lkn,

and each nondeterministic generalised Büchi automaton that recognises the comple-

ment language of Bkn must have at least |Lkn| states. The size of this alphabet is such

that the size of Bkn is between |Lkn| and |Lk+1
n+1|, which provides us with tight bounds

for the complementation of generalised Büchi automata.

Let us first define the letters in Lkn. We call a function f : Q→ N full if its domain

is [n] for some n. Let f be a full function with domain [n] then we call a function

f# : [n] → [k] a k-numbering of f . We denote by enc(f, f#) the letter encoding a

function f with k-numbering f# as the letter that satisfies

• (p, enc(f, f#), q) ∈ T iff f(q) ≤ f(p), and

• (p, enc(f, f#), q) ∈ Fb iff either f(q) < f(p) or (f(p) = f(q) and f#

(
f(p)

)
6= b).

93

Obviously, if two full functions f, g with respective k-numberings f#, g# encode

the same letter enc(f, f#) = enc(g, g#), then they are equal. First, we note that the

word aω is not in the language of Bkn.

Lemma 5.1.5 Let f be a full function, f# be a k-numbering of f , and let a be the letter

encoded by f and f#. Then aω is rejected by Bkn.

Proof. Assume, for contradiction, that there is an accepting run ρ of Bkn on aω. By

the definition of an encoding, the sequence fi = f(ρi) is monotonously decreasing.

It will therefore stabilise eventually, say at j. (I.e., ∀l ≥ j. f(ρl) = f(ρj).) By the

definition of accepting transitions for encoded letters there will henceforth be no

more transition from the final transitions Ff#(fj). 2

We now define Lkn = {enc(f, f#) | f is full and f# is a k-numbering of f}.

Theorem 5.1.6 A generalised Büchi automaton Ckn that recognises the complement lan-

guage of Bkn has at least |Lkn| states.

Proof. The previous lemma establishes that aω is accepted by Ckn. We choose ac-

cepting runs ρa with infinity set Ia for each letter a ∈ Lkn, and show by contradiction

that Ia and Ib are disjoint for two different letters a, b ∈ Lkn.

Assume that this is not the case for two different letters a and b. It is then simple

to infer from their accepting runs ρa and ρb natural numbers l,m, n, a ∈ N such that

ρ = ρa[0, l](ρb[a, a + m]ρa[l, l + n])ω is accepting. Then w = al(bman)ω is accepted

by Ckn, as ρ is a run of w. We lead this to a contradiction by showing that w is in the

language of Bkn.

We have a = enc(f, f#) 6= b = enc(g, g#). Let us first assume f = g. Then

f# 6= g#, and we can first choose an i with f#(i) 6= g#(i) and then a q with f(q) = i.

It is now simple to construct an accepting run with trace qω for Bkn for w.

Let us now assume f 6= g. We then set i to the minimal number such that f

and g differ in i (f−1(i) 6= g−1(d), where −1 denotes the preimage of i. W.l.o.g., we

assume f−1(i) \ g−1(i) 6= ∅. We choose a q ∈ f−1(i) \ g−1(i). It is now again simple

to construct an accepting run with trace qω for Bkn for w.

94

This closes the case distinction and provides the main contradiction. 2

The only thing that remains to be shown is tightness. But there is obviously

an injection from the flat trees described at the end of the complementation (plus

the subsets) of an automaton with n states and k accepting pairs into Lk+1
n+1. This

provides:

Proposition 5.1.7 The size of the language |Lk+1
n+1| is bigger than the size of the gener-

alised Büchi automaton |Bkn|.

This provides bounds which are tight in k and n with a negligible margin of 1.

For large k, the size |Lkn| can be approximated by
(
kn
e

)n: It is not hard to show that

the size of Lkn is dominated by encodings that refer to functions from [n] onto [n],

and the number of these encodings is n!kn. (E.g., |Lnn| < (e− 1)n!nn.)

Our conjecture is that the construction is tight at least in n. The reason for this

assumption is that the increment in n stems from the round robin construction that

keeps track of the stable node under consideration, while the alphabet Lkn refers to

the far more restricted case that stable states never spawn new children, rather than

merely requiring that none of the children spawned is henceforth stable.

As Büchi automata are a special case of generalised Büchi automata, this tight-

ness up to a factor of n carries over to Büchi complementation. It is not difficult

to show that our tight complementation construction and the optimal rank-based

construction of [Sch09a] operate similarly and that these methods converge.

5.2 Complementing parity automata

The construction described in this section draws from the introduction of efficient

techniques for the determinisation of parity automata in Section 3.3. The nested

history trees used there have been our inspiration for the flattened nested history trees

that form the core data structure in the complementation from Subsection 5.2.2 and

are the backbone of the lower bound proof from Subsection 5.2.4.

95

The intuition for the complementation is to use the nondeterministic power of a

Büchi automaton to reduce the size of the data stored for determinisation. As usual,

this nondeterministic power is intuitively used to guess a point in time, where all

nodes of the nested history trees from parity determinisation from Section 3.3, which

are eventually always stable, are henceforth stable. Alongside, the set of stable nodes

can be guessed.

Like in the construction for generalised Büchi automata, the structure can then

be flattened, preserving the ‘nicking order’, the order in which older nodes and de-

scendants take preference in taking states of the nondeterministic parity automaton

that is determinised. The complement automaton runs in two phases: a first phase

before this guessed point in time, and a second phase after this point, where the run

starts in such a flattened tree.

We will first introduce flattened nested history trees as our main data structure.

While we take inspiration from the nested history trees of Section 3.3, the construc-

tion is self-contained. Secondly, we will show that Büchi automata recognising the

complement language of the full nondeterministic parity automaton PΠ
n need to be

large by showing disjointness properties of accepting runs for a large class of words,

one for each full flattened nested history tree introduced in Subsection 5.2.1. The

definition of this language is also instructive in how the data structure is exploited.

We extend our data structure by markers, resulting in marked flattened trees,

which are then used as the main part of the state space of the natural complementa-

tion construction introduced in Subsection 5.2.2. We show correctness of our com-

plementation construction in Subsection 5.2.3 and tightness up to an O(n) factor in

Subsection 5.2.4.

Note that all our constructions assume max Π ≥ 2, and therefore do not cover

the less expressive coBüchi automata.

96

5.2.1 Flattened nested history trees & marked flattened trees

Flattened nested history trees (FNHTs) are the main data structure used in our com-

plementation algorithm. For a given parity automaton P = (Q,Σ, I, T, pri : T → Π),

an FNHT over the set Q of states, maximal priority πm = max Π and maximal even

priority πe = optΠ, is a tuple (T , ls : T → 2Q, ll : T → 2N, lp : T → 2Q, lr : T → 2Q),

where T (an ordered, labelled tree) is a non-empty, finite, and prefix closed subset of

finite sequences of natural numbers and a special symbol s (for stepchild), ω ∪ {s},

that satisfies the constraints given below. We call a node vs ∈ T a stepchild of v, and

refer to all other nodes vc with c ∈ ω as the natural children of v. [π](v) = {vc | c ∈ ω

and vc ∈ T } is the set of natural children of v. The root is a stepchild.

The constraints an FNHT quintuple has to satisfy are as follows:

• Stepchildren have only natural children, and natural children only stepchil-

dren.

• Only natural children and, when the highest priority π is odd, the root may be

leafs.

• T is order closed: for all c, c′ ∈ ω with c < c′, vc′ ∈ T implies vc ∈ T .

