
Reachability games and related matrix and word

problems

Thesis submitted in accordance with the requirements of the University of Liverpool for

the degree of Doctor in Philosophy by

Reino Niskanen

February 2018

In memory of my brother

Arvo Niskanen
1985–2016

Reino Niskanen Reachability games and related matrix and word problems

Abstract

In this thesis, we study different two-player zero-sum games, where one player, called

Eve, has a reachability objective (i.e., aims to reach a particular configuration) and the

other, called Adam, has a safety objective (i.e., aims to avoid the configuration). We

study a general class of games, called Attacker-Defender games, where the computational

environment can vary from as simple as the integer line to n-dimensional topological braids.

Similarly, the moves themselves can be simple vector addition or linear transformations

defined by matrices. The main computational problem is to decide whether Eve has a

winning strategy to reach the target configuration from the initial configuration, or whether

the dual holds, that is, whether Adam can ensure that the target is never reached. The

notion of a winning strategy is widely used in game semantics and its existence means that

the player can ensure that his or her winning conditions are met, regardless of the actions

of the opponent. It general, games provide a powerful framework to model and analyse

interactive processes with uncontrollable adversaries.

We formulated several Attacker-Defender games played on different mathematical

domains with different transformations (moves), and identified classes of games, where the

checking for existence of a winning strategy is undecidable. In other classes, where the

problem is decidable, we established their computational complexity. In the thesis, we

investigate four classes of games where determining the winner is undecidable: word games,

where the players’ moves are words over a group alphabet together with integer weights

or where the moves are pairs of words over group alphabets; matrix games on vectors,

where players transform a three-dimensional vector by linear transformations defined by

3× 3 integer matrices; braid games, where players braid and unbraid a given braid; and

last, but not least, games played on two-dimensional Z-VAS, closing the gap between

decidable and undecidable cases and answering an existing open problem of the field.

We also identified decidable fragments, such as word games, where the moves are over a

single group alphabet, games on one-dimensional Z-VASS. For word games, we provide an

upper-bound of EXPTIME, while for games on Z-VASS, tight bounds of EXPTIME-complete

or EXPSPACE-complete, depending on the state structure. We also investigate single-player

systems such as polynomial iteration and identity problem in matrix semigroups. We show

that the reachability problem for polynomial iteration is PSPACE-complete while the identity

problem for the Heisenberg group is in PTIME for dimension three and in EXPTIME for

higher dimensions.

Reino Niskanen Reachability games and related matrix and word problems

ii

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Igor Potapov, for his guidance

and support from day one. Without his insights, helpful comments and constructive criticism,

this thesis would not be possible.

I would also like to thank my second supervisor, Dr Vesa Halava, for his unique

combination of laidback attitude and scientific rigour, not to mention sense of humour, and

my third supervisor, Prof. Paul Spirakis, for his useful advice.

I’m grateful to Prof. Sven Schewe and Dr Dietmar Berwanger for agreeing to act as

examiners of my thesis and for the time they spent on reviewing it.

The Department of Computer Science of University of Liverpool provided excellent

facilities for doing a PhD. A special thank you to fellow PhD students, academic and

support staff of the department. Especially, my office mates, Tom, Ashley, Sang-Ki and

Pavel, who have made the last three years into a very enjoyable experience. I would also

like to thank the Department of Computer Science for the scholarship that made my studies

possible. I also thank Nokia Foundation for the scholarship.

My gratitude is extended to my co-authors, Prof. Tero Harju, Dr Sang-Ki Ko and

Dr Julien Reichert, for their input, and helping me turn my vague ideas into concrete

statements and proofs. Collaboration with experienced co-authors helped me to produce

more interesting results and also to shape my thesis in a better way.

Obviously, I’m indebted to my family. To my parents, Irina and Leo, for setting me on

this path and helping me on every step of the way. To my siblings, Lauri, Arvo, Leo and

Emma, and to Ildiko, their support has been invaluable. Last but not least, to Ulla, for

bearing with trials and tribulations of my everyday life.

iii

Reino Niskanen Reachability games and related matrix and word problems

iv

Contents

Abstract i

Acknowledgements iii

Contents vi

List of Figures ix

List of Tables x

List of Algorithms xi

1 Introduction 1
1.1 Thesis outline . 4
1.2 Overview of related research . 6
1.3 Author’s publications . 12

2 Preliminaries 14
2.1 Words, matrices and the PCP . 14
2.2 Models of computation . 19
2.3 Attacker-Defender games . 24
2.4 Z-VAS games, where each player has two moves 28
2.5 Properties of the particular subclass of the ωPCP 30

3 Attacker-Defender games 35
3.1 The universality problem for weighted automata on infinite words 36
3.2 Applications to Attacker-Defender games 45

3.2.1 Weighted word games . 46
3.2.2 Word games on pairs of group words 51
3.2.3 Word games over binary group alphabets 54
3.2.4 Matrix games on vectors . 56
3.2.5 Braid games . 61

v

Reino Niskanen Reachability games and related matrix and word problems

3.3 Concluding remarks and open problems . 64

4 One-dimensional Z-VASS games 66
4.1 Z-VASS games in dimension one . 67
4.2 Flat Z-VASS games in dimension one . 75
4.3 VAS games in dimension one . 80
4.4 Concluding remarks and open problems . 81

5 Two-dimensional Z-VAS games 82
5.1 Z-VASS games in two dimensions . 84
5.2 Z-VAS games in two dimensions . 90
5.3 VAS games in two dimensions . 97
5.4 Concluding remarks and open problems . 97

6 Controllability in Zd-VASS games 99
6.1 Safety of k-control Zd-VASS games . 101
6.2 Safety of k-control Zd-VASS games with the target defined by a hyperplane 106
6.3 Reachability of k-control Zd-VASS games 108
6.4 Concluding remarks and open problems . 110

7 Single-player reachability games 111
7.1 Iterating polynomials . 114
7.2 Non-existence of embedding from pairs of words into 3× 3 matrices 123
7.3 Decidability of the identity problem in the Heisenberg group 131
7.4 The identity problem in matrix semigroups in dimension four 146
7.5 Concluding remarks and open problems . 149

8 Summary 150

References 154

vi

List of Figures

1.1 An example of a Z2-VAS game. Eve (circle) has a winning strategy from the
vectors in the lattice spanned by vectors (−3,−4) and (−4,−2). 3

2.1 A weighted automaton over the unary alphabet, Σ = {a}, which is universal
over infinite words but is not universal over finite words. 22

2.2 Illustrations of four games. 28

3.1 An illustration of a computation of the ωPCP highlighting the first four
parts, A, B, C and D. Part E is not depicted. 38

3.2 An illustration of a computation of the weighted automaton corresponding to
an instance of the ωPCP. Here, ∗ represents any letter of the image alphabet,
while is the letter h(x)[k] and is the letter g(y)[`]. 39

3.3 The weighted automaton A. In the figure, a ∈ Σ and b ∈ Σ \ {d}. 40

3.4 The weighted automaton B. In the figure, a ∈ Σ and b ∈ Σ \ {d}. 47

3.5 Weighted automaton A. 50

3.6 An alternating PDS constructed from a word game over a binary alphabet
of Example 3.14. 56

3.7 An illustration of traces in the eventual reachability problem. 58

3.8 The play x0M1M2M3M4 of a matrix game. Green arrows represent transfor-
mations by Eve and blue by Adam. 60

3.9 An example of a composition of braids in B4. 63

3.10 An example of a braid game. Green braids represent braids played by Eve
and blue braids played by Adam. 65

4.1 Moves in a Z-VASS game (left) and the corresponding part of the graph of
the counter reachability game (right). 69

4.2 Replacing a vertex t with deg(t) > 2 by a chain of vertices with degree at
most two. 70

4.3 Moves in a counter reachability game (top) and the corresponding moves in
the Z-VASS game (bottom). 70

vii

Reino Niskanen Reachability games and related matrix and word problems

4.4 Moves in a counter reachability game (left) and the corresponding moves in
the Z-VASS (right). 71

4.5 An illustration of state transitions of Eve and Adam. 71

4.6 Progress of a one-dimensional Z-VASS game. 72

4.7 An example of a flat Z-VASS game. 75

4.8 An illustration of connecting winning sets in a flat Z-VASS game. 76

4.9 A reachability game on finite arena constructed from a Z-VAS game and a
set of forbidden values. 79

5.1 Progress of a Z2-VASS game. 85

5.2 An illustration of state transitions of Eve and Adam. 87

5.3 An illustration of changes in an interval when simulating or emptying moves
of Eve or positivity check of Adam are applied. 88

5.4 Progress of a Z2-VAS game. 91

5.5 An illustration of changes in interval when simulating or state-defence moves
of Eve or state check of Adam are applied. 92

5.6 Applying vectors Add(1,−1), Add(2, 1), Move(s, t) and Check(8) in suc-
cession to a vector corresponding to configuration [s, (1, 0)] of a Z2-VASS
game. 94

6.1 A play of the Z-VAS game of Example 6.1 (left) and a play in the 1-control
Z-VAS game, where Adam can play his move only once (right). 100

6.2 An illustration of Lemma 6.2 in a Z2-VAS game. 101

6.3 An illustration of E2 and E in a Z2-VAS game. 104

6.4 Plays of two k-control Zd-VAS games of Example 6.5, with k = 1 (left) and
k > 1 (right). Red points are elements of E and orange are elements of E2. 105

6.5 An illustration of a two-dimensional k-control Z-VAS game, where the
objective is defined by a system of linear equations with equalities and
inequalities. 108

6.6 A Z2-VAS game, where Adam has moves (−3, 0), (0,−2) and (1, 1) and Eve
has moves (1,−1) and (−2, 1). 109

7.1 Polynomial iteration. 112

7.2 An illustration how configuration [q3, 2, .1001 · · · 1/] of an LBA (left) is
encoded as residue class r satisfying a system of linear congruences. Here,
letters 0 and 1 are represented by white and grey squares, respectively. A
grey square in the ith cell column and the jth state row represents the head
being in the ith cell in state qj . 116

7.3 An illustration of mappings corresponding to moves of LBA. 117

viii

Reachability games and related matrix and word problems Reino Niskanen

7.4 The histogram describes how the upper-right corner of M1 · · ·M13 is com-
puted by multiplications. The blue dotted (red lined) area implies the value
which will be added to (subtracted from) the upper-right corner of the final
matrix after multiplications of matrices in the sequence. 134

7.5 The histogram describes how the value in the upper-right corner of matrix
Mm

(+,+)M
m
(+,−)M

m
(−,−)M

m
(−,+) is computed by multiplications. Here m = 8. . . 135

7.6 Subcases where one of the subsets from S(+,+), S(−,+), S(+,−), and S(−,−) is
empty. 139

7.7 Subcases where two of the subsets from S(+,+), S(−,+), S(+,−), and S(−,−)

are empty. 139

ix

List of Tables

1.1 Author’s publications on which the thesis is based. 13

4.1 Complexity of checking for the existence of a winning strategy for Eve in
different variants of one-dimensional Z-VASS games. The propagation of
upper bounds is depicted with double arrows and of lower bounds with
dotted arrows. 68

4.2 Complexity of checking for the existence of a winning strategy for Eve in
different one-dimensional games. 68

5.1 The results on complexity of deciding whether Eve has a winning strategy
in Zd-VAS and VAS games. 84

5.2 The modified emptying gadget of a Z2-VASS game. 93
5.3 state-defence moves of Eve. 95

6.1 Summary of results on k-control games. Note that the games with safety
and reachability objectives are the same for k =∞. 100

7.1 Evaluations of polynomials peqzero(x), peqone(x) and pflip(x) in Z/11Z . . . 118
7.2 Values z1, z2, z3 and z4 in the product Mm

(+,+)M
m
(+,−)M

m
(−,−)M

m
(−,+). 136

8.1 Summary of results of the thesis. 151

x

List of Algorithms

2.1 A semi-algorithm solving a Zd-VAS game. 29
2.2 Solving a Zd-VAS game, where both players have two moves. 30

6.1 Solving a 1-control Zd-VASS game with a safety objective. 102
6.2 Solving a k-control Zd-VASS games with a safety objective, where k is fixed. 106

xi

Reino Niskanen Reachability games and related matrix and word problems

xii

Chapter 1

Introduction

Games are encountered in almost every aspect of interactions of living creatures. Kids

learn about the surrounding world through different games, first when interacting with

their parents or just the environment, then with other children and adults. Recreational

games, such as tic-tac-toe, chess, go or video games, allow us to better ourselves. Often the

origins of games are in the real world. Game such as chess or battleships are abstraction of

warfare, while Monopoly is an abstraction of economy and wealth creation.

In the modern world, the reliability of a software code and verification of the correct

functionality of complex technological devices requires the analysis of various interactive

processes and open systems, where it is important to take into account the effects of uncon-

trollable adversaries, such as environment or malicious users. Two-player computational

games provide a powerful framework for problems related to verification and refinement of

reactive systems [8], and have deep connections with automata theory and logic [103,146].

Infinite-state games can be classified according to the winning conditions, such as parity [3],

energy [67], counter reachability, or a combination of two or more winning conditions [38].

The extensions of classical reachability problems to game schemes, studied in different

contexts and settings, have recently garnered considerable interest [2,3,27,29,38,67,136,138].

Such games provide a powerful mathematical framework for a large number of computational

problems.

One of the main computational problem for games is to check whether one of the players

can win the game regardless of what the opponent does. In other words, whether there

exists a winning strategy in the game. In many cases of high-dimensional games, the

problem of checking for the existence of a winning strategy can be computationally hard

1

2 Reino Niskanen

and even undecidable. Answering the same question for low-dimensional systems can also

be a challenging problem. This is either due to a lack of tools for the analysis of complex

dynamics or due to a lack of “space” to encode directly the universal computations to show

that the problem is undecidable.

In this thesis, we study two-player turn-based zero-sum games with perfect information

that we call Attacker-Defender games. An Attacker-Defender game is played in rounds,

where in each round a move of Defender is followed by a move of Attacker starting from

some initial position. There is no randomness or hidden information in the game, that

is, both players are aware of all information about gameplay, such as possible moves of

their opponent. The aim of Attacker is to reach a target position while Defender tries to

keep Attacker from reaching the target position. Then, we say that Attacker has a winning

strategy if she can eventually reach the target position regardless of Defender’s moves. The

main computational problem we study is to decide which of the players wins based on a

given set of eligible moves, computational environment and reachability objectives.

We show that in a number of restricted cases of such games, it is not possible to decide

whether a winning strategy exists for a given set of moves, an initial position and a target

position. On the other hand, for some other games, we provide tight complexity bounds for

the decision problem.

As a side note, in the literature, there are no fixed names for the players. The player

with the existential objective (reachability in our games) is often called Player 1, System,

Model, Attacker, Eve (sometimes written as ∃ve), while the player with the universal

objective (safety in our games) is called Player 2, Environment, Specification, Defender,

Adam (sometimes written as ∀dam). In this thesis, we use the latter pair, that is, Eve

and Adam. This might be a bit confusing as the general game framework is still called

Attacker-Defender game as that was the terminology we used during the initial research.

Following early results for games on VASS (Vector Addition Systems with States)1

[1, 2, 29], Doyen and Rabinovich formulated an open problem about the simplest version of

games (robot games) for which the decidability was unknown [62]. We call robot games

Z-VAS games, as in our eyes, the game can be seen as a game played on integer vector

addition system and has little to do with robots2. That is, Z-VAS games are two-player

games played by updating a vector of d integer counters. Each of the players, Adam and

Eve, has a finite set of vectors in Zd. As in general Attacker-Defender games, a play starts

1A game is played on a graph with states of Eve and states of Adam, with N2 as a vector space.
2A fact pointed out by several reviewers.

Chapter 1. Introduction 3

from a given initial vector x0 ∈ Zd, and proceeds in rounds. During each round, first Adam

adds a vector from his set, followed by Eve doing the same. Eve wins when, after her turn,

the vector is the zero vector. A simple example of a two-dimensional game, where Eve has

three moves and Adam has two moves, is illustrated in Figure 1.1.

Adam’s moves: {(1, 2), (2, 0)}

Eve’s moves: {(2, 2), (1, 4), (3, 0)}

Figure 1.1: An example of a Z2-VAS game. Eve (circle) has a winning strategy from the
vectors in the lattice spanned by vectors (−3,−4) and (−4,−2).

Our main contribution is filling the decidability gaps for Zd-VASS and Zd-VAS games.

We show that checking which player has a winning strategy in Z2-VAS games is undecidable

and EXPSPACE-complete in one-dimensional Z-VASS games. Previously, it has been proved

that deciding the winner in one-dimensional Z-VAS games, where integers are given in

binary, is EXPTIME-complete [9] and undecidable starting from dimension three [137], and

that two-dimensional Z-VASS games are undecidable [137].

We also present three variants of low-dimensional Attacker-Defender games (i.e., word

games, matrix games and braid games) for which it is undecidable to determine whether one

of the players has a winning strategy. In addition, the proof incorporates a new language

theoretical result about weighted automata on infinite words that can be efficiently used in

the context of other reachability games.

While we are mostly focusing on two-player games, we also consider problems in single-

player games. As there is no opposing player, the question of existence of a winning strategy

is simply whether a particular configuration of the system can be reached from a given

initial configuration of the system.

Apart from the abovementioned decidability and complexity results in different Attacker-

Defender games, this thesis presents a collection of novel techniques and reductions that

could be applied further to prove similar results in other games.

4 Reino Niskanen

1.1 Thesis outline

The thesis consists of three independent parts. Although each chapter can be read as a

separate entity, they are all devoted to the analysis of computational games with reachability

objectives. The main model of the thesis are Attacker-Defender games, which are turn-

based zero-sum games between two players, Adam and Eve, with reachability objective

for Eve. The main question that we study is whether Eve has a winning strategy for the

given Attacker-Defender game. Whenever the problem is decidable, we aim to find tight

complexity bounds. We consider various Attacker-Defender games, both with internal states

and without, and with vastly different moves. In Chapter 3, we consider stateless games

where moves are words, matrices and braids, while in the following chapters, we focus on

Attacker-Defender games, where moves are integer vectors, that is, games on Z-VAS. We

also consider Z-VAS games where the players have an internal state structure.

Even though the games are different, and so are subsequent results, the main method used

in proofs is similar. The broad idea is to simulate another computational model or a game and

ensure, via the way the game is constructed, that unfaithful simulation has a predetermined

outcome. Obviously, different models are simulated to achieve different results. To prove

undecidability, we have simulated such models as the infinite Post correspondence problem

and two-counter Minsky machines. In order to prove complexity bounds, we simulated

models with desired decidable properties, such as alternating pushdown systems, one-

dimensional counter reachability games and linear-bounded automata.

In Chapter 2, we introduce the definitions and notations, as well as few auxiliary results,

used in subsequent chapters.

The first part, Chapter 3, is based on a conference paper [82] and its journal version [83].

The main result of the chapter is that the universality problem is undecidable for weighted

automata on infinite words. The construction is rather involved and provides a new non-

standard encoding of the infinite Post correspondence problem into the universality problem.

Then we apply the main result to several games on mathematical objects that we call

Attacker-Defender games, and show that it is undecidable to check whether one of the

players has a winning strategy. The games we are considering are word games, where

players’ concatenate words over a group alphabet, matrix games, where players transform a

given vector by multiplying it with matrices, and braid games, where players braid and

unbraid a given braid. After each game, we provide an example to illustrate the main

principles of the game.

Section 1.1. Thesis outline 5

The second part consists of three chapters with closely related games. We move on from

more complex computational environments of Chapter 3 and consider games on integer

vector addition systems. That is, Attacker-Defender games played on the integer lattice Zd.
First, in Chapter 4, which is based on a conference paper [123], we consider one-

dimensional Z-VASS games and show that deciding who wins the game is an EXPSPACE-

complete problem. Noticing an interesting complexity gap between games with states and

without states, we study flat Z-VASS games and prove that, in dimension one, deciding the

winner is EXPTIME-complete.

The following chapter is based on a conference paper [125] and is on two-dimensional

Z-VAS games. First, we construct a two-dimensional Z2-VASS game that follows the

computation of a two-counter Minsky machine and show that it is undecidable which

player has a winning strategy in Z2-VASS games. After that, we map the states and state

transitions into integers and embed them into the least significant digits in vectors of

a two-dimensional Z-VAS game, showing that also the stateless two-dimensional Z-VAS

games are undecidable.

While studying Zd-VASS games, we noticed interesting diversity of the complexity

arising from the differences in the state structure of the players. Motivated by this, in

Chapter 6, we consider a different limitation to the game. We restrict the number of times

one of the players can play a move from his or her move set. We show that deciding the

winner in a Zd-VASS game where Adam can play limited number of times is NP-complete,

while the dual case, i.e., when Eve’s moves are limited, is in PTIME. The chapter is based

on yet unpublished work.

The final part of the thesis consists of Chapter 7, in which we consider single-player

reachability games. First, we prove that the reachability problem for polynomial iteration

is PSPACE-complete. We also consider the multidimensional case and prove undecidability

for three-dimensional polynomials. The first half of the chapter is based on a conference

paper [124]. The second half of the chapter is based on unpublished work and is on the

identity problem for matrices. We show that there is no embedding from pairs of words

into 3× 3 integral matrices with determinant one. This strongly suggests that the identity

problem is decidable, as most of known undecidability proofs in matrix semigroups rely

on an encoding of the PCP. Motivated by this, we consider the identity problem for the

Heisenberg group, that is, the group of upper-triangular matrices with ones on the main

diagonal, and prove that the problem is decidable in polynomial time for 3× 3 matrices

and in exponential time for larger dimensions.

6 Reino Niskanen

We conclude the thesis with some final remarks and open problems.

1.2 Overview of related research

In this section, we highlight known results for several variants of computational games with

different winning objectives.

Two-player games can be classified according to the winning conditions. The winning

conditions can be either qualitative or quantitative, or a combination of both. Qualitative

objectives require that a winning play of a player satisfies some (Boolean) property. Perhaps

the most used qualitative objective is the parity objective, where nodes of the arena are

assigned colours (integers) and in a winning play of Eve, the smallest colour that appears

infinitely often is even. Parity games have strong connections, among others, with µ-calculus,

modal logics and tree automata [17,64,142,147].