• For all v ∈ T , ls(v) 6= ∅.

• If v is a stepchild, then lp(v) = ∅.

• If v is a stepchild, then ls(v) = lr(v) ∪
⋃
v′∈[π](v) ls(v

′).

The sets ls(v′) and ls(v
′′) are disjoint for all v′, v′′ ∈ [π](v) with v′ 6= v′′, and

lr(v) is disjoint with
⋃
v′∈[π](v) ls(v

′).

• If v is a natural child, then lp(v) 6= ∅, ls(v) = lp(v)∪ lr(v), and lp(v)∩ lr(v) = ∅.

• If a natural child v is not a leaf, then ls(vs) = lp(v).

• ll(ε) = πe and, for all v ∈ T , ll(v) ≥ 2.

• If vs ∈ T , then ll(vs) = ll(v)− 2, and if vc ∈ T for c ∈ ω, then ll(vc) = ll(v).

97

The elements in ls(v) are called the states, lp(v) the pure states, and lr(v) the

recurrent states of a node v, and ll(v) is called its level. Note that the level follows

a simple pattern: the root is labelled with the maximal even priority, ll(ε) = πe, the

level of natural children is the same as the level of their parents, and the level of a

stepchild vs of a node v is two less than the level of v. For a given maximal even

priority πe, the level is therefore redundant information that can be reconstructed

from the node and πi. For a given set Q and maximal priority π, fnht(Q, π) denotes

the flattened nested history trees overQ. An FNHT is called full if the states ls(ε) = Q

of the root is the full set Q.

To include an acceptance mechanism, we enrich FNHTs to marked flattened tress

(MFTs), which additionally contain a marker vm and a marking set Qm, such that

• either vm = (v, r) with v ∈ T is used to mark that we follow a breakpoint

construction on the recurrent states, in this case lr(v) ⊇ Qm 6= ∅,

• or vm = (v, p) such that v is a leaf in T is used to mark that we follow a

breakpoint construction on the pure states of a leaf v, in this case lp(v) ⊇

Qm 6= ∅.

The marker is used to mark a property to be checked. For markers vm = (v, r),

the property is that a particular node would not spawn stable children in a nested

history tree. As usual in Safra like constructions, this is checked with a breakpoint,

where a breakpoint is reached when all children of a node spawned prior to the

last breakpoint die. For markers vm = (v, p), the property is that all runs that are

henceforth trapped in the pure nodes of v must eventually encounter a priority ll(v)−

1. This priority is then dominating, and implies rejection as an odd priority. We

check these properties round robin for all nodes in T , skipping over nodes, where

the respective sets lr(v) or lp(v) are empty, as the breakpoint there is trivially reached

immediately.

For a given FNHT (T , ls, ll, lp, lr), next(vm) is a mapping from a marker vm to

a marker/marking set pair (v, r), lr(v) or (v, p), lp(v). The new marker is the first

98

marker after vm in some round robin order such that the set lr(v) or lp(v), resp., is

non-empty.

If (T , ls, ll, lp, lr) is an FNHT and vm and Qm satisfy the constraints for markers

and marking sets from above, then (T , ls, ll, lp, lr; vm, Qm) is a marked flattened tree.

For a given set Q and priorities Π with maximal priority π = max Π, mft(Q, π) de-

notes the marked flattened trees over Q. A marking is called full if either vm = (v, r)

and Qm = lr(v), or vm = (v, p) and Qm = lp(v).

5.2.2 Construction

For a given nondeterministic parity automaton P = (Q,Σ, I, T, pri : T → Π) with

maximal even priority πe > 1, we construct a nondeterministic Büchi automaton

C = (Q′,Σ, {I}, T ′, F) that recognises the complement language of P as follows.

First we set Q′ = Q1 ∪Q2 with Q1 = 2Q and Q2 = mft(Q, π), and T ′ = T1 ∪ Tt ∪ T2,

where

• T1 ⊆ Q1 × Σ×Q1 are transitions in an initial part Q1 of the states of C,

• Tt ⊆ Q1 ×Σ×Q2 are transfer transitions that can be taken only once in a run,

and

• T2 ⊆ Q2 × Σ×Q2, are transitions in a final part Q2 of the states of C,

where T1 and T2 are deterministic. We first define a transition function δ for the

subset construction and functions δi for all priorities i ∈ Π, and then the sets T1, Tt,

and T2.

• δ : (S, σ) 7→ {q ∈ Q | ∃s ∈ S. (s, σ, q) ∈ T},

• δi : (S, σ) 7→
{
q ∈ Q | ∃s ∈ S. (s, σ, q) ∈ T and pri

((
s, σ, q)

)
< i
}

,

• T1 =
{

(S, σ, S′) ∈ Q1 × Σ×Q1 | S′ = δ(S, σ)
}

,

where only transitions (∅, σ, ∅) are accepting.

99

• Tt =
{(
S, σ, (T , ls, ll, lp, lr; vm, Qm)

)
∈ Q1 × Σ × Q2 | ls(ε) = δ(S, σ)

}
and we

have that(T , ls, ll, lp, lr; vm, Qm) is a marked flattened tree.

• T2 =
{(

(T , ls, ll, lp, lr; vm, Qm), σ, s
)
∈ Q2 × Σ×Q2 |

– if v is a stepchild, then l′′s (v) = δll(v)+1

(
ls(v), σ

)
– if v is a natural child, then l′′s (v) = δll(v)−1

(
ls(v), σ

)
– if v is a natural child, then l′′r (v) = δll(v)−1

(
lr(v), σ

)
∪ δll(v)

(
ls(v), σ

)
,

– starting at the root, we then define inductively:

∗ l′s(ε) = l′′s (ε),

∗ if vc is a natural child, then l′s(vc) =
(
l′′s (vc) ∩ l′s(v)

)
r
⋃
c′<c l

′′
s (vc′),

l′r(vc) = l′′r (vc) ∩ l′s(vc), and l′p(vc) = l′s(vc) r l′r(vc), and

∗ if vs is a stepchild, then l′s(vs) = l′p(v).

– if one exists, we extend the functions to obtain the unique FNHT

(T , l′s, ll, l′p, l′r) (otherwise C blocks)

– if vm = (v, r) then Q′m = δll(v)−1(Qm, σ) ∩ l′r(v), and

if vm = (v, p) then Q′m = δll(v)−3(Qm, σ) ∩ l′p(v),

– if Q′m = ∅, then the transition is accepting and we have s =(
T , l′s, ll, l′p, l′r; next(vm)

)
,

– if Q′m 6= ∅, then the transition is not accepting and we have s =

(T , l′s, ll, l′p, l′r; vm, Q′m).

5.2.3 Correctness

To show that L(C) is the complement of L(P), we first show that a word accepted by

C is rejected by P and then, vice versa, that a word accepted by P is rejected by C.

Lemma 5.2.1 If C has an accepting run on α, then P rejects α.

Proof. Let ρ = S0S1 . . . be an accepting run of C on α that stays in Q1. Thus, there

is an i ∈ ω such that, for all j ≥ i, Sj = ∅. But if we consider any run ρ′ = q0q1q2 . . .

100

of P on α, then it is easy to show by induction that qk ∈ Sk holds for all k ∈ ω, which

contradicts Si = ∅; that is, in this case P has no run on α.

Let us now assume that ρ = S0S1 . . . Sisi+1si+2 . . . is an accepting run of C on α,

where (Si, αi, si+1) ∈ Tt is the transfer transition taken. (Recall that runs of C must

either stay in Q1 or contain exactly one transfer transition.)

Let us assume for contradiction that P has an accepting run ρ′ = q0q1q2 . . . with

even dominating priority e = lim supj→∞ pri
(
(qj , αj , qj+1)

)
. Let, for all j > i, sj =

(T , ljs, ll, ljp, ljr; vjm, Qjm
)

and Sj = ljs(ε). It is again easy to show by induction that

qj ∈ Sj for all j ∈ ω. Let now vj ∈ T be the longest node with ljl (vj) ≥ e and

qj ∈ ljs(vj). Note that such a node exists, as qj ∈ Sj = ljs(ε) holds. We now distinguish

the two cases that the vj do and do not stabilise eventually and show contradictions

in both cases.

1. Assume that there are an i′ > i and a v ∈ T such that, for all j ≥ i′, vj = v. We

choose i′ big enough that pri(qj−1, αj−1, qj) � e+ 1 holds for all j ≥ i′.

If v is a stepchild, then qj ∈ ljr(v) for all j ≥ i′. Using the assumption that

ρ is accepting, there is an i′′ > i′ such that (si′′−1, αi′′−1, si′′) is accepting, and

vi
′′
m = (v, r). (Note that qi′′ ∈ li

′′
r (v) implies li

′′
r (v) 6= ∅.) But then we have

qi′′ ∈ Qi
′′
m = li

′′
r (v), and an inductive argument provides (sj , αj , sj+1) /∈ F and

qj ∈ Qjm for all j ≥ i′′. This contradicts that ρ is accepting.

If v is a natural child, then we distinguish three cases. The first one is that

there is a j′ ≥ i′ such that qj′ ∈ lj
′
r (v). Then we can show by induction that

qj ∈ ljr(v) for all j ≥ j′ and follow the same argument as for stepchildren, using

i′′ > j′.

The second is that qj ∈ ljp(v) holds for all j ≥ i′. There are now again a few

sub-cases that each lead to contradiction. The first is that ll(v) = e. But in this

case, we can choose a j > i′ with pri
(
(qj , αj , qj+1)

)
= e and get qj+1 ∈ lj+1

r (v)

(contradiction). The second is that ll(v) > e and v is not a leaf. But in that

case, ll(vs) ≥ e holds and qj ∈ ljp(v) implies qj ∈ ljp(vs), which contradicts

101

the maximality of v. Finally, if ll(v) > e and v is a leaf of T , we get a similar

argument as for stepchildren: Using the assumption that ρ is accepting, there

is an i′′ > i′ such that (si′′−1, αi′′−1, si′′) is accepting, and vi
′′
m = (v, p). (Note

that qi′′ ∈ li
′′
p (v) implies li

′′
p (v) 6= ∅.) But then we have qi′′ ∈ Qi

′′
m = li

′′
p (v), and

an inductive argument provides (sj , αj , sj+1) /∈ F and qj ∈ Qjm for all j ≥ i′′.

This contradicts that ρ is accepting.

2. Assume that the vj do not stabilise. Let v be the longest sequence such that v

is an initial sequence of almost all vj , and let i′ > i be an index such that v is

an initial sequence of vj for all j ≥ i′. Note that qj is in ls(v′j) for all ancestors

v′j of vj .

First, we assume for contradiction that there is a j > i′ with pri
(
(qj , αj , qj+1)

)
=

e′ � ll(v) (note that the ‘better than’ relation implies that e′ > ll(v) is even).

Then we select a maximal ancestor v′ of v with ll(v
′) = e′; note that such an

ancestor is a natural child, as a stepchild has only natural children, and all of

them have the same level.

As v′ is an ancestor of vj and vj+1, qj ∈ ljs(v′) and qj+1 ∈ lj+1
s (v′) hold, and

by the transition rules thus imply qj+1 ∈ lj+1
r (v′), which contradicts qj+1 ∈

lj+1
s (vj+1). (Note that ll(v′) > ll(v) ≥ ll(vj+1) holds.)

Second, we show that pri
(
(qj , αj , qj+1)

)
4 ll(v)+1 holds infinitely many times.

For this, we first note that the non-stability of the sequence of vj-s implies that

at least one of the following three events happen for infinitely many j > i′.

(a) v is a stepchild, qj ∈ ljs(vc) for some child vc of v, but, for all children vc′

of v, qj+1 /∈ lj+1
s (vc′),

(b) v is a stepchild, qj ∈ ljs(vc) for some child vc of v, and qj+1 ∈ lj+1
s (vc′) for

some older sibling vc′ of vc, that is, for c′ > c, or

(c) v is a natural child, qj /∈ ljs(vs), but qj+1 ∈ lj+1
s (vs).

102

Note that this is just the counter position to “vj stabilises or v is not maximal”.

In all three cases, the definition of T2 requires that pri
(
(qj , αj , qj+1)

)
4 ll(v)+1.

As the first observation implies that there may only be finitely many transitions

with even priority > ll(v) and the second observation implies that there are

infinitely many transitions in ρ′ with odd priority > ll(v), they together imply

that lim supj→∞ pri
(
(qj , αj , qj+1)

)
is odd, which leads to the final contradiction.

2

Lemma 5.2.2 If P has an accepting run on α, then C rejects α.

Proof. Let ρ = q0q1q2 . . . be an accepting run of P on α with even dominating

priority e = lim supj→∞ pri
(
(qj , αj , qj+1)

)
.

Let us first assume for contradiction that C has an accepting run ρ′ = S0S1 . . .

which is entirely in Q1. It is then easy to show by induction that qi ∈ Si holds for all

i ∈ ω, such that no transition of (Si, αi, Si+1) is accepting.

Let us now assume for contradiction that C has an accepting run ρ′ =

S0S1 . . . Sisi+1si+2 . . ., where (Si, αi, si+1) ∈ Tt is the transfer transition taken. (Re-

call that runs of C must either stay in Q1 or contain exactly one transfer transition.)

Let further sj = (T , ljs, ll, ljp, ljr; vjm, Qjm
)

and Sj = ljs(ε) for all j > i.

It is easy to show by induction that, for all j ∈ ω, qj ∈ Sj holds. We choose an

iε > i such that, for all k ≥ iε, pri
(
(qk−1, αk−1, qk)

)
≤ e holds.

Let us now look at the nodes v ∈ T , such that qj ∈ ljs(v), where j ≥ iε.

Construction basis.

We have already shown qj ∈ Sj = ljs(ε) for all j > i, and thus in particular for all

j ≥ iε.

Construction step.

If, for some stepchild v ∈ T with ll(v) ≥ e and some iv ≥ iε, it holds for all j ≥ iv

that qj ∈ ljs(v), then the following holds for all j ≥ iv: if v′ ∈ [π](v) is a natural child

103

of v and qj ∈ ljs(v′), then either qj+1 ∈ lj+1
s (v′), or there is a younger sibling v′′ of v′

in T such that qj+1 ∈ lj+1
s (v′′).

As transitions to younger siblings can only occur finitely often without interme-

diate transitions to older siblings, we have one of the following two cases:

1. for all j ≥ iv, qj ∈ ljs(v), but for every natural child v′ of v, qj /∈ ljs(v′), or

2. there is a natural child v′ of v and an index iv′ ≥ iv such that, for all j ≥ iv′ ,

qj ∈ ljs(v′).