First, it was proven that parity games can be solved in exponential time [119, 148].

Later, the complexity bound was first improved to NP∩coNP [65] and then to UP∩coUP [90].

Since then, the exact complexity has been improved [91] and at the moment, the state-of-art

complexity is due to Calude et al. [33]. Despite the best efforts, the open question of [64]

remains — can parity games be solved in polynomial time?

As parity games are highly applicable, there has been a substantial study in different

variants of the games, mostly resulting in PTIME complexity to decide which player wins.

Different underlying graphs were considered in [60,71] and authors showed that for these

classes of graphs, the game is solvable in PTIME. In [143], the games were considered with

significantly more vertices in the graph than priorities, which naturally arise from different

translations of games into parity games.

For the quantitative objectives, often the energy objective is considered. In games with

energy objectives, the energy level of a system is represented by an integer vector. Eve

aims to keep the energy levels positive, while Adam tries to reduce some component below

zero. Energy games can be applied in various settings, such as, in weak simulation between

a finite state system and a Petri net [3, 57] or in model-checking for resource-bounded logic

RB±ATL∗ in artificial intelligence [5, 6].

There are several problems for energy games that have been considered. In [29], it

was shown that deciding whether an initial credit exists that would allow Eve to maintain

non-negative energy levels is a coNP-complete problem. On the other hand, deciding the

winner for a given initial credit is a 2-EXPTIME-complete problem [57, 92]. If the dimension

Chapter 1. Introduction 7

is fixed, then both problems can be solved in pseudo-polynomial time [92].

In energy parity games [38] winning objectives are a combination of the aforementioned

qualitative and quantitative objectives. In [41,42], it was proved that deciding which player

has a winning strategy for games with arbitrary initial credit remains a coNP-complete

problem. With given initial credit, the problem was shown to be decidable in [3]. Later,

2-EXPTIME-hard lower bound was shown in [57]. The matching upper bound was recently

proved in [50]. Moreover, if the dimension and number of priorities are fixed, the winner

can be determined in pseudo-polynomial time.

Energy objectives are not sufficient to model some rather natural systems. While it is

easy to model consumption and replenishment of resources in a system, it is often important

to know the average behaviour of the resource in a long run. To this end different payoff

functions were studied. Intuitively, to each sequence of edges traversed in the game, a payoff

function is applied to compute the value of the play. Typical payoff functions are mean-

payoff, (total) sum, and discounted sum. In the associated decision problem, we are given a

threshold ν and are asked whether Eve has a strategy ensuring that all plays have payoff of

at least ν. Let w(ei) denote the integer label of an edge taken during ith turn of the game,

then in one-dimensional mean-payoff games, we are interested whether Eve can ensure that

lim infn→∞
1
n

∑n
i=1w(ei) ≥ ν holds in all plays according to her strategy. In total sum, the

payoff function is slightly different and Eve tries to ensure that lim infn→∞
∑n

i=1w(ei) ≥ ν.

That is, the payoff is the sum of the edges taken during a play rather than the mean of the

sum.

For one-dimensional mean-payoff games, the problem was proved to be decidable in

NP ∩ coNP [149] and then improved to UP ∩ coUP by Jurdzinski [90], and for total sum

games in EXPTIME [30, 31]. The games generalize to higher dimensions in a natural way

— the payoff function is simply applied to each component. In mean-payoff games, the

problem is coNP-complete if the dimension is not fixed [39], while for total payoff games, the

problem is undecidable starting from dimension five [40]. On the other hand, if the number

of dimensions and the maximal absolute value of weights are fixed, then multidimensional

mean-payoff games can be solved in PTIME [43, 44].

Games with payoffs provide a fruitful domain for research. In [145], multidimensional

mean-payoffs, where in each dimension, rather than having only ≥ as the comparison

operation, other comparison operations, such as ≤, < and >, are allowed, were studied.

This generalization leads to undecidability of determining whether a winning strategy exists

in 10-dimensional games. In [89], the games with various payoff functions were considered,

8 Reino Niskanen

but rather than considering whether the value of a play is over the threshold, the authors

are considering whether the value lies within the interval union. In [28], a different kind of

behaviour of mean payoff games was studied. The authors, introduced a notion of stability,

to distinguish runs by fluctuations from the mean. The main result is that the problem is

decidable and PSPACE-hard.

Our main subject of study, Zd-VAS games, are subfamily of counter reachability games,

where the game is played on a graph with vertices partitioned between players. It has

been proved that deciding the winner in two-dimensional counter reachability games is

undecidable [138]. Our result can be seen as strengthening of this as our arena is a graph

without self-loops and with one vertex for each player, i.e., both players are stateless.

In [1, 2, 29], VASS games, where the game is played on a graph and counters are always

positive, were considered. It was proven that already in two dimensions it is undecidable

who wins if Eve’s goal is to reach a particular vertex with counter (0, 0). On the other

hand, if it can be any vertex, then the problem is in (k − 1)-EXPTIME for a game with k

counters. Later, the result was improved to PTIME for k = 2 [37]. The counter reachability

games of [138] are VASS games, where the possible counter values were extended to all

integers. Hunter considered the variants of games, where updates on the counters are done

in binary, and showed that one-dimensional games are EXPSPACE-complete [88].

The proofs of undecidability of VASS games and counter reachability in two dimensions

in [1, 29] use the state structure of the game to embed the state structure of a two-counter

machine. In this sense, our result on Z2-VASS games is comparable, as Eve simulates the

state transitions of a two-counter machine with her underlying automaton. On the other

hand, the stateless game is essentially different as we have to represent state transitions

with integers. When simulating a two-counter machine, it is possible for Eve to make

a wrong move and then Adam is able to ensure his victory from this point onward. In

Zd-VAS games, Eve’s state is dependent only on her previous moves, while in VASS games

or counter reachability games, Adam’s moves effect which state Eve enters. Because of this,

Adam’s cheat catching ability is implemented in a different way.

In Chapter 3, the considered model of automaton is closely related to integer weighted

finite automata as defined in [79] and [7], where finite automata are accepting finite words

and have additive integer weights on the transitions. In [79], it was shown that the

universality problem is undecidable for integer weighted finite automata on finite words by

reduction from the Post correspondence problem. In the game scenario it is important to

define acceptance of infinite words (which represent infinite plays in games) by considering

Section 1.2. Overview of related research 9

finite prefixes reaching a target value. On the other hand, non-acceptance means that there

exists an infinite computational path where none of the finite prefixes reach the target value.

Then the universality for weighted automata over infinite words is the property ensuring

that all infinite words are accepted (i.e., eventually reach a target in a computation path).

The models similar to our polynomial iteration of Chapter 7 have been studied before.

In [24], polynomial iteration in Q was studied and the reachability problem was proved to

be decidable using p-adic norms. Polynomials over Q are significantly harder to analyse

than polynomials over Z, as in a finite interval [a, b], there might be an infinite number of

reachable values.

Multidimensional linear polynomial iteration has been considered from a different aspect.

The vector reachability problem for d-dimensional matrices over F, where F = Z,Q,C, . . .,
studies whether for given two vectors x0,xf and a set of matrices {M1, . . . ,Mk} ⊆ Fd×d,
there exists a finite sequence of matrices such that Mi1 · · ·Mijx0 = xf . Since transforming

a vector by a matrix can be expressed as a system of linear equations, the multidimensional

linear polynomial iteration can be seen as a vector reachability problem. The main difference

from our consideration is that we consider only polynomials of the form

p(x1, . . . , xd) = (p1(x1), . . . , pd(xd))

for some univariate polynomials pi(x), while the polynomials in the vector reachability

problem are of the form

p(x1, . . . , xd) = (a11x1 + . . .+ a1dxd, . . . , ad1x1 + . . .+ addxd).

The vector reachability problem has been proven to be undecidable for six three-dimensional

integer matrices in [81] and for two 11-dimensional integer matrices in [84].

In [12], the authors studied reachability of a point in Q2 by two-dimensional affine

transformations. They proved that the problem is undecidable already for five such affine

polynomials. The affine transformations used are of the form

p(x, y) = (q1x+ q2y + q3, q4x+ q5y + q6).

The above mentioned undecidability results relied on the undecidability of the Post corre-

spondence problem with seven pairs of words and having particular structure known as

Claus instances [49]. The state-of-art bound on the number of pairs of words is five [122],

10 Reino Niskanen

which could result in lower bounds on the number of matrices and linear transformations.

The polynomial iteration can be also considered as piecewise maps. That is, a poly-

nomial p(x) is applicable only when x ∈ [a, b) for some a, b ∈ Z ∪ {±∞}. Piecewise maps

and related reachability problems have been studied extensively [16, 97, 104]. The problem

is undecidable for two-dimensional piecewise affine maps. The decidability of the reacha-

bility problem for one-dimensional piecewise affine maps is an open problem even when

there are only two intervals [24, 104]. On the other hand, for more general updates the

problem is undecidable. For example, if the updates are based on the elementary functions

{x2, x3,
√
x, 3
√
x, 2x, x+1, x−1} or on rational functions of the form p(x) = ax2+bx+c

dx+e , where

the coefficients are rational numbers [105], then the problem is undecidable.

There are many systems and models, which are represented by matrices, while the

behaviour of the systems is represented by matrix products. Their analysis and prediction

are the challenging problems that appear in verification, control theory questions, biological

systems, etc. [20, 21, 46, 48, 70, 98, 121, 126–128]. Many nontrivial algorithms for solving

decision problems on matrix semigroups are developed, when considering matrices under

different constraints like the dimension of matrices, number of matrices in the generator

set, or considering specific subclasses of matrices: e.g., the general class of commutative

matrices [10], non-commutative case of row-monomial matrices [112] or various subclasses of

2× 2 matrix semigroups generated by non-singular integer matrices [134], upper-triangular

integer matrices [87], matrices from the special linear group [11,45], etc.

Despite visible interest in this research domain, we still see a significant lack of algorithms

and complexity results for answering decision problems in matrix semigroups. Many

computational problems for matrix (semi)groups are computationally hard starting from

dimension two and very often become undecidable from dimensions three or four even in

the case of integer matrices. The central decision problem in matrix semigroups is the

membership problem, which was originally considered by A. Markov in 1947 [115]. Let

S = 〈G〉 be a matrix semigroup finitely generated by a generating set of square matrices G.

The membership problem is to decide whether or not a given matrix M belongs to the matrix

semigroup S. By restricting M to be the identity matrix we call the problem the identity

problem. The identity problem is computationally equivalent to another fundamental

problem – the subgroup problem (i.e. to decide whether a semigroup contains a subgroup)

as any subset of matrices, which can form a product leading to the identity also generate a

group [45].

The decidability status of the identity problem was unknown for a long time for matrix

Chapter 1. Introduction 11

semigroups of any dimension, see Problem 10.3 in “Unsolved Problems in Mathematical

Systems and Control Theory” [21], but it was shown in [14] to be undecidable for 48

matrices from Z4×4 by proving that the identity correspondence problem (a variant of Post

correspondence problem over a group alphabet) is undecidable, and embedding pairs of

words over free group alphabet into SL(4,Z) as two blocks on the main diagonal and by a

morphism f as follows

f(a) =

(
1 2

0 1

)
, f(a−1) =

(
1 −2

0 1

)
, f(b) =

(
1 0

2 1

)
, f(b−1) =

(
1 0

−2 1

)
.

In the seminal paper of Paterson in 1970, see [130], an injective morphism from pairs of

words in alphabet Σ = {a, b} into 3× 3 integral matrices,

g(u, v) =

 n|u| 0 0

0 n|v| 0

σ(u) σ(v) 1


(where σ represents each word as an n-adic number) was used to prove undecidability

of mortality and which later led to many undecidability results of matrix problems in

dimension three, e.g. [35,36,81]. Finding new injective morphisms is hard, but having them

gives an opportunity to prove new undecidability results.

In 1999, Cassaigne, Harju and Karhumäki significantly boosted the research on finding

algorithmic solutions for 2 × 2 matrix semigroups by showing that there is no injective

semigroup morphism from pairs of words over any finite alphabet (with at least two

elements) into complex 2× 2 matrices [36]. This result led to substantial interests in finding

algorithmic solutions for such problems as the identity problem, mortality, membership,

vector reachability, freeness, etc. for 2× 2 matrices.

For example, in 2007 Gurevich and Schupp [76] showed that the membership problem

is decidable in polynomial time for the finitely generated subgroups of the modular group

and later in 2017 Bell, Hirvensalo and Potapov proved that the identity problem for a

semigroup generated by matrices from SL(2,Z) is NP-complete by developing a new effective

technique to operate with compressed word representations of matrices and closing the

gap on complexity improving the original EXPSPACE solution proposed in 2005 [45]. The

first algorithm for the membership problem, which covers the cases beyond SL(2,Z) and

GL(2,Z), has been proposed in [134] and provides the solution for a semigroup generated

12 Reino Niskanen

by non-singular 2× 2 integer matrices. Later, these techniques have been applied to build

another algorithm to solve the membership problem in GL(2,Z) extended by singular

matrices [135]. The current limit of decidability is standing for 2× 2 matrices, which are

defined over hypercomplex numbers (quaternions), for which most of the problems have

been shown to be undecidable in [13] and correspond to reachability problems for 3-sphere

rotation.

1.3 Author’s publications

The peer-reviewed publications and submitted manuscripts of the author are listed in

Table 1.1.

The results of this thesis have been presented at Automatic Sequences (2015), British

Colloquium of Theoretical Computer Science (BCTCS 2016), Computability in Europe

(CiE 2015), Finnish Mathematical Days (2016), Highlights of Logic, Games and Automata

(2016), Language and Automata Theory and Applications (LATA 2015), Mathematical

Foundations of Computer Science (MFCS 2016), Reachability Problems (RP 2016, RP

2017), Russian Finnish Symposium on Discrete Mathematics (RuFiDiM 2014), SET for

BRITAIN (2016), and several seminars in the Department of Computer Science at the

University of Liverpool.

Section 1.3. Author’s publications 13

Title Authors Venue

On decidability and complexity of
low-dimensional robot games

R. Niskanen, I. Potapov,
J. Reichert

submitted
manuscript

On robot games of degree two [86]
V. Halava, R. Niskanen,

I. Potapov
LATA 2015 3

On the identity problem for the
special linear group and the

Heisenberg group [95]

S-K. Ko, R. Niskanen,
I. Potapov

submitted
manuscript

Reachability problem for polynomial
iteration is PSPACE-complete [124]

R. Niskanen RP 2017 4

Robot games with states in
dimension one [123]

R. Niskanen RP 2016 5

Undecidability of two-dimensional
robot games [125]

R. Niskanen, I. Potapov,
J. Reichert

MFCS 2016 6

Weighted automata on infinite
words in the context of

Attacker-Defender games [82]

V. Halava, T. Harju,
R. Niskanen, I. Potapov

CiE 2015 7

Weighted automata on infinite
words in the context of

Attacker-Defender games [83]

V. Halava, T. Harju,
R. Niskanen, I. Potapov

Information and
Computation 2017

Table 1.1: Author’s publications on which the thesis is based.

3Language and Automata Theory and Applications – 9th International Conference
4Reachability Problems – 11th International Workshop
5Reachability Problems – 10th International Workshop
641st International Symposium on Mathematical Foundations of Computer Science
7Evolving Computability – 11th Conference on Computability in Europe

Chapter 2

Preliminaries

In this chapter, we introduce the notation and definitions used throughout the thesis.

Mathematical abstractions of games are often described in the language of combinatorics

on words, automata theory and other computational models.

First, we introduce basic definitions on words and matrices. Then, we consider different

computational models used in our proofs, most notably the integer weighted automata

on infinite words that we use in proofs of Chapter 3. In the third section, we look at

Attacker-Defender games, which is the main game model used in the thesis. In particular,

we introduce different variants of Attacker-Defender games, for which we prove either

undecidability of checking for existence of a winning strategy or show the complexity of the

problem. In the final section, Section 2.5, we consider properties of a particular instance of

the infinite Post correspondence problem used in Chapter 3.

2.1 Words, matrices and the PCP

Basic definitions We denote the sets of integers, non-positive integers and non-negative

integers (that is, natural numbers) by Z, Z− and Z+ respectively. The sets of rational, real

and complex numbers are denoted by Q, R and C. Unless stated otherwise, all numbers are

encoded in binary. By 0d we denote the d-dimensional zero vector. An open interval (a, b)

is a subset of Z containing all the integers larger than a and smaller than b. A closed

interval [a, b] is (a, b) ∪ {a, b} and half-open intervals are defined similarly. Let X ⊆ Z. By

X + d and dX, where d ∈ Z, we denote the sets {x+ d | x ∈ X} and {dx | x ∈ X}. The

disjoint union of two disjoint sets X and Y (i.e., X ∩ Y = ∅) is denoted by X t Y .

14

Chapter 2. Preliminaries 15

By Z[x] we denote the ring of polynomials with integer variable x. A polynomial

p(x) ∈ Z[x] is p(x) = anx
n+. . .+a1x+a0, where ai ∈ Z and n ≥ 0. We represent polynomials

in sparse encoding by a sequence of pairs (i, ai)i∈I , where I = {i ∈ {0, . . . , n} | ai 6= 0}.
Deciding whether for a given y ∈ Z, the polynomial p(y) evaluates to a positive number

can be done in polynomial time [58].

In our encoding of Section 7.1, we use the Chinese remainder theorem to find the unique

solution to a system of linear congruences. That is, for given pairwise co-prime positive

integers n1, . . . , nk and b1, . . . , bk ∈ Z, the system of linear congruences x ≡ bi mod ni for

i = 1, . . . , k has a unique solution modulo n1 · · ·nk. Recall that a residue class b modulo n

is the set of integers nZ+ b = {. . . , b− n, b, b+ n, . . .}.

Words A semigroup is a set equipped with an associative binary operation. Let S be a

semigroup and Σ be a subset of S. We say that S is generated by Σ of S if each element of

S can be expressed as a composition of elements of Σ. In this case, we call Σ the generating

set of S. Given an alphabet Σ = {a1, a2, . . . , am}, a finite word is an element of semigroup

Σ∗. The empty word is denoted by ε. The length of a finite word u is denoted by |u| and

|ε| = 0. A word u ∈ Σ∗ is a prefix of v ∈ Σ∗, denoted by u ≤ v, if v = uw for some w ∈ Σ∗.

If u and w are both nonempty, then the prefix u is called proper, denoted by u < v.

An infinite word w over a finite alphabet Σ is an infinite sequence of letters, w =

ai1ai2ai3 · · · , where aij ∈ Σ is a letter for each j = 1, 2, We denote the set of all infinite

words over Σ by Σω. A prefix of an infinite word w ∈ Σω is a finite word p ∈ Σ∗ such that

w = pw′, where w′ ∈ Σω. This is also denoted by p ≤ w.

By w[i] we denote the ith letter of a word w, i.e., w = w[1]w[2] · · · .
Later, in Chapter 3, finite words will be denoted by u, v, infinite words by w and single

letters by a, b, c, x, y, z.

Let Γ = {a1, a2, . . . , am, a
−1
1 , a−1

2 , . . . , a−1
m } be a generating set of a free group FG(Γ).

The elements of FG(Γ) are all reduced words over Γ, i.e., words not containing aia
−1
i or a−1

i ai

as a subword. In this context, we call Γ a finite group alphabet, i.e., an alphabet with an

involution. The multiplication of two elements (reduced words) u, v ∈ FG(Γ) corresponds to

the unique reduced word of the concatenation uv. This multiplication is called concatenation

throughout the thesis. Later in the encoding of words over a group alphabet we denote a−1

by a and the alphabet of inverse letters is denoted as Σ−1 = {a−1 | a ∈ Σ}.
In the next lemma, we present an encoding from an arbitrary group alphabet to a binary

group alphabet used in Section 3.2 and Section 7.4. The result is crucial as it allows us to

16 Reino Niskanen

present the results of these sections over the smallest domain.

Lemma 2.1 (Birget, Margolis [19]). Let Γ = {z1, . . . , z`, z1, . . . , z`} be a group alphabet

and Γ2 = {c, d, c, d} be a binary group alphabet. Define the mapping α : Γ→ FG(Γ2) by:

α(zi) = cidci, α(zi) = cidci,

where 1 ≤ i ≤ `. Then α is a monomorphism, that is, injective morphism. Note that α can

be extended to domain FG(Γ) in the usual way.

Matrices In this thesis, we consider games with different environments and moves,

including games where the configuration is a point in a d-dimensional space and moves

are linear transformations that we express as matrices. In our considerations, the most

prominent matrix groups are the special linear group and the Heisenberg group.

The special linear group is SL(d,K) = {M ∈ Kd×d | det(M) = 1}, where K =

Z,Q,R,C, The identity matrix is denoted by Id and the zero matrix is denoted by Od.

The Heisenberg group H(3,K) is formed by the 3× 3 matrices of the form

M =

1 a c

0 1 b

0 0 1

 ,

where a, b, c ∈ K. It is easy to see that the Heisenberg group is a non-commutative subgroup

of SL(3,K). We can consider the Heisenberg group as a set of all triples with the following

group law:

(a1, b1, c1)⊗ (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2 + a1b2).

By ψ(M) we denote the triple (a, b, c) ∈ K3 which corresponds to the upper-triangular

coordinates of M . Let M be a matrix in H(3,K) such that ψ(M) = (a, b, c). We define

the superdiagonal vector of M to be ~v(M) = (a, b). Given two vectors u = (u1, u2) and

v = (v1, v2), the cross product of u and v is defined as u × v = u1v2 − u2v1. Any two

vectors are said to be parallel if the cross product is zero.

The Heisenberg group can also be defined in higher dimensions. The Heisenberg group

of dimension d over K is denoted by H(d,K) and is the group of square matrices in Kd×d of

Section 2.1. Words, matrices and the PCP 17

the following form: 1 aT c

0 Id−2 b

0 0 1

 ,

where a,b ∈ Kd−2, c ∈ K.

As we have considered for the Heisenberg group in dimension three, we can also consider

the Heisenberg group in dimension d for any integer d ≥ 3 as a set of all triples with the

following group law: (a1,b1, c1)⊗ (a2,b2, c2) = (a1 + a2,b1 + b2, c1 + c2 + a1 · b2), where

a1,a2,b1,b2 ∈ Kd−2 and a1 · b2 is the dot product of vectors a1 and b2.

We extend the function ψ to d-dimensional Heisenberg group: For a matrix M , ψ(M)

is the triple (a,b, c) ∈ (Kd−2)2 ×K which corresponds to the upper-triangular coordinates

of M .

Next, we prove a simple necessary and sufficient condition for commutation of two

matrices from the Heisenberg group.

Lemma 2.2. Let M1 and M2 be two matrices from the Heisenberg group H(d,K) and

ψ(Mi) = (ai,bi, ci) for i = 1, 2. Then M1M2 = M2M1 holds if and only if a1 · b2 = a2 · b1.

Proof. The product M1M2 has c1 + c2 + a1 · b2 in the upper-right corner whereas M2M1

has c1 + c2 + a2 · b1. The other coordinates are identical as we essentially add numbers in

the same coordinate. It is easy to see that the two products are equivalent if and only if

a1 · b2 = a2 · b1 holds.

Note that, in the Heisenberg group of dimension three, the condition of Lemma 2.2 can

be stated as superdiagonal vectors of M1 and M2 being parallel.

Post correspondence problem and its variants The Post correspondence problem

(PCP) is a famous undecidable problem introduced by Emil Post in 1946 [131]. The PCP is

used in a variety of settings due to its simple formulation. For us, the infinite variant of the

PCP is crucial in proofs of Chapter 3, where we prove that for several Attacker-Defender

games, it is undecidable whether the winning strategy exists for one of the players. We

require the infinite variant as the games we consider are of infinite duration. Additionally,

in Section 7.4, we use the PCP to reduce the number of generators needed to prove the

undecidability of the identity problem for SL(4,Z).

18 Reino Niskanen

There are several equivalent ways to formulate the PCP. We define it using morphisms.

An instance of the PCP consists of two morphisms g, h : Σ∗ → B∗, where Σ and B are

alphabets. A nonempty word u ∈ Σ∗ is a solution of an instance (g, h) if it satisfies

g(u) = h(u). The problem is undecidable for all domain alphabets Σ with |Σ| ≥ 5 [122].

The cardinality of the domain alphabet Σ is said to be the size of the instance and is

denoted by np.

The infinite Post correspondence problem (ωPCP) is a natural extension of the PCP.

An infinite word w is a solution of an instance (g, h) of the ωPCP if for every finite prefix p

of w either

h(p) < g(p) or g(p) < h(p). (2.1)

In the ωPCP, it is asked whether or not a given instance has an infinite solution. Note

that in our formulation, prefixes have to be proper. It was proven in [80] that the problem

is undecidable for all domain alphabets Σ with |Σ| ≥ 9, and it was improved to |Σ| ≥ 8

in [61], for a variant of the problem, where the prefixes in (2.1) do not have to be proper.

However, it is easy to see that adding a new letter α to the alphabets and desynchronizing

the morphisms g, h, gives us a solution where all prefixes have to be proper. That is, we

add α to the left of each letter in the image under h, to the right of each letter in the image

under g and g(α) = aα, h(α) = a for some a ∈ Σ. Now the solution has to start with the

letter α, α has to appear exactly once, and the images cannot be of equal lengths because

the image under g ends with α but not under h. Note that, in fact, both constructions

already have this desynchronizing property. See Section 2.5 and [61, 80] for more details on

the morphisms g and h.

Consider an infinite word w ∈ Σω that is not a solution of the ωPCP. It is clear that

there exists (at least one) integer i such that g(w)[i] 6= h(w)[i]. That is, the letter in the

position i of g(w) is different from the letter in the position i of h(w). We call this kind of

mismatch an error.

The identity correspondence problem (ICP) [14] is another variant of the PCP which asks

whether a finite set of pairs of words over a group alphabet can generate the identity pair by

a sequence of concatenations. That is, for two morphisms g, h : Σ∗ → FG(Γ), the ICP asks

if there exists a word u ∈ Σ∗ such that g(u) = h(u) = ε. Bell and Potapov [14] proved that

the ICP is undecidable by a constructive reduction from the restricted PCP8 and showed

8In the restricted PCP, the solution starts with a letter a1, ends with an and these letters are used

Chapter 2. Preliminaries 19

that the undecidability bound for the ICP is 8(nr−1), where nr is the undecidability bound

of the restricted PCP. The current bound for the ICP is 48.

Example 2.3. Let Σ = {1, 2, 3} and B = {a, b}. Define morphisms g, h : Σ∗ → B∗ as

g(1) = ab, h(1) = abb,

g(2) = bb, h(2) = baa,

g(3) = aaa, h(3) = aa.

If (g, h) is considered as an instance of the PCP, then the word u = 1233 is a solution.

Indeed,

g(1233) = a b b b a a a a a a = h(1233).

h(1) h(2) h(3) h(3)

g(1) g(2) g(3) g(3)

If (g, h) is considered as an instance of the ωPCP, then an infinite repetition of u, uω,

is not a solution because h(u) and g(u) are not proper prefixes of each other. However, the

instance has a solution, w = 3ω, as for any finite prefix p of w, h(p) < g(p).

2.2 Models of computation

When considering some Attacker-Defender games, we use different computation models to

prove both undecidability of checking for existence of a winning strategy and to prove upper

and lower bounds if the problem is decidable. Next, we define integer weighted automata

on infinite words, and the universality problem, used to prove undecidability in word games,

matrix games on vectors and braid games in Chapter 3. The universality problem is closely

related to a winning strategy of Adam. Indeed, as Adam is the universal player, his goal

is to show that for all plays his winning conditions are met, while in the terminology of

automata, the universality is whether all words are accepted by the automaton.

Then we define two-counter machines used in the undecidability proofs of Chapter 5

and finally we conclude the section with polynomial register machines and linear-bounded

automata, which are used in Section 7.1 to prove that single-player games with polynomial

updates as moves are PSPACE-complete.

exactly once.

20 Reino Niskanen

Weighted automata Let A = (Q,Σ, σ, q0, F,Z) be a finite integer weighted automaton

with the set of states Q, the finite alphabet Σ, the set of transitions σ ⊆ Q× Σ×Q× Z,

the initial state q0, the set of final states F ⊆ Q and the additive group of integers Z with

identity 0, that is (Z,+, 0), as weights. Note that while we restrict ourselves to the case

where the weights of the automaton are elements of the additive group of integers Z, we

could define the model for any other group (G, ·, ι) as well. We write the transitions in the

form t = 〈q, a, p, z〉 ∈ σ. In a graphical presentation, a transition t is denoted by q
(a,z)−→ p.

A configuration of A is any triple [q, u, z] ∈ Q × Σ∗ × Z. A configuration [q, u, z1] is

said to yield a configuration [p, ua, z1 + z2] if there is a transition 〈q, a, p, z2〉 ∈ σ. This is

denoted by [q, u, z1] |=A [p, ua, z1 + z2]. Let |=∗A or simply |=∗, if A is clear from the context,

be the reflexive and transitive closure of the relation |=A.

A finite word u is accepted by a weighted automaton if there is a computation path

labelled by u such that weights of the transitions add up to zero. In [79], it was shown that

the universality problem for finite words is undecidable. In order to analyse infinite runs in

infinite-state games, we extend the model of weighted automata to infinite words.

Let π = ti0ti1 · · · be an infinite path of transitions of A, where tij =
〈
qij , aij , qij+1 , zj

〉
for j ≥ 0 and qi0 = q0. We call such path π a computation path. Denote by R(π) the set of

all reachable configurations following a path π. That is, for

π = 〈q0, ai0 , qi1 , z0〉 〈qi1 , ai1 , qi2 , z1〉 〈qi2 , ai2 , qi3 , z2〉 · · · ,

the set of reachable configurations is

R(π) = {[q0, ε, 0], [qi1 , ai0 , z0], [qi2 , ai0ai1 , z0 + z1], [qi3 , ai0ai1ai2 , z0 + z1 + z2], . . .} .

Let us define a morphism ‖ · ‖ : σω → Σω by setting ‖t‖ = a if t = 〈q, a, p, z〉. Let π

be a computation path for which ‖π‖ = w. We say that the computation path π reads

the word w. Let c = [q, u, z] ∈ R(π) for some computation path π. The weight of the

configuration c is γ(c) = z and we say that c is in the state q. When a computation path π

reading the word w is fixed, by the weight of prefix γ(p), we denote the weight of the

configuration [q, p, z] ∈ R(π), where p < w.

Let us now define the acceptance condition for weighted automata on infinite words.

An infinite word w ∈ Σω is accepted by A if there exists an infinite path π such that at

least one configuration c in R(π) is in a final state and has weight γ(c) = 0. The language

Section 2.2. Models of computation 21

accepted by A is

L(A) = {w ∈ Σω | ∃π ∈ σω : ||π|| = w and ∃[q, u, 0] ∈ R(π) : q ∈ F} .

From the definition of the acceptance it follows that the automaton does not have

deadlocks, i.e., states with no outgoing transitions. Note also that, for each w ∈ Σω, there

exists a computation path in the automaton.

Universality problem The universality problem for automata over infinite words is

to decide, given a weighted automaton A, whether the language accepted by A is the

set of all infinite words. In other words, whether or not L(A) = Σω. The problem of

non-universality is the complement of the universality problem, that is, whether or not

L(A) 6= Σω or whether there exists a w ∈ Σω such that, for every computation path π of w,

all configurations [q, u, z] ∈ R(π) in a final state do not have zero weight.

Let us compare the universality problem for automata over finite and infinite words.

Let B be a complete weighted automaton on finite words and by A we refer to the same

automaton on infinite words. If B is universal on finite words, then it is easy to see

that A is also universal on infinite words. Indeed, if B accepts Σ∗ then in particular it

accepts a and all infinite words starting with a are accepted by A. But on the other

hand, if B is not universal on finite words, then it does not follow that A is non-universal

on infinite words as well. Consider the weighted automaton ({q0, q1}, {a}, σ, q0, {q0},Z),

where σ = {〈q0, a, q1, 1〉 , 〈q1, a, q0,−1〉}, depicted in Figure 2.1. When considering it as an

automaton on infinite words, it is universal as it accepts the word aω. On the other hand, the

automaton is not universal when operating on finite words. It is easy to see that the language

accepted by the automaton is {a2n | n ≥ 0}. Thus, for the acceptance condition defined

above, the universality problem for weighted automata on finite words is not equivalent

to the universality problem for weighted automata on infinite words. Moreover, at the

end of Section 3.1, we discuss another acceptance condition under which the universality

of a weighted automaton on finite words does not imply the universality of a weighted

automaton on infinite words.

Counter machines A Minsky machine, introduced in [120] by Marvin Minsky, is a simple

computation model that is crucial in proofs of Chapter 5. A deterministic two-counter

22 Reino Niskanen

(a, 1)

(a,−1)

Figure 2.1: A weighted automaton over the unary alphabet, Σ = {a}, which is universal
over infinite words but is not universal over finite words.

Minsky machine (2CM) is a tuple (Q,T, s0), where Q is the finite set of states and

T ⊆ Q× {ci++, ci−−, ci==0 | i = 1, 2} ×Q

is the finite set of labelled transitions to increment, decrement or test for zero one of the

counters, and s0 is the initial state. In a deterministic two-counter Minsky machine, the

set Q contains a special sink state ⊥, such that there is no outgoing transition from ⊥.

Moreover, from all s ∈ Q \ {⊥}, either there is only one outgoing transition with the label

c1++ or c2++, or there are exactly two outgoing transitions with respective labels c1−−

and c1==0, or c2−− and c2==0. A configuration of a 2CM is a pair [s, (y, z)] ∈ Q× (Z+)2,

representing a state and a pair of counter values. The run of a 2CM is a finite or infinite

sequence of configurations that starts from [s0, (0, 0)] and follows the transitions of the

machine incrementing and decrementing the counters according to the labels. As usual, a

transition with a label ci==0 can only be taken when the counter i is zero and a transition

with a label ci−− can only be taken when the counter i is positive.

Note that there is only one possible run in a deterministic two-counter Minsky machine.

Indeed, when there are two outgoing transitions, only one of them can be executed,

depending on the value of the counter that the transitions update or test for zero. The

halting problem of 2CM is to decide, given a 2CM, whether the run reaches a configuration

with state ⊥, in other words whether the run halts. This problem is known to be undecidable

for deterministic two-counter Minsky machines [120]. Another well-known undecidable

problem for 2CM is whether the machine halts with both counters equal to zero. We are

interested in a more general question: whether in the run of a 2CM both counters are

zero at some point. This problem is undecidable and the proof follows from the halting

problem by modifying a 2CM to ensure that both counters are zero only in the halting

state; see [137] for a proof.

Chapter 2. Preliminaries 23

Theorem 2.4. Let (Q,T, s0) be a deterministic two-counter Minsky machine. It is unde-

cidable whether in the run of (Q,T), a configuration in Q× {(0, 0)} \ {(s0, (0, 0))} appears.

We can assume that the first move of a 2CM is an increment of either c1 or c2. Indeed,

otherwise the problem is trivial as the second configuration is in Q× {(0, 0)}.

Register machines with polynomial updates A polynomial register machine (PRM)

is a tuple R = (S,∆), where S is the finite set of states, ∆ ⊆ S × Z[x] × S is the set of

transitions labelled with update polynomials. A transition 〈s, p(x), s′〉 is often written as

s
p(x)−−→ s′. A configuration c of R is a tuple [s, z] ∈ S × Z. A configuration [s, z] is said

to yield a configuration [s′, y] if there is a transition 〈s, p(x), s′〉 ∈ ∆ such that p(z) = y.

This is denoted by [s, z]→R [s′, y]. The reflexive and transitive closure of →R is denoted

by →∗R. The reachability problem is to decide, given two configurations [s0, x0] and [sf , xf],

whether [s0, x0] →∗R [sf , xf] holds. It is easy to reduce the general reachability problem

to [s0, 0]→∗R′ [sf , 0] for some R′. Note, that when considering d-dimensional polynomial

updates, the updates are applied componentwise, i.e., p(x1, . . . , xd) = (p1(x1), . . . , pd(xd)),

where pi(x) ∈ Z[x].

Linear-bounded automata A linear-bounded automaton (LBA) is a Turing machine

with a tape bounded by a linear function of the length of the input. Equivalently, an

LBA can be defined as a Turing machine with a finite tape. We denote an LBA M by a

tuple (Q,Γ, δ), where Q is the finite set of states, Γ = {., /, 0, 1} is the finite tape alphabet,

containing two special letters . and /, which mark the left and right borders of the tape.

The transition function δ is a mapping from Q × Γ to Q × Γ × {L,R}, where L and R

tell the read/write head to move left or right, respectively. The automaton respects the

boundary letters, that is, if δ(q1, /) = (q2, b,D), then b = / and D = L, and symmetrically

if δ(q3, .) = (q4, b
′, D′), then b′ = . and D′ = R, for any states q1, q3 ∈ Q and where

q2, q4 ∈ Q. A configuration is a triple [q, i, .w/], where w ∈ {0, 1}n and i = 0, . . . , n + 1.

Intuitively, in the configuration the automaton is in state q, the read/write head is in the

ith cell and w is written on the tape. Let →∗M be the reflexive and transitive closure of

the transition relation →M defined in the usual way. The reachability problem for a given

LBA is to decide whether, for given q0, qf ∈ Q, [q0, 0, .0
n/]→∗M [qf , 0, .0

n/] holds and is a

well-known PSPACE-complete problem. Without loss of generality, we can assume that qf

appears only in the configuration [qf , 0, .0
n/]. Furthermore, we can enumerate the states

24 Reino Niskanen

such that q0 is the first state and qf is the last state, i.e., qf = q|Q|−1.

Alternating pushdown systems A pushdown system (PDS) P is a triple (Q,Σ,∆, c0),

where Q is the finite set of states, Σ is the finite alphabet, called stack alphabet, ∆ ⊆
Q × Σ × Q × Σ∗ is the set of rewrite rules of the stack, and c0 ∈ Q × Σ∗ is the initial

configuration. Intuitively, a rule 〈q, a, q′, u〉 ∈ ∆ means that the system moves from a state q

to q′, popping a from the top of the stack and pushing u into the stack. A configuration of

P is [q, u] ∈ Q× Σ∗. A run is a sequence of configurations of P, starting from an initial

configuration [q0, u0], respecting stack rewriting rules. That is, if [q, ua] is followed by [q′, v],

then there exists a rule 〈q, a, q′, v′〉 such that v = uv′. The associated decision problem is

whether a configuration from Q× {ε} appears in a run of P . In a graphical presentation, a

rule 〈q, a, p, u〉 is denoted by q
(a,u)−→ p.

An alternating pushdown system [23, 144], is an extension of PDS, where the states

are partitioned into two sets Q∃ and Q∀ and, intuitively, the system non-deterministically

chooses a transition from a state in Q∃ and explores all transitions from a state in Q∀. That

is, we are interested whether a configuration in Q× {ε} appears in such a branching run in

all paths. The complexity of this decision problem was shown to be EXPTIME in [144].

2.3 Attacker-Defender games

Games Attacker-Defender games are two-player zero-sum games with perfect information.

Starting from some initial configuration, each move of Adam (Defender) is followed by

a move of Eve (Attacker). Eve aims to reach a target configuration, while Adam tries

to keep Eve from reaching the target configuration. Eve has a winning strategy if she

can eventually reach the target configuration regardless of Adam’s moves. The main

computational question is to check whether Eve has a winning strategy for a given set of

moves, initial and target configuration.

More formally, a game is played on an arena X, which is a finite or infinite set of

configurations, with two special elements — an initial configuration x0 and a target

configuration xf . Eve has a set of moves E and Adam has a set of moves A such that,

for each w ∈ E ∪ A and x ∈ X, x · w ∈ X. Usually, the arena is clear from the context

and we do not state it explicitly. For example, in d-dimensional robot games [9, 62, 125]

and d-dimensional matrix games on vectors, the arena is X = Zd, while in weighted word

games, the arena is X = FG(Γ)× Z.

Section 2.3. Attacker-Defender games 25

The game proceeds as follows: starting from x0, first Adam chooses a move a from

his set A and applies it to x0 and then Eve chooses a move from her set E and applies

it to x0 · a. By repeating this process, the players create an infinite sequence of elements

of X called a play, π = (x0, x0a1, x0a1e1, x0a1e1a2, x0a1e1a2e2, . . .), where each ai ∈ A and

ej ∈ E. A play π is winning for Eve if xf appears at some configuration of the play. To

make the special case, where the initial and target configurations are the same element, i.e.,

x0 = xf , nontrivial, we require that for a play π to be winning, xf is not the first element

of π. A strategy of Eve is a function σE : X → E that tells Eve which move to apply in

each configuration. A strategy σA of Adam is defined analogously. We say that a play π is

consistent with a strategy σE if, for two consecutive elements of π, xi and xi+1, where i

is odd, it holds that xi+1 = xi · σE(xi). We define consistency with Adam’s strategy σA

symmetrically. A strategy σE (resp., σA) is said to be a winning strategy for Eve (resp.,

Adam), if all consistent plays are winning. As a consequence of [116], Attacker-Defender

games are determined, that is, Adam has a winning strategy if Eve does not. See [75] for

more details on games.

Note that the games are often considered on directed finite graphs with the vertices

partitioned between two players, and the moves are edges of the graph. In most of our

formulations, the graph has two vertices, one for Eve and one for Adam, no self-loops, and

the edges from Eve’s (resp., Adam’s) vertex to Adam’s (resp., Eve’s) vertex are labelled

with elements of E (resp., A).

Next, we look at particular games and fix the notation used when describing them.

Counter reachability games A d-dimensional counter reachability game (CRG) is a

tuple (G, c0) that consists of a directed graph G = (V, F), where the set of vertices is

partitioned into two parts, VE and VA, each edge e ∈ F ⊆ V × Zd × V is labelled with

vectors in Zd, and c0 ∈ V × Zd is the initial configuration. We say that the vertex in the

first component of an edge is the source vertex. A degree deg(v) of a vertex v ∈ V is the

number of edges with source v. That is, deg(v) = |{(v,x, v′) ∈ F}|. A configuration of

the game is [v,x], a successive configuration is [v′,x + x′], where an edge (v,x′, v′) ∈ F
is chosen by Eve if v ∈ VE or by Adam if v ∈ VA. The goal of Eve is to reach the final

configuration [vf ,0d] for some vf ∈ V from the given initial configuration c0 = [v0,x0],

while the goal of Adam is to keep Eve from reaching [vf ,0d]. A strategy for a player is a

function that maps a configuration to an edge that can be applied. We say that Eve has

a winning strategy if she can reach the final configuration regardless of the strategies of

26 Reino Niskanen

Adam. By the definition of determinacy, Adam has a winning strategy if Eve does not

have a winning strategy. In the figures, we use © for Eve’s states and � for Adam’s states

(diamonds represent arbitrary vertices). A two-dimensional counter reachability game is

illustrated in Figure 2.2a.

Zd-VAS games A d-dimensional game on integer vector addition system (Zd-VAS game),

introduced as robot game in [62], is a special case of the counter reachability games, where

the graph consists of only two vertices, v0 of Adam and v of Eve, and edges are of the

form (v0,x, v) and (v,x, v0) (i.e., there are no self-loops). The goal of Eve is to reach the

configuration [v0,0d]. That is, a Zd-VAS game consists of two players, Eve and Adam,

having a set of vectors E, A over Zd, respectively, and an initial vector x0. Starting from x0

players add a vector from their respective sets to the current configuration of the game in

turns. As in counter reachability games, Eve tries to reach the origin while Adam tries

to keep Eve from reaching the origin. The decision problem concerning Zd-VAS games

is, for a given Zd-VAS game (A,E,x0), to decide whether Eve has a winning strategy to

reach 0d from x0. A two-dimensional integer vector addition system game is illustrated in

Figure 2.2b.

In Section 4.3 and Section 5.3, we consider VAS games, where the configurations are

non-negative, that is, the game is played under VAS semantics.