As v is a stepchild, the first case implies that qj ∈ ljr(v) for all j ≥ iv. However, using

the assumption that ρ′ is accepting, there is an i′v > iv such that (si′v−1, αi′v−1, si′v)

is accepting, and v
i′v
m = (v, r), as the marker is circulating in a round robin fashion.

(Note that qi′v ∈ l
i′v
r (v) implies li

′
v
r (v) 6= ∅.) But then we have qi′v ∈ Q

i′v
m = l

i′v
r (v), and

an inductive argument provides (sj , αj , sj+1) /∈ F and qj ∈ Qjm for all j ≥ i′v.

In the second case, we continue with v′ and the index iv′ .

If, for some natural child v ∈ T with ll(v) > e and some iv ≥ iε, it holds for all

j ≥ iv that qj ∈ ljs(v), then one of the following holds.

1. There is an i′v ≥ iv such that qi′v ∈ l
i′v
r (v).

2. For all j ≥ iv, qj ∈ ljp(v).

In the first case, it is easy to show by induction that qj ∈ ljr(v) holds for all j ≥ iv′ .

We can then again use the assumption that ρ′ is accepting. Consequently, there is an

i′′v > i′v such that (si′′v−1, αi′′v−1, si′′v) is accepting, and v
i′′v
m = (v, r), as the marker is

circulating in a round robin fashion. (Note that qi′′v ∈ l
i′′v
r (v) implies li

′′
v
r (v) 6= ∅.)

But then we have again qi′′v ∈ Q
i′′v
m = l

i′′v
r (v), and an inductive argument provides

(sj , αj , sj+1) /∈ F and qj ∈ Qjm for all j ≥ i′′v .

In the second case, if v is not a leaf, then it holds for all j ≥ ivs = iv that

qj ∈ ljs(vs), and we can continue with vs. If v is a leaf, we again use the assumption

that ρ′ is accepting. Consequently, there is an i′v > iv such that (si′v−1, αi′v−1, si′v) is

accepting, and v
i′v
m = (v, p), as the marker is circulating in a round robin fashion.

104

(Note that v is a leaf and that qi′v ∈ l
i′v
p (v) implies li

′
v
p (v) 6= ∅.) But then we have qi′v ∈

Q
i′v
m = l

i′v
p (v), and an inductive argument provides (sj , αj , sj+1) /∈ F and qj ∈ Qjm for

all j ≥ i′v.

If, for some natural child v ∈ T with ll(v) = e and some iv ≥ iε, it holds

for all j ≥ iv that qj ∈ ljs(v), then there is, by the definition of e, a j > iv with

pri(qj−1, αj1 , qj) = e. But then qj−1 ∈ lj−1
s (v) and qj ∈ ljs(v) imply qj ∈ ljr(v). It

is then easy to establish by induction that qj′ ∈ lj
′
r (v) for all j′ ≥ j. We can then

again use the assumption that ρ′ is accepting. Consequently, there is a j′ > j such

that (sj′−1, αj′−1, sj′) is accepting, and vj
′
m = (v, r), as the marker is circulating in a

round robin fashion. (Note that qj′ ∈ lj
′
r (v) implies lj

′
r (v) 6= ∅.) But then we have

again qj′ ∈ Qj
′
m = lj

′
r (v), and an inductive argument provides (sk, αk, sk+1) /∈ F and

qk ∈ Qkm for all k ≥ j′.

Contradiction. As the level is reduced by two every second step, one of the argu-

ments that contradict the assumption that ρ′ is accepting is reached in at most πe

steps. 2

Corollary 5.2.3 C recognises the complement language of P. 2

5.2.4 Lower bound and tightness

In order to establish a lower bound, we use a sub-language of the full automaton PΠ
n

from Section 4.1.1. Note that partial functions from Q×Q to Π would work as well

as the alphabet for the full automaton. The larger alphabet is chosen for technical

convenience in the proofs. Any other language recognised by a nondeterministic

parity automaton P with n states and priorities Π can essentially be obtained by a

language restriction via alphabet restriction from PΠ
n .

We show that an automaton that recognises this sub-language must have at least

as many states as there are full FNHTs in fnht(Q, π) for n = |Q| and π = max Π.

To show this, we define two letters for each full FNHT t = (T , ls, ll, lp, lr) ∈

fnht(Q, π). βt : Q×Q→ 2Π is the letter where:

105

• if v is a stepchild and p, q ∈ ls(v), then ll(v)+1 ∈ βt(p, q) (provided

ll(v)+1∈Π),

• if v is a stepchild, p ∈ lr(v), and q ∈ ls(vc) for some c ∈ ω, then ll(v) ∈ βt(p, q),

• if v is a stepchild, c, c′ ∈ ω, c < c′, vc′ ∈ T , p ∈ ls(vc′), and q ∈ ls(vc), then

ll(v) ∈ βt(p, q),

• if v is a natural child, p ∈ lp(v), and q ∈ lr(v) then ll(v) ∈ βt(p, q).

• if v is a natural child and p, q ∈ lr(v), then ll(v)− 1 ∈ βt(p, q), and

• if v is a natural child and p, q ∈ lp(v), then ll(v)− 1 ∈ βt(p, q).

γt : Q×Q→ 2Π is the letter where i ∈ γt(p, q) if i ∈ βt(p, q) and additionally:

• if v is a natural child, ll(v)− 2 ∈ Π, and p, q ∈ lr(v), then ll(v)− 2 ∈ γt(p, q),

• if v is a stepchild and p, q ∈ lr(v), then ll(v) ∈ γt(p, q), and

• if v is a natural child, ll(v)− 2 ∈ Π, and p, q ∈ lp(v), then ll(v)− 2 ∈ γt(p, q).

For a high integer h > |fnht(Q, π)|, we now define the ω-word αt = (βtγt
h−1)ω,

which consists of infinitely many sequences of length h that start with a letter βt and

continue with h− 1 repetitions of the letter γt, for each full FNHT t ∈ fnht(Q, π).

We first observe that αt is rejected by PΠ
n .

Lemma 5.2.4 αt /∈ L(PΠ
n).

Proof. By Lemma 5.2.3, it suffices to show that the complement automaton C

of PΠ
n , as defined in Section 5.2.2 accepts αt. The language is constructed such

that C has a run ρ = Q(t; v1
m, Q

1
m)(t; v2

m, Q
2
m)(t; v3

m, Q
3
m) . . ., in which the transition(

(t; vim, Q
i
m), αti, (t; v

i+1
m , Qi+1

m)
)

is accepting for i > 0 if i mod h = 0. 2

Let B be some automaton with states S that recognises the complement language

of PΠ
n . We now fix an accepting run ρt = s0s1s2 . . . for each word αt and define the

set At of states in an ‘accepting cycle’ as At =
{
s ∈ S | ∃i, j, k ∈ ω with 1 ≤ j <

106

k ≤ h such that s = sih+j = sih+k

}
holds, and define the interesting states It = At∩

infin(ρt).

Lemma 5.2.5 For t 6= t′, It and It′ are disjoint (It ∩ It′ = ∅).

Proof idea. The proof idea is to assume that a state s ∈ It∩It′ , and use it to construct

a word from αt and αt′ and an accepting run of B on the resulting word from ρt and

ρt′ , and then show that it is also accepted by PΠ
n .

Proof. Let us assume for contradiction that s ∈ It ∩ It′ for t = (T , ls, ll, lp, lr) 6= t′ =

(T ′, l′s, l′l, l′p, l′r).