Zd-VASS games An extension of Zd-VAS games where players have control states

is called games on integer vector addition system with states (Zd-VASS games). A d-

dimensional Zd-VASS consists of (A,E, c0), where A is the finite subset of QA × Zd ×QA
that Adam can apply during his turn and E is the finite subset of QE × Zd ×QE of Eve,

and c0 ∈ QE ×QA × Zd is the initial configuration. A configuration is now a triple [s, t,v]

consisting of Eve’s control state s, Adam’s control state t and the counter vector v ∈ Zd.
Eve updates her control state when she makes a move: in the configuration [s, t,v], for any

vector v, only moves of the form ⟪s,x, s′⟫ are enabled, and with one such move the new

configuration is [s′, t,v + x]. Adam updates his control state when he makes a move in a

similar fashion. Eve wins if, and only if, after her turn, the configuration is [s, t,0d] for any

s ∈ QE and any t ∈ QA. In the decision problem associated with Zd-VASS games, we are

asked whether Eve has a winning strategy from the given initial configuration.

Remark 2.5. Note that in [1, 29, 138], where VASS games are considered, the game is

played on a directed graph with vertices partitioned between the two players, as in counter

Chapter 2. Preliminaries 27

reachability games. This definition is not convenient for the k-control games we define later

on. In Chapter 4, we show that these two definitions are equivalent for one-dimensional

games. The result extends in a natural way to d-dimensional games.

In order to indicate whose turn it is in the configuration [s, t,v], we put a dot above s

if it is Eve’s turn, or above t if it is Adam’s turn. That is, the respective configurations

are [ṡ, t,v] and [s, ṫ,v]. In the figures, the dot is placed inside the state (e.g., � if it is

Adam’s turn). When depicting stateless games, we use colours to distinguish players’ moves.

Adam’s moves are in green and Eve’s moves are in blue. A d-dimensional game on an

integer vector addition system with states is illustrated in Figure 2.2c.

We define plays and strategies in terms of Zd-VASS games. A play is an infinite sequence

of configurations of a game, π = c0c1c2 · · · , where if ci = [ṡ, t,x], then ci+1 = [s′, ṫ,x′] if

⟪s,x′ − x, s′⟫ ∈ E, or if ci = [s, ṫ,x], then ci+1 = [ṡ, t′,x′] if ⟪t,x′ − x, t′⟫ ∈ A. A play is

winning for Eve, if the target configuration appears in it. On the other hand, if the target

configuration never appears in the play, then the play is winning for Adam. A strategy

of Eve is a function σE : QE × QA × Zd → E that tells Eve which move to use in the

current configuration. We define Adam’s strategy σA symmetrically. We say that a play π is

consistent with a strategy σE if for configurations ci = [ṡ, t,x] and ci+1 = [s′, ṫ,x′], it holds

σE([s, t,x]) = ⟪s,x′−x, s′⟫. We define consistency with Adam’s strategy σA symmetrically.

A strategy σE (resp., σA) is a winning strategy, if all consistent plays are winning for Eve

(resp., Adam). As for Attacker-Defender games, the determinacy result of Martin [116]

applies, and thus, Adam has a winning strategy if and only if Eve does not have a winning

strategy.

Flat Z-VASS games The flat Z-VASS games are a subclass of the Z-VASS games where

Eve is stateless, that is, all the moves of Eve are of the form ⟪s, z, s⟫, and Adam’s states

are flat, i.e., without nested loops. In other words, we have an ordering of states of Adam

{t0, . . . , tk} such that ⟪ti, z, tj⟫ ∈ A only if i ≤ j. Note that, unlike the usual definition of

flat systems, we allow several self-loops for a state. A d-dimensional game on a flat integer

vector addition system with states is illustrated in Figure 2.2d.

k-control Z-VASS games A k-control Zd-VASS game is a variant of Zd-VASS games

where one of the players can skip his or her turn and he or she can play at most k non-skipping

moves during a play. We say that the k-control Zd-VASS game has a safety objective if

Adam has k moves and reachability objective if Eve has k moves. That is, in safety of

28 Reino Niskanen

(a) A two-dimensional CRG.

,

, ,

(b) A Z2-VAS game.

(c) A Zd-VASS game. (d) A flat Zd-VASS game.

Figure 2.2: Illustrations of four games.

k-control Zd-VASS game, the game now consists of a Zd-VASS game (A,E,x0) together with

a counter i that starts at 0 and is at most k. A strategy σA : QE ×QA ×Zd → A∪ {Skip}
of Adam takes i into account and returns Skip if i = k, otherwise it either returns a move

in A and increments i or returns Skip and does not increment i. The reachability variant

is defined analogously.

2.4 Z-VAS games, where each player has two moves

As an introductory example, consider a very limited fragment of Zd-VAS games, where

both players have two moves. That is, let E = {e1, e2} ⊆ Zd be the move set of Eve and

A = {a1,a2} ⊆ Zd be the move set of Adam. The initial vector is x0 ∈ Zd and the origin is

the target. In other words, we are interested whether by turn-based addition of vectors

from A and E to x0, Eve can not only reach the origin, but to ensure that she can reach

the origin regardless of the moves Adam plays.

In the general scenario, where the number of moves the players have is not fixed, there

is a simple necessary and sufficient condition to determine whether the winning set of Eve

is empty or not.

Lemma 2.6 (Arul, Reichert [9]). The winning set in a Zd-VAS game (A,E,x0) is nontrivial

if and only if there exists a vector x 6= (0, . . . , 0) such that, for all moves of Adam a ∈ A,

Section 2.4. Z-VAS games, where each player has two moves 29

there exists a move e ∈ E of Eve such that a + e = −x.

The claim is obvious as this is exactly what we mean when we say that Eve has a

winning strategy to reach (0, . . . , 0) from x in one turn – regardless of which move Adam

plays, Eve can play such a move that the origin is reached. We can iterate the lemma to

construct bigger and bigger winning sets for Eve giving us a semi-algorithm, Algorithm 2.1,

to solve Zd-VAS games. If there was a bound on the number of iterations, then we would

have an algorithm to solve Zd-VAS games. Unfortunately, such a bound does not exist, as

we will prove in Chapter 5 that already two-dimensional Z-VAS games are undecidable.

Even when d = 1, that is, when the game is played on integer line, finding the bound is not

easy. In [9], the exponential bound was found by using nontrivial results on the Frobenius

problem.

input : A Zd-VAS game (A,E,x0).
output : The player that has a winning strategy in the game.

1 preX ← {(0, . . . , 0)};
2 Moves← {−a− e | a ∈ A, e ∈ E};
3 repeat
4 X ← preX;
5 if x0 ∈ X then return Eve;
6 foreach x ∈ X and y ∈Moves do
7 if forall a ∈ A exists e ∈ E such that x + y + a + e ∈ X then
8 preX ← preX ∪ {x + y};
9 end

10 end

11 until X = preX;
12 if x0 ∈ X then
13 return Eve
14 else
15 return Adam
16 end

Algorithm 2.1: A semi-algorithm solving a Zd-VAS game.

Consider then the game with two moves for each player. Assume that the winning set

is not trivial, that is, for some x ∈ Zd, a1 + e1 = −x = a2 + e2 (up to renaming of the

moves). We see that Eve has a winning strategy to reach the origin also from 2x. In fact,

from 2x, Eve responds to moves of Adam in exactly the same way as she would from x.

Furthermore, we see that Eve has a winning strategy only from vectors of form kx for

30 Reino Niskanen

some k ∈ N. Indeed, from any other vector, either a1 + e2 or a2 + e1 does not result in a

winning vector. The algorithm to decide which player has a winning strategy in Zd-VAS

game (A,E,x0), where |A| = 2 = |E|, is presented in Algorithm 2.2. Unfortunately, it does

not scale even to games with three moves for each player.

Proposition 2.7. Given a Zd-VAS game (A,E,x0), where |A| = |E| = 2, it is decidable

in linear time whether Eve has a winning strategy to reach 0 from x0.

input : A Zd-VAS game (A,E,x0), where A = {a1,a2} and E = {e1, e2}.
output : The player that has a winning strategy in the game.

1 if a1 + e1 = a2 + e2 and x0 = −k(a1 + e1) then return Eve;
2 if a1 + e2 = a2 + e1 and x0 = −k(a1 + e2) then return Eve;
3 return Adam;

Algorithm 2.2: Solving a Zd-VAS game, where both players have two moves.

2.5 Properties of the particular subclass of the ωPCP

In the next chapter, we will prove that, in several Attacker-Defender games, it is undecidable

which player has a winning strategy. The main ingredient of the proofs is the universality

problem for integer weighted automata on infinite words. The undecidability of the

universality problem is proved by a reduction from the ωPCP. In [82] and [83], a weighted

automaton was constructed from an arbitrary instance of the ωPCP. In this section, we

reiterate the construction of an instance of the ωPCP found in [80], highlighting the

properties that simplify the construction of automata presented in the following chapter.

The ωPCP was shown to be undecidable for instances of size nine in [80]. The proof

uses a reduction from the termination problem of the semi-Thue systems proved to be

undecidable for the three-rule semi-Thue systems from [117]. Later, in [61], the ωPCP

was proved to be undecidable for instances of size eight, using the same ideas but also

utilizing an encoding that helped to decrease the number of letters. We shall now present

the construction from [80].

A semi-Thue system is a pair T = (Σ, R) consisting of an alphabet Σ = {a1, . . . , am}
and a relation set R ⊆ Σ∗ × Σ∗, the elements of which are called the rules of T . For two

words u, v ∈ Σ∗, we write u −→T v, if there are words u1 and u2 such that u = u1xu2

and v = u1yu2, where (x, y) ∈ R. Let −→∗T be the reflexive and transitive closure of the

Chapter 2. Preliminaries 31

relation −→T . Therefore, we have u −→∗T v if and only if either u = v or there exists a finite

sequence of words u = v1, v2, . . . , vn = v such that vi −→T vi+1 for each i = 1, 2, . . . , n− 1.

Let w0 ∈ Σ∗ be a word, and T = (Σ, R) a semi-Thue system. If there does not exist any

infinite sequence of words w1, w2, . . . such that wi −→T wi+1 for all i ≥ 0, then we say that

T terminates on w0. Thus, T terminates on w0 if all derivations starting from w0 are of

finite length. In the termination problem, we are given a word w0 called an input word, and

a semi-Thue system T , and it is asked whether or not T terminates on w0. As mentioned

above the termination problem was proved to be undecidable for three-rule semi-Thue

systems in [117].

First, let us show how we encode a semi-Thue system over an arbitrary sized alphabet

into a semi-Thue system over a binary alphabet. Let T1 = (Σ, R1) be a semi-Thue system,

where Σ = {a1, a2, . . . , ak}. Define a morphism ϕ : Σ∗ → {a, b}∗ with ϕ(ai) = abia for all i.

Then let R′1 = {(ϕ(u), ϕ(v)) | (u, v) ∈ R1} be a new set of rules, and define T ′1 = ({a, b}, R′1).

It is easy to see that w −→T1 w′ in T1 if and only if ϕ(w) −→T ′1 ϕ(w′) in T ′1 . That is, T ′1 and T1

are equivalent with respect to derivation. Therefore, if T1 has the undecidable termination

problem, then so does the semi-Thue system T ′1 .

Let T = ({a, b}, R) be an n-rule semi-Thue system with the undecidable termination

problem, and let the rules in T be ti = (ui, vi) for i = 1, 2, . . . , n. We can assume that the

rules ti are encoded by ϕ. We are ready to define our instance of the infinite Post correspon-

dence problem. The domain alphabet of the instance will be Σ = {a1, a2, b1, b2, d,#} ∪R,

where d is for the beginning and synchronization and # is a special separator of the words in

a derivation. Note that the rules in R are considered as letters in the alphabet. The image

alphabet is {a, b, d,#}. Let us define two special morphisms for x ∈ Σ+. Morphisms lx

and rx are called the desynchronizing morphisms, and defined by `x(a) = xa and rx(a) = ax

for each letter a ∈ Σ.

In [80], the following construction was given for a semi-Thue system T and an input

word u: define the morphisms g, h : Σ∗ → {a, b, d,#}∗ by (recall that for ti ∈ R, we denoted

ti = (ui, vi)):

h(a1) = dad, g(a1) = add,

h(a2) = dda, g(a2) = add,

h(d) = `d2(u)dd#d, g(d) = dd,

h(ti) = d−1`d2(vi), g(ti) = rd2(ui), for ti ∈ R.

h(b1) = dbd, g(b1) = bdd,

h(b2) = ddb, g(b2) = bdd,

h(#) = dd#d, g(#) = #dd,
(2.2)

32 Reino Niskanen

In the image of ti under h, the notation d−1 is a shorthand for the first letter of vi being

desynchronized by d rather than dd. In the special case, where vi = ε, we define h(ti) = d.

It was proved in [80] that each infinite solution of (g, h) is of the form

dw1#w2#w3# · · · , where wj = xjtijyj (2.3)

for some tij ∈ R, xj ∈ {a1, b1}∗ and yj ∈ {a2, b2}∗ for all j. Indeed, the image g(w) is

always of the form rd2(v), and therefore, by the form of h, between two separators # there

must occur exactly one letter t ∈ R. Also, the separator # must be followed by words in

{a1, b1}∗ before the next occurrence of a letter t ∈ R. By the form of h(t) the following

words before the next separator must be in {a2, b2}∗. The form (2.3) follows when we

observe that there must be infinitely many separators # in each infinite solution. Indeed,

all solutions begin with a d, and there is one occurrence of # in h(d) and no occurrences

of # in g(d). Later each occurrence of # is produced from # by both g and h. Therefore,

there are infinitely many letters # in each infinite solution.

In the above construction from [80] the number of letters in the domain alphabet Σ is

nine. It is possible to reduce the number of letters in the domain alphabet to eight following

the transformation by Dong and Liu [61] where the letter b2 is not needed anymore.

Example 2.8. Let T = ({a, b}, {t}) be a semi-Thue system with the input word u = a

and the rule t = (a, aa). The corresponding instance of the ωPCP is

h(a1) = dad, g(a1) = add, h(b1) = dbd, g(b1) = bdd,

h(a2) = dda, g(a2) = add, h(b2) = ddb, g(b2) = bdd,

h(d) = ddadd#d, g(d) = dd, h(#) = dd#d, g(#) = #dd,

h(t) = dadda, g(t) = add.

In the following lemma, we show that in a solution, the image under g cannot be longer

than the image under h.

Lemma 2.9. Let (g, h) be as in (2.2), and let p ∈ dΣ∗ be such that |g(p)| ≥ |h(p)|. Then

h(p) ≮ g(p).

Proof. The word h(p) has more occurrences of # than g(p). Indeed, |h(p)|# = |g(p)|# +

|p|d ≥ |g(p)|# + 1, where | · |# is the number of letters # in the word. Therefore, h(p) ≮
g(p).

Section 2.5. Properties of the particular subclass of the ωPCP 33

The next lemma states that, in a word w beginning with the letter d, the first position

where h(w) and g(w) differ (called the error) is reached in h(w) at least one letter (of w)

earlier than it is reached in g(w).

Lemma 2.10. Let (g, h) be as in (2.2) and assume that w ∈ dΣω is not an infinite solution

of the instance (g, h). Let p = u′c, where c ∈ Σ, be the shortest prefix of w such that

g(p) ≮ h(p). Let r be the least position such that h(p)[r] 6= g(p)[r]. Then r ≤ |h(u′)|.

Proof. Note first that |p| ≥ 2 by the definition of h(d) and g(d). By the minimality of p,

we have g(u′) ≤ h(u′).

Let v be the longest prefix of u′ of the form in (2.3), that is,

v = dw1#w2#w3# · · ·wn#,

where

wj = xjtijyj

for some tij ∈ R, xj ∈ {a1, b1}∗ and yj ∈ {a2, b2}∗ for all j = 1, 2, . . . , n. Now

g(v) = v1#v2# · · · vn#dd

and

h(v) = v1#v2# · · · vn#ddvn+1#d,

where vi ∈ {a, b, d}+ for i = 1, 2, . . . , n+ 1. More precisely,

v1 = dd g(w1) = ld2(u)dd,

vj = dd g(wj) = d h(wj−1) dd for j = 2, . . . , n, and

vn+1 = d h(wn) dd.

We prove that the error must appear within vn+1#d in the image h(v) which proves the

claim. Assume to the contrary that the error is not within vn+1#, i.e., that the error appears

after the last occurrence of # in the image h(v). To cover vn+1#d there must exist wn+1

such that wn+1 = xn+1tin+1yn+1 (where tin+1 ∈ R, xn+1 ∈ {a1, b1}∗ and yn+1 ∈ {a2, b2}∗).

34 Reino Niskanen

By the maximality of v, vwn+1# is not a prefix of u′, and therefore, u′ = vwn+1 and c = #.

But then g(p) ≤ h(p); a contradiction.

Chapter 3

Attacker-Defender games

In this chapter, we consider some Attacker-Defender games and show that it is undecidable

which player has a winning strategy.

In particular, we introduce matrix games on vectors, where we show that, if both players

are stateless and the moves correspond to very restricted linear transformations from

SL(4,Z), the existence of a winning strategy is undecidable. To prove the undecidability

in four-dimensional games, we first show undecidability of word games, where players are

given words over a group alphabet and in an alternating way concatenate their words with

the goal for Eve to reach the empty word. The games on words, over semigroup alphabets,

are commonly used to prove results in language theory [101, 102, 113]. We, on the other

hand, define word games over group alphabets.

Later, we show that it is possible to stretch the application of the proposed techniques

to other models and frameworks. For example, we consider games on braids, which

were recently studied in [26,34]. Braids are classical topological objects that attracted a

lot of attention due to their connections to topological knots and links, as well as their

applications to polymer chemistry, molecular biology, cryptography, quantum computations

and robotics [51, 59, 66, 72, 129]. In this chapter, we consider games on braids with only

three or five strands, where the braid is modified by a composition of braids from a finite

set with the target for Eve to reach the trivial braid. We show that it is undecidable to

check for the existence of a winning strategy for three strands from a given nontrivial braid

and for five strands starting from the trivial braid. The reachability with a single-player

(i.e., with nondeterministic composition from a single set) was shown to be decidable for

braids with three strands in [133].

35

36 Reino Niskanen

The undecidability results of this chapter are proved by using a new language-theoretic

result showing that the universality problem for weighted automata A on infinite words

is undecidable. The acceptance of an infinite word w intuitively means that there exists

a finite prefix p of w such that for the word p there is a path in A that has zero weight.

From an instance of the infinite Post correspondence problem we construct the automaton

A that accepts all infinite words if and only if the instance does not have a solution. As

the infinite Post correspondence is undecidable [141], so is the universality problem for

weighted automata on infinite words.

Please note that while the universality for weighted automata on finite words implies

universality for weighted automata on infinite words, the statement does not hold the

other way around. Therefore, the universality problem for weighted automata on infinite

words is not equivalent to the universality problem for weighted automata on finite words.

Our undecidability proof for weighted automata on infinite words follows the initial idea

from [79] for mapping computations on words into a weighted (one-counter) automata

model, which is extended with new constructions and formal proofs.

3.1 The universality problem for weighted automata on in-

finite words

In this section, we prove that the universality problem is undecidable for integer weighted

automata on infinite words by reducing the instances (of the complement) of the infinite

Post correspondence problem to the universality problem.

Let (g, h) be a fixed instance of the ωPCP as in Section 2.5. That is, g, h : Σ∗ → B∗,

where Σ = {a1, a2, . . . , am} and B = {b1, b2, . . . , bs−1}. In our encoding of the ωPCP, we

consider the letters of the alphabet B as natural numbers from 1 to s−1. We construct a non-

deterministic integer weighted automaton A = (Q,Σ, σ, q1, {q3},Z), where Q = {q1, q2, q3},
corresponding to the instance (g, h) such that an infinite word w ∈ Σω is accepted by A if

and only if for some finite prefix p of w, g(p) ≮ h(p) and h(p) ≮ g(p). That is, only the

solutions of the ωPCP will be rejected by A and if all infinite words are accepted by A (i.e.,

it is universal) then the given instance of the ωPCP does not have a solution.

Note that our automaton is complete, i.e., there is a transition labelled with (a, z) from

each state qi for every a ∈ Σ and some z ∈ Z.

In many existing reductions of the PCP or the ωPCP (for given morphisms g and h),

Chapter 3. Attacker-Defender games 37

to show undecidability of other problems, it is required to explicitly construct and store

images under g and h during the simulation of the PCP or the ωPCP. In our proof, we are

only going to store some partial information about the difference between the lengths of

the images under morphisms g and h and some finite information that will allow us to use

the non-determinism of the automaton to guess and recognize a mismatch at some position

of the images.

In order to present the idea of the proof, we will first illustrate the encoding of the

ωPCP into the universality problem for a weighted automaton with two weights. One

weight will be used for storing the distances between different positions of letters in images

under g and h, and another one to store information about a particular letter encoded as

an integer. The two weights are used only to make the intuition clearer and they will be

merged into a single weight by storing the second weights in the least significant digits of

the first one as the second weight is only used to store finitely many values.

Let us consider an instance of the ωPCP where the image under h is always longer than

the image under g, and assume that the automaton reads w ∈ Σω. In the encoding of the

ωPCP into a weighted automaton, we separate the run of the weighted automaton into five

parts (A,B,C,D and E).

In part A, the automaton reads some finite prefix u of w for which it assumes that there

are no errors in the images of letters of u under morphisms g and h. As there are no errors,

i.e., g(u) ≤ h(u), it is not necessary to store the information on what the actual images

are. Instead the automaton, for each letter a of u, only adds the differences of lengths of

the images h(a) and g(a) to the first weight. In part B, the automaton reads the next

letter of w, x, and guesses that an error will occur at the position k in the image of h(x).

The automaton adds to the first weight the difference of k and the length of the image

of x under g and also adds jk = h(x)[k] to the second weight. Now the value of the first

weight corresponds to the number of letters in the image of g between positions |g(ux)| and

|h(u)|+ k; see Figure 3.1 for an illustration. From now on, the rest of the image of h(w)

starting from the position |h(u)|+ k + 1 will not affect the acceptance of the word w. For

the word w to be accepted, the letter in position |h(u)|+ k of h(w) needs to be different

from the letter at the same position of g(w). This happens when both weights are zero.