Noting that we can change the role of t and t′, we fix two positions i and i′ in the

run ρt of αt such that s = si = si′ , and there is a j ∈ ω such that jh < i < i′ ≤ j(h+1),

and two positions j and j′ in ρt′ = s′0s
′
1s
′
2 . . . such that j < j′, s = s′j = s′j′ and there

is a k ∈ ω with j ≤ k < j′ such that (s′k, α
t′
k , s
′
k+1) is an accepting transition of B.

Note that the definition of It provides the first and the definition of It′ the latter.

For the finite words β1 = αt0α
t
1 . . . α

t
i−1, γ1 = s0s1 . . . si−1, β2 = γt

i′−1, γ2 =

sisi+1 . . . si′−1, β3 = αt
′
j α

t′
j+1 . . . α

t′
j′−1, and γ3 = sjsj+1 . . . sj′−1, ρt

′
t = γ1(γ2γ3)ω is an

accepting run of the input word αt
′
t = β1(β2β3)ω = α0α1α2

We now show that αt
′
t or αtt′ is accepted by PΠ

n .

We start with the degenerated case that T = {ε} is the FNHT where the root is a

leaf, and thus π = max Π odd. (The case T ′ = {ε} is similar.) We select a q ∈ l′s(0),

and consider the run ρ = qω of PΠ
n on αt

′
t . By construction, pri(q, αk, q) ≤ optΠ = ll(ε)

holds for all k ≥ i. Moreover, αk = γt holds for infinitely many k ∈ ω. (In particular,

it holds if k ≥ i and (k− i) mod (i′− i+ j′− j) < i′− i.) For all of these transitions,

pri(q, αk, q) = optΠ = ll(ε) holds, such that lim supn→∞
(
ρ(i)

)
= optΠ is even.

Starting with the level λ = optΠ of the root and the whole trees T and T ′, we

now run through the following construction.

1. We look at the case that there is some difference in the label of some natural

child v ∈ T ∩ T ′ on the level λ. If there is an oldest child v ∈ T ∩ T ′ with

ls(v) 6= l′s(v), we assume w.l.o.g. that there is a q ∈ ls(v) r l′s(v). Then there

107

are two sub-cases, first that there is a q′ ∈ ls(v) ∩ l′s(v), and second that ls(v) ∩

l′s(v) = ∅. In the latter case we choose a q′ ∈ l′s(v). In both sub-cases, the run

ρ = qi
′
(q′j

′−jqi
′−i)ω = q0q1q2 . . . of PΠ

n on αt
′
t satisfies pri(qk, αk, qk+1) < λ − 1

for all k ∈ ω, and pri(qk, αk, qk+1) < λ when qk = q and qk+1 = q′. (Note that

in this case αk ∈ {βt′ , γt′} holds.)

Otherwise ls(v) = l′s(v) holds for all natural children v ∈ T ∩ T ′ on level λ,

and there is a v ∈ T ∩ T ′ on level λ such that lr(v) 6= l′r(v). We assume

w.l.o.g. that there is a q ∈ lr(v) r l′r(v). We choose a q′ ∈ lp(v). (Note that

q 6= q′ ∈ ls(v) = l′s(v).) Then the run ρ = qi
′
(q′j

′−jqi
′−i)ω = q0q1q2 . . . of PΠ

n

on αt
′
t satisfies pri(qk, αk, qk+1) < λ − 1 for all k ∈ ω, and pri(qk, αk, qk+1) < λ

when qk = q and qk+1 = q′. (Note that in this case αk = γt holds.)

2. We next look at the case where ls(v) = l′s(v) and lr(v) = l′r(v) holds for all

natural children v ∈ T ∩ T on level πe, but there is a natural child v on level λ

in the symmetrical difference of T and T ′. Let us assume w.l.o.g. that v ∈ T ′.

Let q ∈ l′s(v) and let v be the child of v′. This immediately implies that q ∈ lr(v).

Thus, the run ρ = qω of PΠ
n on αt

′
t satisfies pri(q, αk, q) < λ − 1 for all k > i,

and pri(q, αk, q) < λ whenever αk = γt, which happens infinitely often.

3. We finally look at the case where the nodes of T and T ′ on level λ are the same,

and where ls(v) = l′s(v) and lr(v) = l′r(v) hold for all nodes v of T on level λ,

but there is a node v on level λ which is a leaf in T but not in T ′. (The case

“leaf in T ′ but not in T ” is entirely symmetric.) Thus, vs0 is a node in T ′, and

we select a q ∈ ls(vs0). If we now consider the run ρ = qω of PΠ
n on αt

′
t , then

pri(q, αk, q) < λ − 3 holds for all k > i. At the same time pri(q, αk, q) < λ − 2

holds whenever αk = γt, which happens infinitely often.

If neither of these cases holds, then there must be a natural child v on level λ such

that vs ∈ T ∩ T ′ and ls(vs) = lp(v) = l′p(v) = l′s(vs), such that t and t′ differ on

the descendants of v. We then continue the construction by reducing λ to λ− 2 and

intersecting T and T ′ with the descendants of v in t and t′, respectively, and restrict

108

the co-domain of the labelling functions of t and t′ accordingly. This construction

will lead to a difference in at most 0.5 · optΠ steps. 2

Theorem 5.2.6 An automaton B that recognises the complement language of PΠ
n has

at least as many states as fnht(Q,max Π) contains full FNHTs, where fnht(Q,max Π)

denotes the flattened nested history trees over a given state set Q for a maximal priority

Π.

Proof. We prove the claim with a case distinction. The first case is that It 6= ∅ holds

for all full FNHT t ∈ fnht(Q,max Π). Lemma 5.2.5 shows that the sets of interesting

states are pairwise disjoint for different trees t 6= t′, such that, as none of them is

empty, B has at least as many states as fnht(Q,max Π) contains full FNHTs.

The second case is there is a full FNHT t ∈ fnht(Q,max Π) such that It = ∅. By

Lemma 5.2.4, each ρt = s0s1s2 . . . is an accepting run. Let now i ∈ ω be an index,

such that, for all j ≥ i, sj ∈ infin(ρt), and k ≥ i an integer with k mod h = 0. It = ∅

implies that sk+j 6= sk+j′ for all j, j′ with 1 ≤ j < j′ ≤ h. Then B, and even infin(ρt),

has at least h− 1 different states, and the claim follows with h > |fnht(Q,max Π)|. 2

To show tightness, we proceed in three steps. In a first step, we provide an

injection from MFTs with non-full marking to MFTs with full marking.

Next, we argue that the majority of FNHTs is full. Taking into account that there

are at most |Q| different markers makes it simple to infer that the states of our

complementation construction divided by the lower bound from Theorem 5.2.6 is in

O(n).

Lemma 5.2.7 There is an injection from MFTs with non-full marking to MFTs with full

marking in mft(Q, π).

Proof. For non-trivial trees T 6= {∅}, we can simply map an MFT

(T , ls, ll, lp, lr; vm, Qm)

• for vm = (v, p) to the MFT
(
T ′, l′s, l′l, l′p, l′r; vm, l′p(v)

)
and

109

• for vm = (v, r) to the MFT
(
T ′, l′s, l′l, l′p, l′r; vm, l′r(v)

)
, where

T ′ differs from T only in that it has a fresh node v, which is the youngest sibling

of vm. l′s, l
′
p, l
′
r differ from ls, lp, lr only in v and v (where v is only in the pre-image

of l′s, l
′
l, l
′
p, l
′
r). We set l′s(v) = l′p(v) = Qm and, consequently, l′r(v) = ∅. We also set

l′s(v) = ls(v) rQm.

For vm = (v, p), we set l′r(v) = lr(v) and l′p(v) = lp(v) r Qm. Note that, by

the definition of markers, v is a leaf, and l′p(v) is non-empty because the marking in

(T , ls, ll, lp, lr; vm, Qm) is not full.

For vm = (v, r), we set l′r(v) = lr(v) r Qm and l′p(v) = lp(v). Note that l′r(v) is

non-empty because the marking in (T , ls, ll, lp, lr; vm, Qm) is not full.

It is easy to see that the resulting MFT is well formed in both cases. What remains

is the corner case of T = {ε}.

(T , ls, ll, lp, lr; (ε, r), Qm) and map it to (T ′, l′s, l′l, l′p, l′r; (ε, r), Qm) for T ′ = {ε, 0}

and l′s(ε) = ls(ε), l′s(ε) = Qm, l′p(ε) = l′p(0) = ∅, and consequently l′s(0) =

l′r(0) = ls(ε) r Qm. (Note that the latter is non-empty because the marking in

(T , ls, ll, lp, lr; (ε, r), Qm) is not full.) This is again a well formed MFT with full mark-

ing.

It is easy to see that the resulting function is injective. 2

In Lemma 5.2.7, we have shown that the majority of MFTs have a full marking.

Next we will see that the majority of FNHTs is full. (Note that neither mapping is

surjective.)

Lemma 5.2.8 There is an injection from non-full to full FNHTs in fnht(Q, π).

Proof. To obtain such an injection, it suffices to map a non-full FNHT (T , l′s, l′l, l′p, l′r)

to the FNHT (T ′, l′s, l′l, l′p, l′r) where T ′ differs from T only in that it has a fresh

youngest child v of the root.

l′s agrees with ls on every node of T except for the root ε, and l′p, l
′
r agree with

lp, lr on every node of T . We set l′s(ε) = Q, l′s(v) = l′p(v) = Qr ls(ε), and l′r(v) = ∅.

110

It is obvious that the resulting FNHT (T ′, l′s, l′l, l′p, l′r) is full and well formed, and

it is also obvious that the mapping is injective. 2

Theorem 5.2.9 There is a complementation construction for parity automata that is

tight up to a factor of 4n+1, where n = |Q| is the number of states of the complemented

parity automaton.

Proof. For the number of MFTs, Lemma 5.2.7 shows that they are at most twice the

number of MFTs with full marking. Note that the marker (vm, p) can only refer to

leafs where lp(vm) is non-empty and markers (vm, r) can only refer to nodes where

lr(vm) is non-empty. It is easy to see that all sets described in this way are pairwise

disjoint. This implies that there are at most |Q| such markers. Thus, the number of

MFTs with full marking is at most n times the number of FNHTs.

By Lemma 5.2.8, the number of FNHTs is in turn at most twice as high as the

number of all full FNHTs. Thus we have bounded the number of MFTs by 4n times

the number of full FNHTs used to estimate the lower bound in Theorem 5.2.6, irre-

spective of the priorities.

What remains is the trivial observation that the second part of the state-space,

the subset construction, is dwarfed by the number of MFTs. Consequently, we can

estimate the state-space of the complement automaton divided by the lower bound

from Theorem 5.2.6 by 4n+ 1. 2

111

112

Chapter 6
Summary and discussion

In this chapter, we recap our results and discuss some issues.

6.1 Summary of results

We have comprehensively studied the problems of determinisation and complemen-

tation of generalised Büchi automata. These are two classes of ω-automata that occur

in practical applications.

We started with Schewe’s tight construction[Sch09b] for the determinisation of

Büchi automata in our quest to arrive at tight determinisation of general and more

succinct acceptance conditions. In order to efficiently handle parity automata, we

started with a special case : 1-pair Rabin automata (analogous to a parity automaton

with 3 colours, or an automaton expressing the intersection of a Büchi and coBüchi

condition). We discovered that we can easily nest different levels of states of deter-

ministic automata to handle parity conditions. The extension to the case of gener-

alised Büchi automata has proven to be even simpler.

The popularity of the parity condition in formal verification is reflected by the

research that has gone into establishing faster solutions for emptiness games of parity

automata. Determinising to parity automata is therefore quite attractive and we have

shown that we can produce deterministic parity automata with our constructions.

113

We have used the rich history of interplay between automata and game theory

to establish lower bounds for these constructions. By composing a deterministic

automaton with a game that requires only positional strategies, we were able to

prove that we cannot determinise to Rabin automata with even a single state lesser

than the upper bound. That these games can handle such complicated structures

beyond ordinary history trees is quite surprising. A careful and intricate treatment of

these games served to establish this lower bound and is more involved than for the

case of proving a lower bound for ordinary Büchi automata.

We invoked a rather intuitive argument to prove a lower bound for determin-

ising to parity automata. By changing our target language to the complement, we

obtained tight bounds for Streett conditions — the dual of Rabin conditions are in

fact, also parity conditions —, means that the same tighter lower bound applies to

deterministic parity automata. We summarise our results for determinisation in the

table below.

The first column relates to a particular construction on ω-automata. We refer

to the type of automata by using letters in {N,D} × {B,G,R, P,R1} where N and

D relate to the branching mode— nondeterministic or deterministic— and the rest

refer to Büchi, generalised Büchi Rabin, parity or 1-pair Rabin automata. The second

column states where a precise upper bound was given. The third column states

where the precise lower bound was established. The fourth column indicates the

degree of tightness of the results. ‘Thesis’ refers to results shown in this thesis.

We have shown these results were on automata where the accepting condition

is on transitions. While this has provided clean results, transference of these results

to the case of state-based acceptance is conjectured to be straightforward but with a

small gap between the bounds for transition-based acceptance.

We moved on to the problem of complementing ω-automata. The known optimal

complementation constructions do not start with determinisation. We have shown

that tight determinisation can really be used as a starting point for tight complemen-

tation. We have devised succinct data structures inspired by those that arise from

114

Transformation
Upper
Bound

Lower
Bound

Comment

NB → DR [Sch09b] [CZ09] Matching bounds

NB → DP
[Pit07]
[Sch09b]

Thesis
Optimal modulo 3n for the case of
automata recognising word languages
optimal for the case of trace automata

NG→ DR Thesis Thesis Matching bounds
NG→ DP [KPV06] Thesis Tight up to a constant of ≤1.5
NR1 → DR Thesis Thesis Matching bounds
NR1 → DP Thesis Thesis Matching bounds
NP → DR Thesis Thesis Matching bounds
NP → DP Thesis Thesis Tight up to a constant of ≤1.5

Table 6.1: Complexities for determinisation

determinisation and end up with a tight (in n) complementation procedure for both

generalised Büchi automata and parity automata.

6.2 Discussion

Although the rough complexities of determinisation and complementation of ω-

automata have been known in the field of algorithmic verification for more than two

decades, a study of the precise complexity took until a few years ago to finally arrive

at tight bounds even for the simple Büchi case. It is surprising that an attempt to

determinise generalised Büchi automata did not immediately follow the techniques

that became standard for translating LTL to automata. All of this points towards the

intricate nature of Safra’s determinisation construction.