Zero in the first weight guarantees that we consider letters of both h(w) and g(w) in the

position |h(u)|+ k. On the other hand, zero in the second weight guarantees that the two

letters in the considered position are different. Next, in parts C and D, the automaton will

check whether both conditions can be met.

38 Reino Niskanen

A B C D

k

jk

`

i`

h :

g :

|h(u)|

|g(u)| |g(x)| |g(v)| |g(y)|

|h(x)|

Figure 3.1: An illustration of a computation of the ωPCP highlighting the first four parts,
A, B, C and D. Part E is not depicted.

In part C, the automaton continues reading w by reading v, assuming that the letter

corresponding to the erroneous position under h has not been read yet. For each letter a

of v read, the length of the image g(a) is subtracted from the first weight. Finally, in part D,

the automaton guesses that reading the next letter, y, the error will occur in the image of

g(y) at the position `. That is, the automaton subtracts ` from the first weight and from

the second weight, some letter i` 6= g(y)[`], i.e., any letter that is not in the `th position in

the image of y under g. In the final part, E, the automaton is in the final state where the

weights are no longer modified and the rest of the word w is read.

From the above description, in part E, the first weight is zero if the lengths of the

images under h in part A, together with the position k, equal the lengths of the images

under g in parts A, B and C together with the position `. That is, |h(u)|+ k = |g(uxv)|+ `.

In other words, the automaton checked whether an error occurred in the same position of

h(w) and g(w). On the other hand, the second weight can be zero only if the letter in the

image under h differs from the letter in the image under g. In other words, both weights

are zero if the automaton made a correct guess that h(w)[i] 6= g(w)[i] for some i ∈ Z+. The

whole process is illustrated in Figure 3.2.

As mentioned previously, we can merge the two weights into a single one. The second

weight is bounded and is modified only twice (once to store a letter and once to compare).

By multiplying the integers stored in the first weight by s (where s is larger than the size

of the image alphabet B), we create enough space to store the second weight within the

first one.

In the above description, we considered the case where the images under h were always

longer than the images under g. Obviously, this is a strong assumption that does not hold

for arbitrary instances of the ωPCP. Luckily for us, for the instances defined by (2.2),

Section 3.1. The universality problem for weighted automata on infinite words 39

Part A Part B Part C Part D Part E

input word: u[1] · u[2] · . . . · u[n] · x · v[1] · . . . · v[m] · y · z
h(·): ∗∗∗ · ∗∗∗∗ · . . . · ∗∗∗ · ∗∗∗ ∗ · ∗∗∗ · . . . · ∗∗∗ · ∗∗∗∗ · ∗∗∗
g(·): ∗∗ · ∗∗ · . . . · ∗∗ · ∗∗ · ∗∗ · . . . · ∗ · ∗ ∗ · ∗∗
1st weight: + + . . .+ + − − . . .− −
2nd weight: −

Figure 3.2: An illustration of a computation of the weighted automaton corresponding to
an instance of the ωPCP. Here, ∗ represents any letter of the image alphabet, while is
the letter h(x)[k] and is the letter g(y)[`].

by Lemma 2.9, the converse implies that the word is not a solution and furthermore by

Lemma 2.10, that the first error appeared while the image under h is longer than the image

under g. It is also possible to construct a weighted automaton from an arbitrary instance

of the ωPCP. In that case, we would need to have additional states to make sure that all

possible non-solutions of the instance can be covered. In fact, in [82, 83], the more general

weighted automaton is constructed from an arbitrary instance of the infinite PCP.

Now we are ready to formally define our weighted automaton with a single weight. Let us

begin with the transitions of A = ({q1, q2, q3},Σ, σ, q1, {q3},Z), where Σ = {a1, . . . , am−1, d}.
The automaton is depicted in Figure 3.3. Recall that the size of the image alphabet B is

s− 1. Let us define the transitions of the automaton. First, for each a ∈ Σ, let

〈q1, a, q1, s · (|h(a)| − |g(a)|)〉 , 〈q2, a, q2, s · (−|g(a)|)〉 , 〈q3, a, q3, 0〉

be in σ. For error checking we need two types of transitions – first to guess that the error

has occurred in the image and then to verify the error. Let h(a) = bj1bj2 · · · bjn1 , where

bjk ∈ B, for each index 1 ≤ k ≤ n1, and g(a) = bi1bi2 · · · bin2 , where bi` ∈ B. Then let, for

each k = 1, . . . , n1, (i.e., jk ∈ {1, . . . , s− 1} for all k = 1, . . . , n1),

〈q1, a, q2, s · (k − |g(a)|) + jk〉 ∈ σ. (3.1)

For each ` = 1, . . . , n2 and for each letter bc ∈ B such that bi` 6= bc ∈ B, let

〈q2, a, q3,−s`− c〉 ∈ σ. (3.2)

40 Reino Niskanen

We call the transitions in (3.1), the error guessing transitions and in (3.2), the error

verifying transitions. Finally, for all b ∈ Σ \ {d}, let 〈q1, b, q3, 0〉 ∈ σ.

Intuitively, the self-loops in state q1 correspond to part A, error guessing transitions

(3.1) to part B, self-loops in state q2 to part C, error verifying transitions (3.2) to part D,

and self-loops in state q3 to part E. While the transition described last, that is, 〈q1, b, q3, 0〉,
correspond to the word starting by a letter other than d.

q1 q2 q3
(a, s · (k − |g(a)|) + jk)

(a, s · (|h(a)| − |g(a)|))

(a,−s`− c)

(a, s · (−|g(a)|)) (a, 0)

(b, 0)

Figure 3.3: The weighted automaton A. In the figure, a ∈ Σ and b ∈ Σ \ {d}.

The idea is to keep track of differences in lengths of images under g and h multiplied

by s, and then to guess and verify an error in the images by storing letters of the image

alphabet in the least significant digits of the integer weight. By Lemma 2.10, if an error

occurs, the difference in lengths of images is large enough that the image of the second

morphism has to catch up before the error can be verified.

The following lemma shows that for each non-solution of the ωPCP, there exists a

computation path with zero weight ending in the state q3.

Lemma 3.1. Let w ∈ Σω. Then w is a solution of an instance (g, h) of the form (2.2) of

the ωPCP if and only if w /∈ L(A).

Proof. Let w = c1c2 · · · with ci ∈ Σ for all i = 1, 2, Assume first that w is not a

solution of the instance (g, h) of the form (2.2). Now either the first letter is d or not. In

the latter case w is accepted by a path starting with 〈q1, c1, q3, 0〉.
In the first case, by Lemma 2.9 and Lemma 2.10, there exists a prefix p of w such that

g(p) ≮ h(p) and the first error position is reached in the image of h(w) at least one letter

(of w) before it is reached in the image of g(w). Let r be the minimal position for which

h(w)[r] 6= g(w)[r]. In other words, for p = dc2 · · · cn, there exists a position t < n such that

r = |h(dc2 · · · ct−1)|+ k, where k ≤ |h(ct)|, and

r = |g(dc2 · · · cn−1)|+ `, where ` ≤ |g(cn)|.

Chapter 3. Attacker-Defender games 41

Denote h(w)[r] = bjk . It is the kth letter of the image h(ct), and g(w)[r] is the `th letter of

the image g(cn). By the choice of r, these letters are different.

Now, w is accepted in the state q3 with the following path: First, the prefix dc2 · · · ct−1

is read in the state q1 with weight

s · (|h(dc2 · · · ct−1)| − |g(dc2 · · · ct−1)|).

Next, when reading ct, the error guessing transition 〈q1, ct, q2, s · (k − |g(ct)|) + jk〉 is taken

and then the word ct+1 · · · cn−1 is read in the state q2 with weight

s · (−|g(ct+1 · · · cn−1)|).

Finally, while reading the letter cn, the state q3 is reached by the error verifying edge

〈q2, cn, q3,−s`− jk〉. Note that such an error verifying edge exists as the `th letter in g(cn)

is not equal to the kth letter, bjk , of h(ct). Naturally, after reaching q3 the weight does not

change as for all letters there are only transitions with zero weight. Now the weight of the

above path is

γ(p) = s · (|h(dc2 · · · ct−1)| − |g(dc2 · · · ct−1)|) + s · (k − |g(ct)|) + jk

+ s · (−|g(ct+1 · · · cn−1)|)− s`− jk
= s ·

(
|h(dc2 · · · ct−1)|+ k − |g(dc2 · · · cn−1)| − `

)
= s · (r − r) = 0.

Therefore, w is accepted, as claimed.

Next, we prove that if w is a solution of the instance (g, h), then it is not accepted by

A. Assume contrary to the claim that w is a solution and there is an accepting path of w

in A. As stated in (2.3), we have w = dw1#w2#w3# · · · , where wj = xjtijyj for some

tij ∈ R, xj ∈ {a1, b1}∗ and yj ∈ {a2, b2}∗ for all j.

There are two possible computation paths for w. It can be accepted by a path visiting q2

or not. In the second case, the prefix of w that is read in q1 has to have equal lengths under

g and h. By Lemma 2.9, w is not a solution of the instance of the ωPCP.

If the computation path visits q2, then we can partition w into different parts according

to the state-transition of the automaton. That is, w has a prefix p = uxvy, where x, y ∈ Σ,

such that u is read in the state q1 and v in the state q2, and when reading the letter x the

42 Reino Niskanen

path moves to q2 and when reading the letter y the path moves to q3. The weight γ(p) of p

is now

γ(p) = s · (|h(u)| − |g(u)|) + s · (k − |g(x)|) + jk + s · (−|g(v)|) + (−s`− c)

= s ·
(
|h(u)|+ k − |g(uxv)| − `

)
+ jk − c,

where h(x)[k] = bjk and g(y)[`] 6= bc. As jk < s and c < s, we have that γ(p) = 0 if and

only if |h(u)|+ k = |g(uxv)|+ ` and jk = c. Denote r = |h(u)|+ k. Now, γ(p) = 0 if and

only if h(w)[r] = bjk 6= bc = g(w)[r], which is a contradiction since w was assumed to be a

solution of (g, h).

We are ready to prove the main theorem of the section.

Theorem 3.2. It is undecidable whether or not L(A) = Σω holds for a given three-state

integer weighted automaton A on infinite words over alphabet Σ.

Proof. Let A be the weighted automaton constructed in this section. The claim follows

from Lemma 3.1 and the undecidability of the infinite PCP [80].

Corollary 3.3. It is undecidable whether or not for a weighted automaton A on infinite

words, there exists a word w ∈ Σω such that, for every computation path π of w, all

configurations [q, u, z] ∈ R(π) in a final state do not have zero weight.

Proof. The statement formulates the condition for non-universality of weighted automata

on infinite words. By the previous theorem, the universality problem is undecidable, and

thus, so is its complement problem.

Note that the number of the letters in the alphabet Σ in Theorem 3.2 is small. Indeed,

|Σ| = 9 by the construction in (2.2). In contrast, the number of transitions is huge. The

number of error guessing and verifying transitions depend on the lengths of the images.

One of the rules of the three-rule semi-Thue system consists of encodings of all the rules

of the 83-rule semi-Thue system that has an undecidable termination problem. Its image

is several hundreds of thousands of letters long. It would be interesting to construct a

weighted automaton from a different instance of the ωPCP with larger domain alphabet Σ,

but shorter images. For example, in [85], the authors proved that the termination problem

is undecidable for a semi-Thue system with 24 rules, where the length of each rule is at

Section 3.1. The universality problem for weighted automata on infinite words 43

most five. Constructing an instance of the infinite PCP from it using the technique of [80],

could result in a weighted automaton with few transitions.

Example 3.4. Consider the ωPCP of Example 2.8. We will not present the whole weighted

automaton as even for this small semi-Thue system and an ωPCP instance, the automaton

has 112 transitions. Let a1 be encoded as 1 and # as 4.

Let w ∈ da1a1Σω. It is easy to see that this is not a solution of the ωPCP. Indeed,

g(da1a1) = ddaddadd ≮ ddadd#ddaddad = h(da1a1). First, we show that guessing that

the error is in the image of the first a1 does not lead to an accepting computation path,

since g(da1) = ddadd < ddadd#ddad = h(da1). Then we show that there is an accepting

computation path when we guess that the error is in the image of the second a1.

If we guess that the error will occur in the third position of the images, we need to store

letter a and position three when reading d. This is done by using the transition

〈q1, d, q2, s · (k − |g(d)|) + jk〉 = 〈q1, d, q2, 5 · (3− 2) + 1〉 = 〈q2, d, q2, 6〉 .

Then we have to verify the error using a transition

〈q2, a1, q3,−s`− c〉 = 〈q2, a1, q3,−5− c〉 ,

where c = 2, 3, 4. After these two transitions the weight is at most −1 and thus w is not

accepted with this path.

On the other hand, if we guess that the error will occur in the sixth position of the

image, we use the transition

〈q1, d, q2, 5 · (6− 2) + 4〉 = 〈q1, d, q2, 24〉 .

Then the first a1 is read in the state q2 with the transition 〈q2, a1, q2,−5 · 3〉, after which

the weight is 9. Then we verify the error with the transition 〈q2, a1, q3,−5− 4〉. After these

three transitions, the weight is 0 and the computation path has reached the state q3. Thus,

w is accepted by the automaton.

It is also natural to consider the emptiness problem for weighted automata on infinite

words. That is, whether, for a given weighted automaton A, L(A) = ∅. In contrast to the

result of Theorem 3.2, the emptiness problem is decidable.

44 Reino Niskanen

Theorem 3.5. It is decidable whether or not L(A) = ∅ holds for an integer weighted

automaton A on infinite words over alphabet Σ.

Proof. Let A be a weighted automaton on infinite words. Consider it as a weighted

automaton on finite words, B, defined in [79]. Clearly, L(A) = ∅ if and only if L(B) = ∅.
Indeed, an infinite word w is accepted by A if and only if there is a finite prefix u of w with

γ(u) = 0. This u is accepted by B. On the other hand, if some finite word u is accepted by

B then an infinite word starting with u is accepted by A.

In [78], it was shown that languages defined by weighted automata on finite words

are context-free languages. It is well-known that emptiness is decidable for context-free

languages (see for example [139]).

Next, we list some straightforward corollaries. They all follow from Theorem 3.2 and

are listed for completeness sake.

Corollary 3.6. For weighted automata A and B on infinite words, the following language

problems are undecidable:

(i) Equality: Whether L(A) = L(B).

(ii) Inclusion: Whether L(B) ⊂ L(A).

(iii) Union: Whether L(A) ∪ L(B) = Σω.

(iv) Regularity: Whether L(A) = R, where R is an ω-regular language.

Proof. Let A be the automaton of Theorem 3.2.

(i) Let B be a weighted automaton on infinite words with one state q and transitions

〈q, a, q, 0〉 for all a ∈ Σ. Clearly, L(B) = Σω. Now the automata A and B accept the

same language if and only if A accepts Σω.

(ii) Let B = ({q0, q1},Σ, σ, q0, {q1},Z), where

σ = {〈q0, d, q1, 0〉 , 〈q1, d, q1, 1〉} ∪ {〈q0, a, q1, 1〉 , 〈q1, a, q1, 0〉 | a ∈ Σ \ {d}}.

Let w be a solution of an instance (g, h) of the ωPCP. It is accepted by B but not by A.

Now if the instance (g, h) of ωPCP has a solution, then L(B) 6⊂ L(A). On the other

hand, if the instance (g, h) of ωPCP does not have a solution, then L(B) ⊂ L(A).

Chapter 3. Attacker-Defender games 45

(iii) Let B be an automaton accepting the empty language. Now L(A) ∪L(B) = Σω holds

if and only if L(A) = Σω.

(iv) The claim follows as Σω is an ω-regular language.

The previous statements were language-theoretic in nature, in the next corollary, we

present a different undecidability result for weighted automata on infinite words.

Corollary 3.7. It is undecidable whether L(A) = L(A′) for two weighted automata on

infinite words, A and A′, such that there exists a bijective mapping from edges of A to edges

of A′.

Proof. Let A be the automaton of Theorem 3.2. Consider an automaton A′ with a single

state q′. Let Ta = {〈q, a, p, z〉 ∈ σ} be the set of all transitions in A reading a letter a.

Denote by na the size of the set Ta. Now, in A′ for each letter a we add a transition

〈q, a, q,−i〉, where i = 0, . . . , na − 1. Clearly, L(A′) = Σω. There is an obvious bijection

between transitions of A and A′. Now the automata accept the same language if and only

if A accepts Σω.

The result of Theorem 3.2 also holds for a more restricted acceptance condition, similar

to that of Büchi automata, where an infinite word is accepted if and only if there is a

computation path with an infinite number of prefixes with weight zero. This is clear from

the construction of the automaton. If the state q3 is reached with zero weight, then it

remains unchanged when additional letters are read. For this acceptance condition the

universality of a weighted automaton on finite words does not imply the universality for

a weighted automaton on infinite words. However, for simplicity, we use the original

acceptance condition in the proofs in Section 3.2.

3.2 Applications to Attacker-Defender games

In this section, we provide a number of applications for our new result on the universality

of weighted automata on infinite words. We connect the idea of a one-weight computation

with games on different mathematical objects such as words, matrices, vectors and braids.

Following the result for the weighted automata on infinite words (Theorem 3.2) we can

now define a simple scenario of an undecidable infinite-state game that can also be applied

to other game frameworks. Let A be a weighted automaton. In the game, Adam will play

46 Reino Niskanen

an input word letter-by-letter and Eve will simulate a run on A using the letters provided

by Adam. In other words, Eve has to verify whether the provided word is accepted by A.

In the above framework, Adam will have a winning strategy if there is a solution for

the infinite Post correspondence problem and Eve will have a winning strategy otherwise.

3.2.1 Weighted word games

Let us define the Attacker-Defender game on words, where the moves of Eve and Adam

correspond to concatenations of words (over a free group alphabet). Later on, we shall see

that this game allows us to prove nontrivial results for games with low-dimensional linear

transformations or topological objects just by using an injective homomorphism (i.e., a

monomorphism) to map words to other mathematical objects.

A weighted word game consists of two players, Eve and Adam having sets of words

{e1, . . . , er} ⊆ FG(Γ) and {a1, . . . , as} ⊆ FG(Γ) respectively, where Γ is a finite group

alphabet, and integers xe1 , . . . , xer , xa1 , . . . , xas corresponding to each word. That is, the

players’ move sets are

E = {⟪e1, xe1⟫, . . . , ⟪ar, xar⟫} and A = {⟪a1, xa1⟫, . . . , ⟪as, xas⟫}.

An initial configuration is the pair [w, 0], where w ∈ FG(Γ) and 0 is the initial value of the

weight, and the target configuration of this game is the group identity, i.e., the empty word,

with zero weight. A configuration of a game at time t is [wt, x], where wt ∈ FG(Γ) and

x ∈ Z, that we call a weight. In each round of the game, both Adam and Eve concatenate

their words and update the weight. Clearly, wt = w · ai1 · ei1 · ai2 · ei2 · . . . · ait · eit after t

rounds of the game, where eij and aij are words from the sets E and A respectively, and

the weight is
∑t

j=1(xaij + xeij). As usual, the decision problem for the word game is to

check whether there exists a winning strategy for Eve to reach the empty word with zero

weight.

Before proving the main theorem, we consider an auxiliary result. In the next lemma,

we modify the automaton of Theorem 3.2 in order to remove self-loops.

Lemma 3.8. It is undecidable whether or not L(B) = Σω holds for six-state integer weighted

automata on infinite words over alphabet Σ, without self-loops.

Proof. Let A = ({q1, q2, q3},Σ, σ, q1, {q3},Z) be the automaton of Theorem 3.2. We con-

struct an automaton B = (QB,Σ, σ
′, q1, {q3},Z), where QB = {q1, q2, q3, q4, q5, q6}. The

Section 3.2. Applications to Attacker-Defender games 47

idea is to have two copies of A and, instead of self-loops, we switch between the copies. In

B, the set of transitions σ′ is defined as follows:

σ′ = {〈qi, a, qj , z〉 , 〈qi+3, a, qj+3, z〉 | 〈qi, a, qj , z〉 ∈ σ, i 6= j}

∪ {〈qi, a, qi+3, z〉 , 〈qi+3, a, qi, z〉 | 〈qi, a, qi, z〉 ∈ σ}.

The automaton is depicted in Figure 3.4. It is easy to see that both automata accept

the same language.

q1 q2 q3

q4 q5 q6

(a, s · (k − |g(a)|) + jk) (a,−s`− c)

(b, 0)

(a, s · (k − |g(a)|) + jk) (a,−s`− c)

(b, 0)

(a
,s
·(|h

(a
)|−
|g

(a
)|))

(a
,s
·
(−
|g

(a
)|))

(a
, 0)

(a
,s
·(|h

(a
)|−
|g

(a
)|))

(a
,s
·
(−
|g

(a
)|))

(a
,0)

Figure 3.4: The weighted automaton B. In the figure, a ∈ Σ and b ∈ Σ \ {d}.

We are now ready to prove the first result on Attacker-Defender games.

Theorem 3.9. It is undecidable whether Eve has a winning strategy to reach the target

configuration [ε, 0] from a given initial configuration [w, 0], where w ∈ FG(Γ2), in the

weighted word game with words over a binary group alphabet Γ2.

Proof. The proof is based on the reduction of the universality problem for weighted automata

on infinite words to the problem of checking for the existence of a winning strategy in the

weighted word game. Let B = (QB,Σ, σ
′, q1, {q3},Z) be the weighted automaton on infinite

words from Lemma 3.8.

48 Reino Niskanen

Let us define the following initial instance of the weighted word game. Adam’s moves

are just single letters from the alphabet Σ ⊂ Γ with weight 0. That is, A = {⟪a, 0⟫ | a ∈ Σ}.
Eve has three types of moves. Either she appends the dummy letter #, begins the simulation

of B, or continues the simulation. More precisely, Eve’s words are over the group alphabet

Γ = Σ ∪ Σ−1 ∪QB ∪Q−1
B ∪ {#,#} and the move set is

E = {⟪#, 0⟫} ∪ {⟪aqi, z⟫ | 〈qi, a, q3, z〉 ∈ σ′} ∪ {⟪bqj#aqi, z⟫ | 〈qi, a, qj , z〉 ∈ σ′, b ∈ Σ}.