The inherent difficulty of determinisation and complementation has posed chal-

lenges to the automata-theoretic approach to formal verification. [Var07] talks about

some of these issues. The lack of a simple complementation construction (the GOAL

toolkit[TTH13b], for example performs complementation via full determinisation

and then employs optimising heuristics) has prevented the use of automata-theoretic

toolsets that accept specifications as nondeterministic Büchi or parity automata.

Attempting to circumvent this perceived difficulty, researchers have looked for

’Safraless’ procedures[KV05] in the automata-theoretic approach to verification.

115

While this approach certainly has its merits, it is not prudent to immediately dis-

count ‘Safraful’ methods. A first edition of the web based probabilistic model-checker

IscasMC[HLS+14] has employed our generalised Büchi determinisation algorithm

and was found to be competitive at evaluating probabilities of LTL.

Nevertheless, a case can be made for the statement that determinisation con-

structions will not always result in faster practical solutions. There are indeed many

properties that do not need to be specified by nondeterministic automata and there

is considerable leeway for speed-up in such situations. A prudent approach would

be to combine both ‘Safraful’ and ‘Safraless’ methods and optimise according to the

situation. A nice example is the current iteration of the aforementioned probabilistic

model-checker IscasMC which now uses a lazy method[HLSZ13]: it first checks if

a subset construction can be performed; if that result is inconclusive, a breakpoint

construction is performed, keeping the full determinisation construction as the last

fall-back option because of the high complexity of determinising ω-automata.

It is also worthy to note that the update rule for the LIR construction is less strict

than the update rule for other tree-focused constructions. Exploiting this update rule

while taking transitions can result in reduction of the state-space.

Safra’s construction is not the only determinisation construction for ω-automata.

There are a couple of other approaches, for example, the construction of Muller and

Schupp[MS95]. These constructions seem to converge and it is easy to use Muller

and Schupp’s construction to also produce deterministic automata with the same

structure as those produced by Safra’s construction. Muller and Schupp’s construc-

tion could also be an alternative starting point to achieve these results.

There are several different approaches to complementing ω-automata. The the-

oretically optimal constructions are not based on determinisation. Yet a compre-

hensive study of all known complementation methods in [TFVT10] shows that a

determinisation based approach with heuristics performs more efficiently than the

theoretically optimal constructions. We thus have on the one side, determinisation

based constructions that are efficient, but have no guarantees, and on the other side,

116

simpler constructions that are equipped with theoretical guarantees. Our comple-

mentation constructions take the best of both worlds, unifying beauty and efficiency

and it is hoped that this will lead to cleaner implementations of automata-theoretic

toolsets for formal verification.

117

118

Bibliography

[Büc62] J. Richard Büchi. On a decision method in restricted second order arith-
metic. In International Congress on Logic, Methodology, and Philosophy of
Science 1960, pages 1–11, 1962.

[Chu62] Alonzo Church. Logic, arithmetic and automata. Proceedings of the inter-
national congress of mathematicians, pages 23–35, 1962.

[CZ09] Thomas Colcombet and Konrad Zdanowski. A tight lower bound for
determinization of transition labeled büchi automata. In Automata, Lan-
guages and Programming, 36th International Colloquium, ICALP 2009,
Rhodes, greece, July 5-12, 2009, Proceedings, Part II, pages 151–162,
2009.

[CZ11a] Yang Cai and Ting Zhang. A tight lower bound for streett complementa-
tion. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2011, December 12-14, 2011,
Mumbai, India, pages 339–350, 2011.

[CZ11b] Yang Cai and Ting Zhang. Tight upper bounds for streett and parity com-
plementation. In Computer Science Logic, 25th International Workshop /
20th Annual Conference of the EACSL, CSL 2011, September 12-15, 2011,
Bergen, Norway, Proceedings, pages 112–128, 2011.

[CZL09] Yang Cai, Ting Zhang, and Haifeng Luo. An improved lower bound for
the complementation of rabin automata. In Proceedings of the 24th An-
nual IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14
August 2009, Los Angeles, CA, USA, pages 167–176, 2009.

[Dur14] Alexandre Duret-Lutz. LTL translation improvements in spot 1.0. IJCCBS,
5(1/2):31–54, 2014.

[FKV06] Ehud Friedgut, Orna Kupferman, and Moshe Y. Vardi. Büchi complemen-
tation made tighter. Int. J. Found. Comput. Sci., 17(4):851–868, 2006.

[FS13] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International
Journal on Software Tools for Technology Transfer, 15(5-6):519–539,
2013.

119

[GKSV03] Sankar Gurumurthy, Orna Kupferman, Fabio Somenzi, and M. Y. Vardi.
On complementing nondeterministic büchi automata. In Correct Hard-
ware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Re-
search Working Conference, CHARME 2003, L’Aquila, Italy, October 21-24,
2003, Proceedings, pages 96–110, 2003.

[GPVW95] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-
the-fly automatic verification of linear temporal logic. In Protocol Specifi-
cation, Testing and Verification XV, Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verifica-
tion, Warsaw, Poland, June 1995, pages 3–18, 1995.

[HLS+14] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang.
IscasMC: A web-based probabilistic model checker. In Nineteenth inter-
national symposium of the Formal Methods Europe association (FM), vol-
ume 8442 of Lecture Notes in Computer Science, pages 312–317. Springer,
2014.

[HLSZ13] Ernst Moritz Hahn, Guangyuan Li, Sven Schewe, and Lijun Zhang. Lazy
determinisation for quantitative model checking. CoRR, abs/1311.2928,
2013.

[JPZ08] Marcin Jurdzinski, Mike Paterson, and Uri Zwick. A deterministic subex-
ponential algorithm for solving parity games. SIAM Journal on Comput-
ing, 38(4):1519–1532, 2008.

[Kla94] Nils Klarlund. Progress measures, immediate determinacy, and a subset
construction for tree automata. Ann. Pure Appl. Logic, 69(2-3):243–268,
1994.

[KPV06] Orna Kupferman, Nir Piterman, and Moshe Y Vardi. Safraless composi-
tional synthesis. In Computer Aided Verification, pages 31–44. Springer,
2006.

[Kur94] Robert P. Kurshan. Computer-aided Verification of Coordinating Processes:
The Automata-theoretic Approach. Princeton University Press, Princeton,
NJ, USA, 1994.

[KV01] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not
that weak. ACM Trans. Comput. Log., 2(3):408–429, 2001.

[KV05] Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 531–
542, 2005.

[KW08] Detlef Kähler and Thomas Wilke. Complementation, disambiguation,
and determinization of büchi automata unified. In Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,

120

Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Au-
tomata, Complexity, and Games, volume 5125 of Lecture Notes in Com-
puter Science, pages 724–735. Springer, 2008.

[Löd99] Christof Löding. Optimal bounds for transformations of omega-
automata. In Foundations of Software Technology and Theoretical Com-
puter Science, 19th Conference, Chennai, India, December 13-15, 1999,
Proceedings, pages 97–109, 1999.

[LW09] Wanwei Liu and Ji Wang. A tighter analysis of piterman’s büchi deter-
minization. Inf. Process. Lett., 109(16):941–945, 2009.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a fi-
nite automaton. Information and Control, 9(5):521–530, 1966.

[Mic88] Max Michel. Complementation is more difficult with automata on infi-
nite words. CNET, Paris, 15, 1988.

[Mos84] Andrzej Wlodzimierz Mostowski. Regular expressions for infinite trees
and a standard form of automata. In Computation Theory - Fifth Sympo-
sium, Zaborów, Poland, December 3-8, 1984, Proceedings, volume 208 of
Lecture Notes in Computer Science, pages 157–168. Springer, 1984.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree au-
tomata by nondeterministic automata: New results and new proofs of
the theorems of rabin, mcnaughton and safra. Theor. Comput. Sci.,
141(1&2):69–107, 1995.