The initial configuration is [q3#, 0] and the target configuration is [q3#q1, 0]. We will later

add moves to make the target [ε, 0] as in our definition of weighted word games.

Then, in the above game, Adam can avoid reaching the configuration [q3#q1, 0] if and

only if there is an infinite word that is not accepted by the weighted automaton B. Moreover,

Eve has to follow the computation path of the infinite word played by Adam in B in order

to reach the target configuration. Note that Eve is simulating B in reverse, from the final

state q3 to the initial state q1, following all edges of B in the opposite direction.

Let us consider how the game progresses in different scenarios. First, let us assume

that Adam has played a word p, where |p| = n, and Eve decides to simulate B, that is,

she wants to show that pw ∈ L(B) for any w ∈ Σω. Prior to this decision Eve had played

only # and so the current configuration is [q3# · p[1] ·# · p[2] · . . . ·# · p[n], 0].

Let π be a computation path such that [q, p, z] ∈ R(π) for some q ∈ QB and z ∈ Z. First,

we assume that Eve follows π and show that the target word is reachable if [q3, p, 0] ∈ R(π).

After which, we show that the target word is not reachable if Eve does not follow π. Let

〈qi1 , p[1], qi2 , z1〉 , . . . , 〈qin , p[n], q3, zn〉 be the n elements of π before the computation reaches

the final state. After playing moves corresponding to these transitions, the configuration is[
q3#

0

]
⟪p[1]

0
⟫

A

⟪#

0
⟫

E

· · ·⟪p[n]

0
⟫

A

⟪p[n]qin
zn
⟫

E

⟪aj1
0
⟫

A

⟪aj1qin#p[n− 1]qin−1

zn−1
⟫

E

· · ·⟪ajn
0
⟫

A

⟪ajnqi1#p[1]qi1
z1

⟫
E

,

where the letter A indicates a move of Adam and the letter E indicates a move of Eve.

In the first component, we have the reduced word q3#qi1 and, in the second component,

we have weight
∑n

i=1 zi = z. Note that any letter ajk , which is played by Adam after

Eve has started the simulation of the automaton, plays no role in the computation as it

Chapter 3. Attacker-Defender games 49

is immediately cancelled by Eve. If the configuration [q3, p, 0] is reachable, then qi1 = q1

and z = 0, so the configuration is [q3#qi1 , 0] and Eve wins. On the other hand, if the

configuration [q3, p, 0] is not reachable, then either qi1 6= q1 or z 6= 0. This means that the

current configuration is not the target configuration, therefore Eve has not won (yet).

Next, we show that Eve does not have a winning strategy if she does not follow a

computation path of automaton B. We focus on the first component of the game. There are

three (not mutually exclusive) cases to consider when Eve does not follow a computation

path. Eve can play a move such that, in the reduced word,

• there are at least two inverse letters corresponding to the states of B, or

• there is an inverse letter a, or

• there is an inverse letter corresponding to a state of B followed by #.

In the first case, Eve does not have a winning strategy because the available moves of Eve

do not decrease the number of inverse letters corresponding to the states. The second case

is also straightforward. Eve’s moves do not contain letters a ∈ Σ, so only Adam can cancel

the inverse letter. Therefore, Adam will play b 6= a, ensuring that the reduced word q3#q1

cannot be reached. In the final case, the reduced word is of the form q3#wqia
′#. Consider

the next turn when Adam plays a ∈ Σ and Eve can only play moves that do not reduce the

length of the word. This is clear, as the only moves that cancel the final letter a contain

an inverse letter corresponding to the states, after which the reduced word contains two

inverse letters corresponding to the states of B and Eve does not have a winning strategy

as shown in the first case.

We have analysed all possible ways Eve can deviate from a faithful simulation of B and

showed that Adam has a winning strategy in them. That is, Eve has a winning strategy if

and only if B is universal.

In order to get a game where the word of a winning configuration is the empty word,

rather than q3#q1, we need to have an extra move for Eve, and to make sure that no false

solutions are added. The simple construction of adding words aq1#q3 for all a ∈ Σ creates

no new solutions as there is no way to reach ε, after q3# has been cancelled out and this is

the only way to cancel q3#.

In order to complete the proof, we will require the encoding of Lemma 2.1 between words

over an arbitrary group alphabet and a binary group alphabet. The lemma’s morphism

50 Reino Niskanen

gives a way to map words from an arbitrary sized group alphabet into the set of words over

a free group alphabet with only two letters.

We illustrate the construction of the weighted word game from a weighted automaton

in the following example.

Example 3.10. Let A be a weighted automaton depicted in Figure 3.5, where q0 is the

initial state and q3 is the final state. We construct the corresponding weighted word game.

To keep the example clearer, we refrain from doing the final step of the proof. That is,

instead of a binary group alphabet, we use a larger group alphabet. Adam has two moves

⟪a, 0⟫ and ⟪b, 0⟫ and Eve has the following set of 27 moves⟪#

0
⟫,⟪aq2

−2
⟫,⟪bq2

0
⟫,⟪aq1

0
⟫,⟪bq1

−1
⟫,⟪aq0

2
⟫,⟪bq0

0
⟫,⟪aq3#aq2

−2
⟫,⟪bq3#aq2

−2
⟫,

⟪aq3#bq2

0
⟫,⟪bq3#bq2

0
⟫,⟪aq2#aq3

0
⟫,⟪bq2#aq3

0
⟫,⟪aq2#bq3

0
⟫,⟪bq2#bq3

0
⟫,

⟪aq3#aq1

0
⟫,⟪bq3#aq1

0
⟫,⟪aq3#bq1

−1
⟫,⟪bq3#bq1

−1
⟫,⟪aq3#aq0

2
⟫,⟪bq3#aq0

2
⟫,

⟪aq3#bq0

0
⟫,⟪bq3#bq0

0
⟫,⟪aq1#aq0

1
⟫,⟪bq1#aq0

1
⟫,⟪aq0#q3

0
⟫,⟪bq0#q3

0
⟫
 .

q0

q1

q3

q2

(a, 2), (b, 0)

(a, 1)
(a
, 0

), (
b,
−1)

(a,−2)
(b, 0)(a, 0)

(b, 0)

Figure 3.5: Weighted automaton A.

Let us consider a word starting with abab and how the weighted word game follows.

Starting from the initial configuration [q3#, 0], which represents the final state q3 of A and

weight zero, Adam plays ⟪a, 0⟫, ⟪b, 0⟫, ⟪a, 0⟫ and ⟪b, 0⟫, while Eve plays ⟪#, 0⟫ thrice until

Section 3.2. Applications to Attacker-Defender games 51

Eve plays ⟪bq2, 0⟫ to start the simulation of the automaton:[
q3#

0

]
⟪a

0
⟫

A

⟪#

0
⟫

E

⟪b
0
⟫

A

⟪#

0
⟫

E

⟪a
0
⟫

A

⟪#

0
⟫

E

⟪b
0
⟫

A

⟪bq2

0
⟫

E

.

After this moment of the play, it does not matter which letter Adam plays as Eve can

always cancel it. Let c1, c2, c3, c4 ∈ {a, b} be the letters Adam plays. Now Eve follows the

computation path visiting q1, q3, q2 and ending in q3 in the reverse order:[
q3#

0

]
⟪a

0
⟫

A

⟪#

0
⟫

E

⟪b
0
⟫

A

⟪#

0
⟫

E

⟪a
0
⟫

A

⟪#

0
⟫

E

⟪b
0
⟫

A

⟪bq2

0
⟫

E

⟪c1

0
⟫

A

⟪c1q2#aq3

0
⟫

E

=

[
q3# · a ·# · b ·# · q3

0

]

−→
[
q3# · a ·# · b ·# · q3

0

]
⟪c2

0
⟫

A

⟪c2q3#bq1

−1
⟫

E

=

[
q3# · a ·# · q1

−1

]

−→
[
q3# · a ·# · q1

−1

]
⟪c3

0
⟫

A

⟪c3q1#aq0

1
⟫

E

=

[
q3# · q0

−1 + 1

]
.

As the weight of this play is 0, Eve wins the game by playing the correct ⟪c4q0#q3, 0⟫.
Note that A is not a universal automaton as, for example, aabω is not accepted. Thus,

Adam has a winning strategy in this game.

3.2.2 Word games on pairs of group words

We now modify the game of the previous subsection by encoding the weight as a separate

word over a group alphabet Γ′. This encoding, with additional tricks, allows us to construct

a word game where both the initial and final configurations are [ε, ε].

This variant of the word game consists of Eve and Adam having sets of pairs of words

{⟪e1, e
′
1⟫, . . . , ⟪er, e′r⟫} ⊆ FG(Γ)× FG(Γ′) and {⟪a1, a

′
1⟫, . . . , ⟪as, a′s⟫} ⊆ FG(Γ)× FG(Γ′)

respectively, where Γ and Γ′ are group alphabets. The initial configuration of this game is

an element [w, ε] and the target configuration is the identity element [ε, ε]. A configuration

of a game after t rounds is an element [wt, w
′
t] = [w, ε]⟪ai1 , a′i1⟫⟪ei1 , e′i1⟫⟪ai2 , a′i2⟫⟪ei2 , e′i2⟫ ·

. . . · ⟪ait , a′it⟫⟪eit , e′it⟫, where ⟪eij , e′ij⟫ and ⟪aij , a′ij⟫ are elements from above defined sets

of Eve and Adam. The decision problem for the word game is to check whether there exists

a winning strategy for Eve to reach the identity element [ε, ε].

52 Reino Niskanen

Undecidability of existence of a winning strategy in the word game where elements

are generated by Γ × {ρ, ρ} follows from Theorem 3.9. This follows from the fact that

the free group with one generator is isomorphic to the integers (Z,+). Indeed, consider a

move ⟪w, z⟫ of a player in the weighted word game G. In the word game on pairs of words,

the same player has the move ⟪w, ρz⟫. It is easy to see, that the same player has a winning

strategy in both games9. In the next theorem, we construct a word game where both the

initial and target elements are [ε, ε]. We construct a game where Eve has four copies of

moves of G, each encoded over a disjoint group alphabet. We use the idea of the encoding

of [14] to ensure that there are four plays of G played in a particular order and [ε, ε] is

reached in the new game if and only if [ε, ε] is reached in all four plays of G.

Theorem 3.11. It is undecidable whether Eve has a winning strategy to reach [ε, ε]

from [ε, ε] in the word game where elements are generated by Γ2 × Γ′2, where both Γ2

and Γ′2 are binary group alphabets, i.e., Γ2 = {c, d, c, d} and Γ′2 = {e, f, e, f}.

Proof. Let G be the word game of Theorem 3.9 for which checking whether Eve has a

winning strategy is undecidable. As in Example 3.10, we consider the game over a group

alphabet Γ before applying the morphism of Lemma 2.1. Let E and A be moves of Eve

and Adam of G, where the first component of the move is over a group alphabet Γ and the

second component is over the unary group alphabet {ρ, ρ}, and the initial configuration

is [w, ε]. Consider the weighted automaton B of Lemma 3.8 with a single final state, QB is

the set of states and Σ is its input alphabet.

We want to make sure that the four consecutive plays will be played one after another.

For this we introduce eight border letters �1,�2,�3,�4,♦1,♦2,♦3,♦4 from a fresh group

alphabet. Eve’s first component consists of words over the group alphabet Γ1 = Σ ∪
Σ−1 ∪ {#,#}

⋃4
k=1(QBk ∪ QB−1

k) and the second component is over the group alphabet

{�k, ρk,♦k,�k, ρk,♦k | k ∈ {1, 2, 3, 4}}. We construct Eve’s set of moves E′ which encode

the original moves in E over the four alphabets in the following manner:

• Dummy move: ⟪#, ε⟫ ∈ E is added to E′ as it is;

• Initialization moves: for each move ⟪aqi, ρz⟫ ∈ E, we add moves ⟪aqi1,�1ρ
z
1♦1⟫,

⟪aqi2,�2ρ
z
2♦2⟫, ⟪aqi3,�3ρ

z
3♦3⟫, ⟪aqi4,�4ρ

z
4♦4⟫ to E′;

9There is an exponential blow-up as the integers are encoded in binary. However, this does not affect the
decidability status of the game.

Chapter 3. Attacker-Defender games 53

• Simulation moves: for each move ⟪bqi#aqj , ρz⟫ ∈ E, where qj is not the initial state

of B, we add moves ⟪bqik#aqjk,♦kρzk♦k⟫, for each k ∈ {1, 2, 3, 4}, to E′ ;

• Finishing moves: for each move ⟪bqi#aqj , ρz⟫ ∈ E, where qj is the initial state of B, we

add moves ⟪bqik#aqjk,♦kρzk�k+1⟫, for each k ∈ {1, 2, 3}, and ⟪bqi4#aqj4,♦4ρ
z
k�1⟫

to E′;

• Finally, to finish the game, we add ⟪aqj4qj3qj2qj1, ε⟫, where qj is the initial state of

B, to E′.

From the way how the moves are constructed, it follows that the only way to cancel all the

border letters (i.e., �i,♦i and qj i for i = 1, . . . , 4), is to have four consecutive plays of the

game G followed by the move ⟪aqj4qj3qj2qj1, ε⟫. Namely, first using the moves containing

letters from the alphabet QB1, then QB2, followed by QB3 and finally QB4, or a cyclic

permutation of the order. If the moves are played in a different order, then the border

letters will create a non-cancellable pair of elements from two distinct alphabets. It is easy

to see that it is impossible to reach [ε, ε] afterwards.

Then, if Eve has a winning strategy to reach [ε, ε] in the weighted word game G, she

also has a winning strategy to reach [ε, ε] in the word game on pairs of words. On the other

hand, if Adam has a winning strategy in the weighted word game, then no matter how Eve

plays each of the four plays, either the first or the second component will remain non-empty

(or both). After the whole cycle is played, in the two components, there will be letters over

at least four distinct alphabets. Since Eve does not have a winning strategy in G and due

to the usage of the border letters, no matter how Eve will play a second cycle, the number

of distinct alphabets will not decrease. So, the identity element [ε, ε] cannot be generated

by a concatenation of four plays of G, unless Eve has a winning strategy in G. A similar

idea of encoding generators over four alphabets has been used in [14].

Finally, we encode the words in both components using the monomorphism of Lemma 2.1

to have the game over binary group alphabets Γ2 and Γ′2.

Example 3.12. Consider the weighted word game G of Example 3.10 from which we

construct the set E′ as in the previous theorem. To illustrate the idea of the encoding, let

us consider a prefix of a play

⟪a
ε
⟫

A

⟪#

ε
⟫

E

⟪b
ε
⟫

A

⟪ bq11

�1ρ
−1
1 ♦1

⟫
E

⟪a
ε
⟫

A

⟪aq11#aq01

♦1ρ1�2
⟫

E

⟪a
ε
⟫

A

,

54 Reino Niskanen

where moves of Adam are indicated with the letter A and moves of Eve with the letter E.

The reduced element of this prefix is [q01a,�1�2]. The only moves that cancel �2 in the

second component have letters over B2 in the first component. That is, a new play of G is

simulated using the second alphabet.

3.2.3 Word games over binary group alphabets

The word games of the previous sections can be seen as multidimensional, in the sense that

the moves consist of two components. In this subsection, we consider one-dimensional word

games, where the words are over binary group alphabets and prove that deciding which

player has a winning strategy is in EXPTIME.

The idea of the proof is to construct an alternating pushdown system (PDS), where

words played by the players are pushed into the stack letter-by-letter. The cancellation is

also possible in the prefix of the word that is pushed, which is checked by the PDS. That is,

if a is on top of the stack and a word au is played, then a is popped before the subsequent

letters of u are considered in the similar fashion.

Theorem 3.13. Deciding which player wins in a word game over binary group alphabet is

in EXPTIME.

Proof. Consider a word game over binary group alphabet, where E ⊆ FG(Γ2) is the move

set of Eve, A ⊆ FG(Γ2) is the move set of Adam and x0 ∈ FG(Γ2) is the initial configuration.

We construct an alternating PDS P for which L(P) 6= ∅ if and only if Eve has a winning

strategy in the word game.

Let P = (Q,Γ,∆, c0) be an alternating PDS. The state set Q has one state p belonging

to Q∀ and states

{q} ∪ {ei[j] | ei ∈ E and j = 1, . . . , |ei|} ∪ {ai[j] | ai ∈ A and j = 1, . . . , |ai| − 1}

belonging to Q∃. That is, there is a state for each letter in a word of a player. The stack

alphabet is Γ = Γ2 ∪ {⊥}, where ⊥ is the special bottom of the stack letter. The set of

rules ∆ is constructed in such a way, that from q Eve choses which word to play and each

word is represented by a path from q to p. In the path, a word is pushed into the stack

letter-by-letter taking into account whether the topmost letter in the stack is cancelled.

Section 3.2. Applications to Attacker-Defender games 55

More formally, the set of rules ∆ consists of transitions{
〈q, x, ei[1], xei[1]〉 | x 6= ei[1], ei ∈ E

}
∪
{〈
q, ei[1], ei[1], ε

〉
| ei ∈ E

}
∪
{
〈ei[j − 1], x, ei[j], xei[j]〉 | x 6= ei[j], ei ∈ E, j = 2, . . . , |ei|

}
∪
{〈
ei[j − 1], ei[j], ei[j], ε

〉
| ei ∈ E, j = 2, . . . , |ei|

}
∪ {〈ei[n], x, p, x〉 | x ∈ Γ2, ei ∈ E,n = |ei|} ∪ {〈ei[n],⊥, p, ε〉 | ei ∈ E,n = |ei|}

corresponding to moves of Eve in the word game and{
〈p, x, ai[1], xai[1]〉 | x 6= ai[1], ai ∈ A

}
∪
{〈
p, ai[1], ai[1], ε

〉
| ai ∈ A

}
∪
{
〈ai[j − 1], x, ai[j], xai[j]〉 | x 6= ai[j], ai ∈ A, j = 2, . . . , |ai| − 1

}
∪
{〈
ai[j − 1], ai[j], ai[j], ε

〉
| ai ∈ A, j = 2, . . . , |ai| − 1

}
∪
{
〈ai[n− 1], x, q, xai[n]〉 | x 6= ai[j], Ai ∈ A,n = |ai|

}
∪
{〈
ai[n− 1], ai[n], q, ε

〉
| ai ∈ A,n = |ai|

}
corresponding to moves of Adam in the word game. In the special case where |ai| = 1, rules

〈p, x, q, xai〉, where x 6= ai, and 〈p, ai, q, ε〉 are added to ∆.

Note that there is a state corresponding to the last letter of Eve’s word while for the

last letter of Adam’s move, the transition is taken to q directly. This is done so that ⊥
can be removed from a configuration [ei[n],⊥], where n = |ei|, when transitioning to the

accepting configuration [p, ε].

The initial configuration of P is c0 = [p,⊥x0]. It is easy to see that the configuration [p, ε]

can be reached in the constructed alternating PDS if and only if Eve has a winning strategy

in the word game. That is, deciding whether Eve has a winning strategy can be done in

EXPTIME.

We illustrate the construction of the alternating PDS in the following example.

Example 3.14. Consider a word game, where E = {ba, a} is the set of moves of Eve,

A = {aba, aab} is the set of moves of Adam, and the initial word is a. Let P be the

alternating PDS constructed as in the proof of the previous theorem. The PDS is depicted

in Figure 3.6. A pair of moves of Adam and Eve applied to the initial word, resulting in

56 Reino Niskanen

[a]⟪aba⟫
E

⟪a⟫
A

= [b], has the corresponding run in P:

[p,⊥a] |= [a,⊥] |= [b,⊥b] |= [q,⊥ba] |= [a,⊥b] |= [p,⊥b].

p q

a a
(a, ε), (

b, ba),

(a, aa), (b, ba
), (⊥,⊥a)

(a, ε), (b, ba),
(a, aa), (b, ba), (⊥,⊥a)

(a, ab), (b, bb),(a, ab), (b, ε), (⊥,⊥b)

a b(a,
aa)

, (b,
ba)
,

(a,
ε), (

b, ba
), (⊥

,⊥a)
(a, ab), (b, ε),

(a, ab), (b, bb), (⊥,⊥b)
(a, aa), (b, ba),

(a, ε), (b, ba), (⊥,⊥a)

ba
(a, ab), (b, ε),

(a, ab), (b, bb), (⊥,⊥b)
(a, aa), (b, ba),

(a, ε), (b, ba), (⊥,⊥a)

(a, a), (b, b),
(a, a), (b, b), (⊥, ε)

a

(a, ε
),(b,

ba),
(a, a

a), (
b, ba

), (⊥,
⊥a)

(a, a), (b, b), (a, a), (b, b), (⊥, ε)

Figure 3.6: An alternating PDS constructed from a word game over a binary alphabet of
Example 3.14.

3.2.4 Matrix games on vectors

We extend the domain of the game and a set of rules to the class of linear transformations

on integer lattice Z4. A matrix game on vectors (or a matrix game for short) consists of

two players, Eve and Adam, having sets of linear transformations {E1, . . . , Er} ⊆ Zn×n

and {A1, . . . , As} ⊆ Zn×n respectively, an initial vector x0 ∈ Zn of the game representing

the starting configuration, and a target vector y ∈ Zn. The dimension of the game is

the dimension n of the integer lattice.Starting from x0, players move the current point by

applying available linear transformations (by matrix multiplication) from their respective

sets in turns. The decision problem of the matrix game is to check whether there exists a

winning strategy for Eve to reach the target from the starting configuration (vectors in Zn)

of the game. Note that in our formulation the vectors are horizontal and players multiply

them from the right. Recall that SL(n,Z) = {M ∈ Zn×n | det(M) = 1}.
In a game where each player has only one possible move (i.e., when the game is

deterministic), the existence of a winning strategy for Eve or Adam can be trivially reduced

to the orbit problem by combining the two matrices into one. The orbit problem is

Chapter 3. Attacker-Defender games 57

decidable in polynomial time for any matrix size over integers, rationals and even algebraic

numbers [93].

If Adam has a single move, the problem of checking whether Eve has a winning strategy

corresponds to the standard vector reachability problem which has been extensively studied

in the literature [12,13,22,73,81,112,132]. Indeed, let E = {E1, . . . , Ek} be a matrix set

for which the vector reachability problem is undecidable (for vectors x,y) and A = {A1}
(A1 ∈ SL(n,Z)). Then let us consider the matrix game with Eve’s set {A−1

1 E1, . . . , A
−1
1 Ek},

Adam’s set A, the initial vector is x, and the target vector is y. In this game, Eve has a

winning strategy if and only if y is reachable from x in the vector reachability problem.

Thus, a game where Eve has six matrices in Z3×3, and Adam has a single matrix from

SL(3,Z) is undecidable, following the undecidability of the vector reachability problem for

six integer matrices in dimension three [81].

In the symmetric case when Eve has a single matrix and Adam has m matrices, we

can reduce the problem of checking for the existence of a winning strategy to a different

reachability problem for matrix semigroups with a stronger reachability objective. That

is, Eve’s set is E = {E1}, Adam’s set is {A1, . . . , Am}, the initial vector x, and the

target vector y. Again, we can combine sets E and A into one generating set A′ =

{A1E1, . . . , AmE1} of a semigroup S. However, the question whether Eve has a winning

strategy would require for us to check that, on any infinite trajectory of reachable points

starting from the initial point x and transformed by elements of S, the point y is eventually

reachable. Let us now formally define this problem.

Problem 3.15. Let S be a matrix semigroup generated by A = {A1, . . . , Am} and x,y ∈ Zn.

In the eventual reachability problem, we are asked whether for every element M = Ai1 · · ·Aik
either there exists j ≤ k such that xAi1 . . . Aij = y or there exists N ∈ S such that

xMN = y. In other words, y appears in every trajectory starting from x.

To the author’s best knowledge, this problem has not been studied previously. The

problem is illustrated in Figure 3.7. The solution of this problem gives the answer to

whether a winning strategy exists in a matrix game where Eve has one move and Adam

has several moves.

Let us consider the case where both Eve and Adam have at least two moves. Let us

assume that A = {A1, A2} ⊆ SL(n,Z) and E = {E1, E2}. Consider a game where Adam’s

58 Reino Niskanen

y
x:

y

y
y

Figure 3.7: An illustration of traces in the eventual reachability problem.

set is A and Eve’s set is

E′ = {E1A
−1
1 , E1A

−1
2 , E2A

−1
1 , E2A

−1
2 }.

The previous reasoning of reducing the problem to the standard vector reachability for

matrix semigroups is not directly applicable. The reachability of y from x using matrices

from A implies that there exists a winning strategy in the matrix game. Eve’s strategy is

to follow the solution of the reachability problem with the moves that cancel the matrix

played by Adam (i.e., if Adam played Ai, then Eve plays EjA
−1
i). On the other hand, the

existence of a winning strategy does not imply that y is reachable from x. Indeed, unlike

previously, Eve might follow A1 with A−1
2 E1 and can still reach the target position. If we

try to consider the reachability using matrices from E′, containing all the possible moves

of Adam followed by all the possible moves of Eve, then from the fact that y is reachable

from x, it would not follow that Eve has a winning strategy. Indeed, this kind of trick

eliminates the role of Adam and says very little in relation to the game.

Next, we prove the main theorem regarding the matrix game where both Eve and Adam

have at least two moves.

Theorem 3.16. Given two finite sets of matrices {E1, E2, . . . , Er} ⊆ Zn×n for Eve and

{A1, A2, . . . , As} ⊆ Zn×n for Adam, where r, s ≥ 2, an initial starting vector x0 ∈ Zn and

a target vector y ∈ Zn, it is undecidable whether Eve has a winning strategy in the matrix

game. Furthermore, the claim holds even when the matrices are from SL(4,Z).

Proof. Let Γ2 = {c, d, c, d} be a binary group alphabet and define f : FG(Γ2)→ SL(2,Z)

by: f(c) = (1 2
0 1), f(c) =

(
1 −2
0 1

)
, f(d) = (1 0

2 1), f(d) =
(

1 0
−2 1

)
.

Then mapping f is a monomorphism [15] and f(ε) corresponds to the identity matrix

in Z2×2. Let α be a function defined in Lemma 2.1, then by the following straightforward

Section 3.2. Applications to Attacker-Defender games 59

matrix multiplication we have:

f(α(zj)) = f(cjdcj) =

(
1 + 4j −8j2

2 1− 4j

)
.

Let us show that if (1, 0)M = (1, 0), where M is an image of a word over binary

group alphabet under f , that is, M ∈ {f(α(w)) | w ∈ FG(Γ2)}, then M is the identity

matrix. The similar reasoning was used in [15] to prove that the only matrix with zero in

the upper corner is the identity matrix. Let M = (m11 m12
m21 m22), now (1, 0)M = (m11,m12),

which implies that m11 = 1 and m12 = 0. By the previous observation, m22 = 1. The

final letter of α(w) is c, which is
(

1 −2
0 1

)
under f . Let Y = f(α(w))f(c)−1 = (x yz v). Now

f(α(w)) = (x yz v)
(

1 −2
0 1

)
=
(
x y−2x
z v−2z

)
. Since x = 1, y − 2x = 0 and x− 2x = 1, we see that

f(α(w)) = (1 0
z 1) = f(d)z/2 but by the definition of the encoding this is possible only when

z = 0. This implies that f(α(w)) is the identity matrix.

Let us encode the word game into the matrix game. Recall that by Theorem 3.11,

it is undecidable whether Eve has a winning strategy to reach [ε, ε] from [ε, ε] in a word

game. We construct 4× 4 matrices with words of the first component encoded by f in the

upper left corner and words from the second components encoded by f in the lower right

corner. The direct application of the above function to the elements of the word game gives

us a set of matrices for Eve and a set of matrices for Adam from SL(4,Z). By previous

considerations for vector x0 = (1, 0, 1, 0), the equation x0 = x0 ·M , where M ∈ SL(4,Z) has

only one matrix M satisfying the above statement, the identity matrix in Z4×4. Therefore,

for every matrix game, where the initial vector x0 is (1, 0, 1, 0), the question about the

winning strategy of reaching x0 is equivalent to the question of reaching the identity matrix

in the product with alternation in applications of Adam’s and Eve’s linear transformations,

which in its turn corresponds to reaching the identity element in the word game.

Example 3.17. Consider a matrix game, where Adam has matrices (3 5
1 2) and

(−1 −1
0 −1

)
and Eve has matrices

(
1 −2
−2 3

)
,
(

1 −2
3 −7

)
,
(

7 −17
−5 12

)
and

(
1 −2
3 −7

)
.

Consider a play from x0 = (1, 0), where Adam plays M1 = (3 5
1 2) followed by M3 =(−1 −1

0 −1

)
, and Eve plays M2 =

(
1 −2
−2 3

)
followed by M4 =

(
1 −2
3 −7

)
. That is, the following

product

(1, 0)

(
3 5

1 2

)(
1 −2

−2 3

)(
−1 −1

0 −1

)(
1 −2

3 −7

)
= (1, 0).

60 Reino Niskanen

From this computation, we see that the play is winning for Eve. With similar computations,

we can see that in fact Eve has a winning strategy in this game. The play x0M1M2M3M4

is depicted in Figure 3.8.

x0

M1

M2

M3

M4

Figure 3.8: The play x0M1M2M3M4 of a matrix game. Green arrows represent transforma-
tions by Eve and blue by Adam.

Consider the matrices constructed in the proof of the previous theorem. The moves of

the players are block diagonal matrices, i.e., of the form
(
A 02
02 B

)
, where A,B ∈ SL(2,Z)

and 02 is the zero matrix. Thus, we have the following corollary.

Corollary 3.18. It is undecidable which player has a winning strategy in a four-dimensional

matrix game on vectors, where players’ moves are nontrivial block diagonal matrices10.

The result of Theorem 3.16 can be improved. By encoding moves of a Z2-VAS game

into Z3×3 matrices, we can show that the matrix game is undecidable even in dimension

three.

Theorem 3.19. Given two finite sets of matrices {E1, E2, . . . , Er} ⊆ Z3×3 for Eve and

{A1, A2, . . . , As} ⊆ Z3×3 for Adam, an initial starting vector x0 ∈ Z3 and a target vec-

tor y ∈ Z3, it is undecidable whether Eve has a winning strategy in the matrix game.

10We say that an n-dimensional block diagonal matrix is trivial if it consists of one block matrix of size n.

Chapter 3. Attacker-Defender games 61

Proof. Let (A,E, (x, y)) be a Z2-VAS game. We construct a matrix game, where the

initial vector is x0 = (x, 1, y) and the moves of the players are mapped into matrices by

f : Z2 → Z3×3:

(a, b) 7→

1 0 0

a 1 b

0 0 1

 .

It is easy to see that (a, b)+(c, d) = (a+c, b+d) is correctly simulated by f((a, b))+f((c, d)).

The target y of the matrix game is (0, 1, 0). Clearly, Eve has a winning strategy to reach y

from x0 if and only if she has a winning strategy in Z2-VAS game, which we will prove to

be undecidable in Corollary 5.13.

The matrices from the previous proof are not block diagonal, so Corollary 3.18 remains

the state-of-art undecidabilty result for matrix games with block diagonal moves.

Let us then consider a two-dimensional game. The block diagonal matrices in Z2×2 are

exactly diagonal matrices, i.e., of the form
(
a 0
0 b

)
, where a, b ∈ Z. The linear transformation

by a diagonal matrix is simple:
(
a 0
0 b

)
(xy) = (axby). From this we see that two-dimensional

diagonal block matrix game is finite as after each turn the absolute values of components

of the configuration vector increase.

Theorem 3.20. It is decidable in polynomial time which player has a winning strategy in

two-dimensional diagonal block matrix games.

Proof. Let (A,E, (x0, y0), (xf , yf)) be a two-dimensional diagonal matrix game, where

A,E ⊆ {
(
a 0
0 b

)
| a, b ∈ Z}, (x0, y0) ∈ Z2 is the initial vector and (xf , yf) ∈ Z2 is the

target vector. Denote by a1 = min{|a| |
(
a 0
0 b

)
∈ A} and a2 = min{|b| |

(
a 0
0 b

)
∈ A}, and

analogously, e1 = min{|a| |
(
a 0
0 b

)
∈ E} and e2 = min{|b| |

(
a 0
0 b

)
∈ E}. Let q be the

smallest integer such that either |xf | ≤ (e1a1)q|x0| or |yf | ≤ (e2a2)q|y0|. That is, q is the

maximal number of turns the game can proceed. Now we can construct a finite game graph

with q|A||E| nodes and determine the winner using the standard attractor construction in

polynomial time.

3.2.5 Braid games

The domain of computational games is not limited by considering games on integers, words

or matrices. There is also recent interest about the complexity and termination of the games

62 Reino Niskanen

on braids [26,34] that are defined with specific rules of adding and removing crossings. In

this subsection, we consider the Attacker-Defender games on topological objects, braids

in Bn. The moves of the game are compositions of braids in B3 (a class of braids with

only three strands) and B5 (a class of braids with only five strands) [133]. Braids are

classical topological objects that attracted a lot of attention due to their connections to

topological knots and links, as well as their applications to polymer chemistry, molecular

biology, cryptography, quantum computations and robotics [51, 59, 66, 72, 129]. In this

section, we consider very simple games on braids with only three or five strands (i.e., B3 or

B5) where the braid is modified by a composition with a finite set of braids. We show that

it is undecidable to check for the existence of a winning strategy in such games, while the

reachability with a single-player (i.e., with nondeterministic composition from a single set)

was shown to be decidable for B3 and undecidable for B5 in [133].

Definition 3.21. The n-strand braid group Bn is the group given by the presentation

with n− 1 generators σ1, . . . , σn−1 and the following relations σiσj = σjσi, for |i− j| ≥ 2

and σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2. These relations are called Artin’s relations.

Elements of the braid group Bn will be represented by words in the alphabet

{σ1, . . . , σn−1, σ
−1
1 , . . . , σ−1

n−1}

and we refer to them as braid words11.

A composition of two braids with four strands is illustrated in Figure 3.9.

The fundamental braid of Bn is

∆n = (σn−1σn−2 · · ·σ1)(σn−1σn−2 · · ·σ2) · · ·σn−1.

Geometrically, the fundamental braid is obtained by lifting the bottom ends of the identity

braid and flipping (right side over left) while keeping the ends of the strings in a line.

The braid game can be defined in a way, where the sets of braid words {e1, . . . , er}
and {a1, . . . , as}, for Eve and Adam respectively, will correspond to braids in Bn. The

initial braid of the game is given and each following configuration of the game is changed

by Eve or Adam by composing braids from their corresponding sets. Given two geometric

braids, we can compose them, i.e., put one after the other making the endpoints of the

11Whenever a crossing of strands i and i+ 1 is encountered, either σi or σi
−1 is written down, depending

on whether the strand i moves under or over the strand i+ 1.

Section 3.2. Applications to Attacker-Defender games 63

· = −−−−−↔ ↔

Figure 3.9: An example of a composition of braids in B4.

first one coincide with the starting points of the second one. There is a neutral element for

the composition: it is the trivial braid, also called the identity braid, i.e., the class of the

geometric braids where all the strings are straight. Two geometric braids are isotopic if

there is a continuous deformation of the ambient space that deforms one into the other, by

a deformation that keeps every point in the two bordering planes fixed.

Finally, the goal of Eve is to unbraid, i.e., to reach a configuration of the game that is

isotopic to the trivial braid (empty word) and Adam tries to keep Eve from reaching it.

Two braids are isotopic if their braid words can be translated one into each other via the

relations from Definition 3.21 plus the relations σiσ
−1
i = σ−1

i σi = 1, where 1 is the identity

(trivial braid).

Theorem 3.22. The braid game is undecidable for braids from B3 starting from a nontrivial

braid and for braids from B5 starting from the trivial braid.

Proof. We encode the undecidable weighted word game of Theorem 3.9 into a braid game

with three strands and the undecidable word game of Theorem 3.11 into a braid game with

five strands and show that the respective braid games are undecidable as well.

Let Γ2 = {c, d, c, d} be a binary group alphabet and define f : FG(Γ2) → B3 by:

f(c) = σ1
4, f(c) = σ1

−4, f(d) = σ2
4, f(d) = σ2

−4. Then mapping f is a monomorphism [18].

Let α be the mapping from Lemma 2.1. Then:

f(α(zj)) = f(cjdcj) = σ1
4jσ2

4σ1
−4j

and the length of a braid word from B3 corresponding to a letter zj ∈ Γ is 8j + 4. The

above morphisms give a way to map words from an arbitrary sized group alphabet into the

set of braid words in B3.

64 Reino Niskanen

Now we again can use the weighted word game as any word over a binary group alphabet

can be uniquely mapped into a braid, where the empty word will correspond to a braid

which is isotopic to the trivial braid and the concatenation of words over group alphabet

corresponds to the composition of braids in B3. The weight x ∈ Z is mapped into the braid

word ∆2x
3 , where ∆2

3 = (σ1σ2σ1)2 is a central element of B3.

Subgroups 〈σ4
1, σ

4
2〉, 〈σ2

4, d〉 of the group B5 are free and B5 contains the direct product

〈σ4
1, σ

4
2〉 × 〈σ2

4, d〉 of two free groups of rank two as a subgroup, where d = σ4σ3σ2σ
2
1σ2σ3σ4

[18]. Now we can uniquely encode pairs of words of the word game into B5. Using the word

game, where the initial position is [ε, ε], we can construct a braid game from B5 starting

from the trivial braid.

It is easy to see that Eve has a winning strategy in a braid game on B3 and B5 if and

only if she has a winning strategy in a weighted word game and a word game on pairs of

group words, respectively.

Example 3.23. Consider a braid game on B3, where Adam has braid words σ1σ
−1
2 and

σ−1
1 σ−1

2 σ−1
1 and Eve has braid words σ2σ1σ2 and σ2σ1. Starting from σ−1

1 σ−1
1 , we have the

following play:

[
σ−1

1 σ−1
1

] ⟪σ1σ
−1
2 ⟫

A

⟪σ2σ1σ2⟫
E

⟪σ−1
1 σ−1

2 σ−1
1 ⟫

A

⟪σ2σ1⟫
E

=
[
σ2σ

−1
1 σ−1

2 σ−1
1 σ2σ1

]
=
[
σ2σ

−1
2 σ−1

1 σ−1
2 σ2σ1

]
= [1] ,

where the second equality follows from the relation σ1σ2σ1 = σ2σ1σ2 of Definition 3.21.

This play is depicted in Figure 3.10.

From the definition of braids, braids with two strands represent integers with a braid

word σz1 corresponding to an integer z ∈ Z. From the decidability of robot games in

dimension one [9], it follows that the braid game on B2 is also decidable. The braid game

on B3 is the first nontrivial case that is undecidable. In B5, the game starting from the

trivial braid was shown to be undecidable.

3.3 Concluding remarks and open problems

The results of the chapter are twofold. We have proven a new language-theoretic result

for weighted automata on infinite words. We constructed an automaton that, for a given

instance of the ωPCP, accepts all the infinite words that are not the solutions of the

Chapter 3. Attacker-Defender games 65

· · · · = ↔

−−−−

−−−−

−−−−

−−−−

Figure 3.10: An example of a braid game. Green braids represent braids played by Eve
and blue braids played by Adam.

instance of the ωPCP. In other words, the non-universality of the automaton corresponds

to the instance of the ωPCP having a solution. Secondly, we have shown how to encode

the automaton into the framework of Attacker-Defender games, from which we obtained

undecidability results for checking for the existence of a winning strategy in word games,

matrix games on vectors and braid games.

For weighted automata on infinite words, the status of the universality problem remains

open for automata with two states. For the matrix game on vectors, it is unknown whether

deciding the winner is decidable for dimensions two and for dimension three if the moves

are block diagonal matrices. The status of the braid games on B3 and B4 starting from the

trivial braid are open. However, the direct encoding of the word game is not applicable due

to the fact that there is no faithful representation of the direct product of two free groups

of rank two into B4 [4].

Chapter 4

One-dimensional Z-VASS games

In this chapter, we consider Attacker-Defender games, called Z-VASS games, with simpler

moves than in the previous chapter. In Chapter 3, we proved that for games, where the

moves are matrices or pairs of words, the problem of checking which player has a winning

strategy is undecidable. In the games of this chapter, the players’ moves consist of integers

with which they modify the counter. As mentioned in subsection 3.2.2, integers can be

considered as words over unary alphabet. While the moves are simpler, we add internal

state structure for the players. As Attacker-Defender games are turn-based, the states of

players are disjoint.

That is, in this chapter, we consider one-dimensional Z-VASS games. Our main result

is to prove that Z-VASS games in dimension one are EXPSPACE-complete by presenting a

mutual reduction between Z-VASS games and counter reachability games. Note that this is

not obvious as the games have essential differences. In a counter reachability game, since

the game is played on a graph, a choice of a player, say Eve, affects from which state Adam

moves next. In fact, it is not guaranteed that Adam will move at all, as it is possible for

Eve to move only between her states. On the other hand, in Z-VASS games, the next state

of a player is determined only by his or her previous move.

In order to show EXPSPACE-hardness, we construct a one-dimensional Z-VASS game that

can simulate a given one-dimensional counter reachability game such that Eve has a winning

strategy in the Z-VASS if and only if she has a winning strategy in the counter reachability

game. The idea is for Eve to simulate the whole graph of the counter reachability game

and for Adam to verify that Eve is simulating it correctly. In the constructed Z-VASS

game Eve has n+ 1 states, where the counter reachability game has n vertices, and Adam

66

Section 4.1. Z-VASS games in dimension one 67

has only one state. Then, to show completeness, we transform a Z-VASS game into a

counter reachability game such that Eve has a winning strategy in the counter reachability

game if and only if she has a winning strategy in the Z-VASS game. The construction is

relatively simple and involves storing information on the state of a player into the states of

the opponent.

Seeing how adding states for Eve increases the complexity of deciding the winner from

EXPTIME of Z-VAS games to EXPSPACE of Z-VASS games, we consider a state structure

of Adam that does not increase the complexity of the game. We show that deciding the

winner in one-dimensional Z-VASS game where Eve is stateless and Adam’s states are flat,

is in EXPTIME. Flat automata have been studied in various contexts [52–54,108,111] and

have been shown to be a fruitful tool in verification of counter automata. Flat automata is

a subclass of automata where the automaton does not have nested loops. This particular

structure allows us to break a Z-VASS game into several stateless games that can be

solved in EXPTIME. The main challenge is in connecting these separate games. As Adam’s

underlying state structure is flat, there are only finitely many transitions from one game

to another. This fact together with the particular structure of winning sets constructed

by the algorithm for a stateless game of [9] provide us with necessary tools to decide the

winner in EXPTIME.

In Table 4.1 is a summary of complexity results on one-dimensional Z-VASS games

according to the state structure of each player. Most of the variants are EXPSPACE-complete,

only Z-VAS games (i.e., both players are stateless) and Z-VASS games where Adam has

flat states are EXPTIME-complete. The only variant without a tight complexity is Z-VASS

games where Eve is stateless and Adam has arbitrary state structure.

Finally, we consider one-dimensional VAS games and show that restricting configurations

to positive half-line does not change the complexity and the games remain EXPTIME-complete.

The results are summarized in Table 4.2.

4.1 Z-VASS games in dimension one

In this section, we consider Z-VASS games in dimension one. First, we recall some known

results.

Theorem 4.1 (Hunter [88]). Deciding which player wins in a one-dimensional counter

reachability game is EXPSPACE-complete.

68 Reino Niskanen

PPPPPPPPPAdam
Eve

states flat states stateless

states
EXPSPACE

(Lemma 4.3)
— ?

flat states — —
EXPTIME

(Theorem 4.16)

stateless
EXPSPACE-hard
(Theorem 4.4)

EXPSPACE-hard
(Corollary 4.17)

EXPTIME-c.
[9]

Table 4.1: Complexity of checking for the existence of a winning strategy for Eve in different
variants of one-dimensional Z-VASS games. The propagation of upper bounds is depicted
with double arrows and of lower bounds with dotted arrows.