[Péc86] Jean-Pierre Pécuchet. On the complementation of büchi automata. The-
oretical Computer Science, 47:95–98, 1986.

[Pit07] Nir Piterman. From nondeterministic büchi and streett automata to de-
terministic parity automata. Logical Methods in Computer Science, 3(3),
2007.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57, 1977.

[PP06] Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett
games. In 21th IEEE Symposium on Logic in Computer Science (LICS
2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages 275–
284, 2006.

[PSVW87] A Prasad Sistla, Moshe Y Vardi, and Pierre Wolper. The complemen-
tation problem for büchi automata with applications to temporal logic.
Theoretical Computer Science, 49(2):217–237, 1987.

[Rab69] Michael O Rabin. Decidability of second-order theories and automata on
infinite trees. Transactions of the American Mathematical Society, pages
1–35, 1969.

121

[RS59] Michael O Rabin and Dana Scott. Finite automata and their decision
problems. IBM journal of research and development, 3(2):114–125, 1959.

[Saf88] Shmuel Safra. On the complexity of ω-automata. In 29th Annual Sympo-
sium on Foundations of Computer Science, White Plains, New York, USA,
24-26 October 1988, pages 319–327, 1988.

[Saf92] Shmuel Safra. Exponential determinization for omega-automata with
strong-fairness acceptance condition (extended abstract). In Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada, pages 275–282, 1992.

[Sch07] Sven Schewe. Solving parity games in big steps. In Proceedings of the
27th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2007), 12–14 December, New Delhi, India, vol-
ume 4805 of Lecture Notes in Computer Science, pages 449–460. Springer-
Verlag, 2007.

[Sch09a] Sven Schewe. Büchi complementation made tight. In Proceedings of
the 26th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2009), 26–28 February, Freiburg, Germany, volume 3 of
Leibniz International Proceedings in Informatics, pages 661–672. Inter-
nationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2009.

[Sch09b] Sven Schewe. Tighter bounds for the determinisation of Büchi automata.
In Proceedings of the Twelfth International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS 2009), 22–29
March, York, England, UK, volume 5504 of Lecture Notes in Computer
Science, pages 167–181. Springer-Verlag, 2009.

[SF06a] Sven Schewe and Bernd Finkbeiner. Satisfiability and finite model prop-
erty for the alternating-time µ-calculus. In Proceedings of the 15th Annual
Conference of the European Association for Computer Science Logic (CSL
2006), 25–29 September, Szeged, Hungary, volume 4207 of Lecture Notes
in Computer Science, pages 591–605. Springer-Verlag, 2006.

[SF06b] Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous systems.
In Proceedings of the 16th International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR 2006), 12–14 July, Venice,
Italy, volume 4407 of Lecture Notes in Computer Science, pages 127–142.
Springer-Verlag, 2006.

[SS78] William J. Sakoda and Michael Sipser. Nondeterminism and the size of
two way finite automata. In Proceedings of the 10th Annual ACM Sympo-
sium on Theory of Computing, May 1-3, 1978, San Diego, California, USA,
pages 275–286, 1978.

[Str82] Robert S Streett. Propositional dynamic logic of looping and converse is
elementarily decidable. Information and control, 54(1):121–141, 1982.

122

[SV12] Sven Schewe and Thomas Varghese. Tight bounds for the determinisa-
tion and complementation of generalised Büchi automata. In Proceedings
of the 10th International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA 2012), 3–6 October, Thiruvananthapuram,
Kerala, India, volume 7561 of Lecture Notes in Computer Science, pages
42–56. Springer-Verlag, 2012.

[SV14a] Sven Schewe and Thomas Varghese. Determinising parity automata. In
Proceedings of the 39th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2014), 25–29 August, Budapest, Hun-
gary, 2014.

[SV14b] Sven Schewe and Thomas Varghese. Tight bounds for complementing
parity automata. In Proceedings of the 39th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2014), 25–29 Au-
gust, Budapest, Hungary, 2014.

[TFVT10] Ming-Hsien Tsai, Seth Fogarty, Moshe Y. Vardi, and Yih-Kuen Tsay.
State of büchi complementation. In Implementation and Application of
Automata - 15th International Conference, CIAA 2010, Winnipeg, MB,
Canada, August 12-15, 2010. Revised Selected Papers, pages 261–271,
2010.

[Tho99] Wolfgang Thomas. Complementation of Büchi automata revisited. In
Jewels are Forever, pages 109–120. Springer, 1999.

[TTH13a] Ming-Hsien Tsai, Yih-Kuen Tsay, and Yu-Shiang Hwang. GOAL for games,
omega-automata, and logics. In Computer Aided Verification - 25th In-
ternational Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, pages 883–889, 2013.

[TTH13b] Ming-Hsien Tsai, Yih-Kuen Tsay, and Yu-Shiang Hwang. Goal for games,
omega-automata, and logics. In Natasha Sharygina and Helmut Veith,
editors, Computer Aided Verification, volume 8044 of Lecture Notes in
Computer Science, pages 883–889. Springer Berlin Heidelberg, 2013.

[Var07] Moshe Y Vardi. The Büchi complementation saga. In STACS 2007, pages
12–22. Springer, 2007.

[Wil01] Thomas Wilke. Alternating tree automata, parity games, and modal
m-calculus. Bulletin of the Belgian Mathematical Society Simon Stevin,
8(2):359, 2001.

[Yan08] Qiqi Yan. Lower bounds for complementation of omega-automata via
the full automata technique. Logical Methods in Computer Science, 4(1),
2008.

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with appli-
cations to automata on infinite trees. Theor. Comput. Sci., 200(1-2):135–
183, 1998.

123

	Abstract
	Acknowledgements
	Declaration
	Introduction
	Determinisation of -automata
	Timeline of complexity results

	Complementation of -automata
	Timeline of complexity results

	Structure of thesis

	Preliminaries & problem statements
	Preliminaries
	Current results for determinisation and complementation
	Problem statements

	Determinisation constructions
	Determinising Büchi automata
	History trees
	Construction
	Correctness

	Towards the determinisation of parity automata
	Root history trees
	Construction

	Determinising parity automata
	Construction.
	Correctness

	Determinising generalised Büchi automata
	Generalised history trees
	Determinisation construction

	Estimations
	Estimation of the number of history trees
	Estimation of the number of Root History Trees
	Estimation of the number of generalised history trees

	Determinising to parity automata
	From nondeterministic parity, 1-pair Rabin, and Büchi automata to deterministic parity automata
	From Generalised Büchi automata to deterministic parity automata

	Summary

	Lower bounds for determinisation
	Technical preliminaries
	Full parity automata
	Full Generalised Büchi automata
	Language games
	Restricting the reachability set

	Lower bounds for parity determinisation
	To deterministic Rabin automata.
	To deterministic parity automata.

	Generalised Büchi lower bounds
	To deterministic Rabin automata
	To deterministic parity automata

	Summary

	Complementation
	Complementing nondeterministic Generalised Büchi automata and Büchi automata
	Complexity of complementing generalised Büchi automata

	Complementing parity automata
	Flattened nested history trees & marked flattened trees
	Construction
	Correctness
	Lower bound and tightness

	Summary and discussion
	Summary of results
	Discussion