Game VAS Z-VAS Z-VASS

Complexity
EXPTIME-complete

(Theorem 4.19)

EXPTIME-complete
[9]

EXPSPACE-complete
(Theorem 4.4)

Table 4.2: Complexity of checking for the existence of a winning strategy for Eve in different
one-dimensional games.

Theorem 4.2 (Arul, Reichert [9]). Deciding which player wins in a one-dimensional robot

game is EXPTIME-complete.

In our terminology, robot games are Zd-VAS games, and since they are a special case of

Zd-VASS games, we can inherit the lower bound. That is, the Z-VASS are EXPTIME-hard.

On the other hand, it is easy to construct a counter reachability game out of a Z-VASS

game by storing information on the state of Eve in the Z-VASS game in the states of Adam

and vice versa. That is, Z-VASS games are in EXPSPACE.

Lemma 4.3. Deciding which player wins in a one-dimensional Z-VASS game is in

EXPSPACE.

Proof. Let (A,E, c0) be a Z-VASS game. We construct a counter reachability game

((V, F), c′0) where Eve has a winning strategy if and only if Eve has a winning strategy

in (A,E, c0). Eve’s states are VE = {st | s ∈ QE , t ∈ QA} and Adam’s states are

VA = {ts | t ∈ QA, s ∈ QE}. The edges of the graph are

F = {(st, z, ts′) | ⟪s, z, s′⟫ ∈ E} ∪ {(ts, z, st′) | ⟪t, z, t′⟫ ∈ A}.

Chapter 4. One-dimensional Z-VASS games 69

The construction is depicted in Figure 4.1. Let c0 = [s0, t0, z0], then the initial configuration

of the counter reachability game is c′0 = [s0t0 , z0]. It is clear that Eve has a winning strategy

in (A,E, c0) if and only if Eve has a winning strategy in ((V, F), c′0). As deciding the winner

in the one-dimensional counter reachability game is EXPSPACE-complete, also deciding the

winner in the Z-VASS game is in EXPSPACE.

s

s1

s2

t

t1

t2

z1

z2

z3

z4

st

ts1

ts2

s1t1

s1t2

s2t2

s2t1

z1

z2

z3

z4

z3

z4

Figure 4.1: Moves in a Z-VASS game (left) and the corresponding part of the graph of the
counter reachability game (right).

We provide the matching tight lower bound, showing that one-dimensional Z-VASS

games are EXPSPACE-complete. That is, we show that the Z-VASS games are EXPSPACE-

hard. To prove this, we show how, for any counter reachability game, to construct a

Zd-VASS game such that the same player wins in both games. The idea is for Eve to have

the whole graph, including Adam’s states, as her states and Adam to have a single state.

Adam has three moves, two to tell Eve which edge to pick if the state was initially Adam’s,

and one to do nothing if that’s not the case.

Theorem 4.4. One-dimensional Z-VASS games are EXPSPACE-complete.

First, we consider a simple modification to a counter reachability game. We can assume

that in every Adam’s state there are at most two outgoing edges. Indeed, let t be Adam’s

vertex with k outgoing edges, we replace it by a chain of vertices t1, . . . , tk such that

ith edge (t, z, r) is (ti, z, r). Finally, we connect the vertices with edges (ti, 0, ti+1) for

i ∈ {1, . . . , k − 1} and (t, 0, t1). This construction is depicted in Figure 4.2.

Next, we show the gadgets for different moves in the one-dimensional counter reachability

games. At this state, for simplicity, we assume that both players will play in good faith

and will simulate the counter reachability game correctly. Later on, we’ll construct an

additional gadget for Eve and show that if one of the player cheats, then the other can

catch the cheating player and has a winning strategy.

70 Reino Niskanen

t u

r

v

z1

z2

z3
t t1 t2 t3

r u v

0 0 0

z1 z2 z3

Figure 4.2: Replacing a vertex t with deg(t) > 2 by a chain of vertices with degree at most
two.

Now, there are three types of transitions according to the source state: from Eve’s

state or from Adam’s state which has either one or two outgoing transitions. We construct

gadgets for each case. Let’s first consider the cases where Adam does not make a decision.

That is moves (s, z, r) and (t, z, r), where z ∈ Z, s ∈ VE , r ∈ V , t ∈ VA and deg(t) = 1. In

the Z-VASS game, Eve has moves ⟪s, 4z, r⟫ and ⟪t, 4z, r⟫, where s, r, t ∈ QE , respectively,

and Adam has a move ⟪>, 0,>⟫. The moves are depicted in Figure 4.3.

s r
z

t r
z

s r
4z

t r
4z

> 0

Figure 4.3: Moves in a counter reachability game (top) and the corresponding moves in the
Z-VASS game (bottom).

The final case where Adam has to make a choice is slightly more complicated. As Eve

is simulating the whole graph of the counter reachability game, Adam needs to indicate

to her which edge he would have picked. In the counter reachability game, the moves

are (t, y, p), (t, x, q), where p, q ∈ V and t ∈ VA and deg(t) = 2. In Z-VASS game, Eve

has a gadget with moves ⟪t, 4y − 1, p⟫, ⟪t, 4x+ 1, q⟫, and Adam has moves ⟪>, 1,>⟫ and

⟪>,−1,>⟫. The moves are depicted in Figure 4.4. By multiplying all the old labels by 4,

we have created extra space to store the information about which edge Eve is supposed to

pick.

Finally, we need to make sure that Adam does not abuse his moves, i.e., does not

indicate his choice when he should not. For this, we create a gadget similar to Adam’s

state transition, which Eve can enter and add ±4 emptying the counter while at the same

time cancelling whatever Adam plays. To do so, we design an emptying gadget of Eve

Section 4.1. Z-VASS games in dimension one 71

t

p

q

y

x

t

p

q

4y − 1

4x+ 1

>

1

−1

Figure 4.4: Moves in a counter reachability game (left) and the corresponding moves in the
Z-VASS (right).

consisting of one state ⊥. The moves are ⟪⊥,±4 + 1,⊥⟫, ⟪⊥,±4− 1,⊥⟫ and ⟪⊥,±4,⊥⟫.
The emptying gadget is connected to states of Eve with moves ⟪s,±1,⊥⟫ for every state

s ∈ VE or s ∈ VA and deg(s) = 1, and with ⟪t, 0,⊥⟫, where t ∈ VA and deg(t) = 2. The

control states of the players are depicted in Figure 4.5.

s s′

t

⊥

±4− 1

±4 + 1

±4

±1

±1

0

simulation
of the 1CRG emptying

· · ·

>

1

−1

0

Figure 4.5: An illustration of state transitions of Eve and Adam.

Next, we consider all possible plays of Adam and Eve, and show that if the player plays

incorrectly, the opponent has a winning strategy. The possible ways the game can progress

are listed in Figure 4.6. First, we informally describe the incorrect moves and how the

opponent can deal with them.

Adam can play incorrectly by either playing ±1 even though Eve is not in a state where

Adam has to make a decision, or by playing 0 if Eve is. In the first case, Eve can play the

opposite move and move to ⊥, after which she can counter any move Adam plays whilst

emptying the counter. In the latter case, Eve moves to ⊥ without modifying the counter

and again she can empty the counter while cancelling the effect of the moves of Adam.

Eve can play incorrectly by either moving to the emptying gadgets before Adam made

an incorrect move or by not making the correct decision according to what Adam has

played, that is, playing 4y− 1 after Adam played −1 or 4x+ 1 after Adam played 1. In the

both cases, Adam can ensure that the counter will never be 0 mod 4.

First, we prove two lemmas regarding incorrect moves by Adam and prove that Eve has

72 Reino Niskanen

· ·

· ·· ·

A
da

m
do

es
no

t
in

di
ca

te

w
he

n
he

sh
ou

ld

A
d

a
m

in
d

icates
w

h
en

h
e

sh
ou

ld
n

ot

E
ve

starts
em

p
ty

in
g

Eve
m

akes
a

w
rong

choice

both players play correctly
(Lemma 4.9)

Eve wins
(Lemma 4.5)

Eve wins
(Lemma 4.6)

Adam wins
(Lemma 4.7)

Adam wins
(Lemma 4.8)

Eve wins if
Eve wins in the CRG

Adam wins if
Adam wins in the CRG

Figure 4.6: Progress of a one-dimensional Z-VASS game.

winning strategies.

Lemma 4.5. Let the configuration be [s, >̇, 4z], where z ∈ Z and s ∈ VE or s ∈ VA

and deg(s) = 1. If Adam plays ⟪>, 1,>⟫, then Eve has a winning strategy starting

with ⟪s,−1,⊥⟫. Similarly, if Adam plays ⟪>,−1,>⟫, then Eve has a winning strategy

starting with ⟪s, 1,⊥⟫.

Proof. After Adam’s move, the configuration is [ṡ,>, 4z + 1] and after Eve’s move, the

configuration is [⊥, >̇, 4z]. After this, Eve can cancel Adam’s move while emptying the

counter at the same time. In the case Adam played ⟪>,−1,>⟫, then Eve’s winning strategy

is the same after she played ⟪s, 1,⊥⟫.

Lemma 4.6. Let the configuration be [t, >̇, 4z], where z ∈ Z and t ∈ VA and deg(t) = 2.

If Adam plays ⟪>, 0,>⟫ then Eve has a winning strategy starting with ⟪t, 0,⊥⟫.

Proof. After Adam’s move, the configuration is [ṫ,>, 4z] and after Eve’s move, the configu-

ration is ⟪⊥, >̇, 4z⟫. As in the previous lemma, Eve can empty the counter while cancelling

Adam’s move.

Next, we prove a lemma, where Eve moves to her emptying gadget and prove that

Adam has a winning strategy.

Chapter 4. One-dimensional Z-VASS games 73

Lemma 4.7. Let the configuration be [ṡ,>, 4z], where z ∈ Z and s ∈ VE or s ∈ VA and

deg(s) = 1. If Eve moves to ⊥ with the move ⟪s, 1,⊥⟫ or the move ⟪s,−1,⊥⟫, then Adam

has a winning strategy starting with ⟪>, 1,>⟫ or ⟪>,−1,>⟫ respectively.

Proof. After Eve’s move, the configuration is [⊥, >̇, 4z ± 1] and after Adam’s move, the

configuration is [⊥̇,>, 4z±2]. From this moment onward, Adam can ensure that the counter

is never 0 mod 4 after Eve’s turn. Thus, Eve cannot reach counter value 0 and cannot

win.

Finally, we consider the case where Adam tells Eve his non-deterministic choice with 1

or −1, and Eve responds incorrectly by playing a move with 1 or −1, respectively, or moves

to the emptying gadget.

Lemma 4.8. Let the configuration be [ṫ,>, 4z+ 1], where z ∈ Z and t ∈ VA and deg(t) = 2.

If Eve plays the move ⟪t, 4y+1, p⟫, then Adam has a winning strategy starting with ⟪>, 0,>⟫.
Symmetrically, if the configuration is [ṫ,>, 4z − 1] and Eve plays the move ⟪t, 4x− 1, q⟫,
then Adam has a winning strategy. If the configuration is [ṫ,>, 4z ± 1] and Eve plays the

move ⟪t, 0,⊥⟫, then Adam has a winning strategy.

Proof. In the first case, after Eve’s move, the configuration is [p, >̇, 4(z + y) + 2] and Adam

with his moves can ensure that the counter is not 0 mod 4. That is, Eve cannot reach

counter value 0 and thus cannot win. Symmetrically, if after Eve’s move the configuration

is [p, >̇, 4(z + x) − 2], then Adam can ensure that the counter is not 0 mod 4 and Eve

cannot win.

In the third case, after Eve’s move, the configuration is either [⊥, >̇, 4z+1] or [⊥, >̇, 4z−1].

By playing ⟪>, 1,>⟫ in the first case and ⟪>,−1,>⟫ in the second, Adam can ensure that

the counter is not 0 mod 4 as in the previous cases.

Next, we prove that if both players play correctly, the winner is the same as in the

one-dimensional counter reachability game.

Lemma 4.9. If in the one-dimensional Z-VASS game constructed previously Eve plays

• the move ⟪t, 1, p⟫ if the configuration is [ṫ,>, 4z − 1] for some z ∈ Z and t ∈ VE and

deg(t) = 2,

• the move ⟪t,−1, p⟫ if the configuration is [ṫ,>, 4z + 1] for some z ∈ Z and t ∈ VE
and deg(t) = 2

74 Reino Niskanen

and never moves to ⊥, and Adam plays

• the move ⟪>, 0,>⟫ if the configuration is [s, >̇, 4z], for some z ∈ Z and s ∈ VE or

s ∈ VA and deg(s) = 1,

• a move ⟪>,−1,>⟫ or ⟪>, 1,>⟫ if the configuration is [t, >̇, 4z], for some z ∈ Z and

t ∈ VA and deg(t) = 2,

then Eve has a winning strategy if and only if she has a winning strategy in the one-

dimensional counter reachability game.

Proof. It is easy to see that these moves simulate the counter reachability game and that

Eve has a winning strategy to reach the configuration [f, 0] of the counter reachability game

if and only if she has a winning strategy to reach the configuration [ḟ ,>, 0] in the Z-VASS

game.

We are ready to prove the main theorem.

Theorem 4.4. The one-dimensional Z-VASS games are EXPSPACE-complete.

Proof. By Lemma 4.3, deciding the winner is in EXPSPACE. It remains to be proven that

it is also EXPSPACE-hard. Let ((V, F), c0) be a one-dimensional counter reachability game.

Let (A,E, c′0) be the Z-VASS game constructed from ((V, F), c0). Assume first that Eve

has a winning strategy in ((V, F), c0). Now, Eve’s winning strategy in the Z-VASS game

(A,E, c′0) is to play according to the winning strategy of ((V, F), c0) if the configuration is

[ṡ,>, 4z], where s ∈ VE or s ∈ VA and deg(s) = 1. If the configuration is [ṫ,>, 4z − 1] or

[ṫ,>, 4z + 1], where t ∈ VA, deg(t) = 2, then Eve plays moves ⟪t, 4x+ 1, q⟫ or ⟪t, 4y − 1, p⟫,
respectively. This is a winning strategy by Lemma 4.9. If the configuration is [ṡ,>, 4z ± 1],

where s ∈ VE or s ∈ VE and deg(s) = 1, then Eve has a winning strategy by Lemma 4.5. If

the configuration is [ṫ,>, 4z], where t ∈ VA and deg(t) = 2, then Eve has a winning strategy

by Lemma 4.6.

Assume then, towards a contradiction, that Adam has a winning strategy in ((V, F), c0)

and Eve has a winning strategy in (A,E, c′0). By Lemma 4.9, Adam has a winning strategy

if the players simulate the counter reachability game correctly. That is, Eve has to, at some

point, either move to the emptying gadget, or play ⟪(t, 4x± 1, s)⟫ when the configuration is

[ṫ,>, 4z ∓ 1]. By Lemma 4.7 and Lemma 4.8, Adam has winning strategies for both cases.

As we have analysed all the possible moves of Eve, we have shown that Eve does not have

a winning strategy.

Section 4.2. Flat Z-VASS games in dimension one 75

This result clearly extends to any dimension d. In other words, d-dimensional counter

reachability games and Zd-VASS games are equivalent.

Corollary 4.10. For a d-dimensional counter reachability game, there exists a Zd-VASS

game such that Eve has a winning strategy in the counter reachability game if and only if

she has a winning strategy in the Zd-VASS game.

4.2 Flat Z-VASS games in dimension one

There is an interesting complexity difference between games of Theorem 4.2 and Theorem 4.4.

When the (stateless) Z-VAS game is extended by allowing Eve to have an internal state

structure and keeping Adam stateless, the complexity of deciding the winner increases

from EXPTIME to EXPSPACE. In this section we study a natural dual question — does

keeping Eve stateless and allowing Adam to have an internal structure result in a similar

increase? We study this question by considering Z-VASS games where Eve is stateless and

Adam’s states are flat (i.e., the underlying graph is directed acyclic graph with self-loops),

called flat Z-VASS games. The state structure of a flat Z-VASS is depicted in Figure 4.7.

The main result of the section is that deciding the winner in the flat Z-VASS games is

in EXPTIME. Note, that as the stateless Z-VASS games are also flat Z-VASS, we have

inherited EXPTIME-hard lower-bound.

Remark 4.11. Let (A,E, z0) be a Z-VAS game. If the winning set is nontrivial, then it is

either dZ, for some integer d, or R∪U ⊆ Z+, where U = {x ∈ dZ | x > b} and R consists of

the winning values on the finite arena [0, b], or R′ ∪ U ′ ⊆ Z−, where U ′ = {x ∈ dZ | x < b}
and R′ consists of the winning values on the finite arena [b, 0]. Also note, that the initial

value z0 is not important as all winning values are computed.

Figure 4.7: An example of a flat Z-VASS game.

Before considering arbitrary flat graphs of Adam, we consider a simpler case where there

are three types Adam’s moves: self-loops in state t0, self-loops in state t1 and transitions

from t0 to t1.

76 Reino Niskanen

The idea is that there are two stateless Z-VAS games when moves are restricted to

self-loops and additional moves connecting the games. The algorithm of [9] not only

computes whether the given initial value z0 is winning for Eve, but it computes the set of

all winning values. We can use the algorithm to compute winning sets for both games and

then connect the two games using the transitions between t0 and t1.

Example 4.12. Consider a one-dimensional flat Z-VASS where Eve’s moves are

{⟪s,−3, s⟫, ⟪s,−6, s⟫, ⟪s,−7, s⟫, ⟪s,−8, s⟫}

and Adam’s moves are {⟪t0,−3, t0⟫, ⟪t0,−6, t0⟫, ⟪t0, 0, t1⟫, ⟪t1,−7, t1⟫, ⟪t1,−8, t1⟫}. It is

easy to compute the winning sets for games restricting to t0 and t1: W0 = 9Z+ and

W1 = {0, 14, 15, 25, 28, 29, 30, 39, 40, 41, 42, 43, 44, 45} ∪ {x | x ≥ 50}, respectively.

We notice that, for example, 9 is not a winning value in the flat Z-VASS game. Indeed,

while by staying in t0, Adam loses, if he instead moves to t1, then after Eve’s turn the

counter will be 1, 2, 3 or 6. None of these is a winning value when restricting to t1. On

the other hand, all the other winning values, that is 9k, where k > 1, can reach 0 only

by reaching 9 first. That is, Eve does not have any winning values. This is illustrated in

Figure 4.8.

0

0

9

14 15

18
W0 :

W1 :

Figure 4.8: An illustration of connecting winning sets in a flat Z-VASS game.

For this special case, there are three steps needed to compute the winning set of the

game.

• Compute the winning sets of restricted games, W0 and W1.

• Compute the forbidden values F in W0, that is, all the values in W0 from which there

exists a move ⟪t0, z, t1⟫ of Adam such that for any move ⟪s, x, s⟫ of Eve, the resulting

value is not in W1.

• Finally, check whether values of F are avoidable in W0. That is, whether there exists

a winning strategy from the initial value z0 to 0 that does not visit any values of F .

Chapter 4. One-dimensional Z-VASS games 77

The first step can be done in EXPTIME using the algorithm for Z-VAS games. The

second and third steps require some additional considerations as the sets are potentially

infinite. In the game of the previous example, if the initial value is z0, then it is not

important to check which forbidden values larger than z0 are avoidable and which are

not. On the other hand, it is easy to see that in general case, it is not a simple matter

of discarding larger values than z0 (assuming that z0 is positive). By Remark 4.11, the

winning set of a Zd-VAS game has a particular structure. In a similar manner, the set of

forbidden values constructed from two winning sets have some structure which allows us

to compute whether the values are avoidable. Now, there are two sets of forbidden values,

one resulting from the finite set of R, Ffin = {f1, . . . , fk}, and a regular but infinite set of

values resulting from U , Finf. Even though, Finf is infinite, it is semi-linear (and in fact

linear when Adam has two states). We can extract a finite set of forbidden values, F ′, such

that Finf =
⋃∞
i=0 F

′ + i` for some ` ∈ Z. Now, we have two finite sets of forbidden values

for which it is easy to check whether the values are avoidable. We can use the attractor

construction found in Chapter 2 of [75] which solves the game in polynomial time. In our

example, F = {9, 27} and 9 is reachable only from one winning value, namely 18. On the

other hand, 9 is the only winning value reachable from 18, so 9 is not avoidable.

Lemma 4.13. Let (A0, E, z0) and (A1, E, z0) be two Z-VAS games and T the set of labels

of Adam’s moves connecting the two games. Let W0 and W1 be their respective winning

sets. The set F = {x ∈ W0 | ∃z ∈ T ∀⟪s, y, s⟫ ∈ E : x+ z + y /∈ W1} can be computed in

polynomial time.

Proof. There are several cases to consider. First, we have two trivial cases when one of

the winning sets is trivial, i.e., {0}. If the winning set W0 is trivial, then F = {0}. If the

winning set W1 is trivial, then F = W0. Another obvious case is when the winning set

W0 ⊆ Z+ and W1 ⊆ Z− (or the symmetric situation), then there are only finitely many

points in W0 from which it is possible to reach W1. Thus F = W0 \X, where X is a finite

subset of (0, a] for some a bounded by max(E) + min(T). There remain four cases.

1. W0 = dZ and W1 = d′Z, or

2. W0 = R ∪ U and W1 = d′Z, or

3. W0 = R ∪ U and W1 = R′ ∪ U ′, or

4. W0 = dZ and W1 = R′ ∪ U ′.

78 Reino Niskanen

Recall that R and R′ are finite and U = {x ∈ dZ | x > b}. Consider the first case. Let

` = lcm(d, d′). We can partition the integer line into intervals of length ` and effectively

compute all the forbidden values F ′ in the interval. Clearly, the forbidden values in one

interval, will be also forbidden in the other intervals. The set of all forbidden values is

F = {f + `i | f ∈ F ′, i ∈ Z}.
The next case can be divided into two parts, first finding forbidden values in R and then

in U . Finding the forbidden values in R is easy as there are only finitely many possible

values. Finding the forbidden values in U can be done as for the first case. The third and

fourth cases are done similarly but now we also have to take the finite set R′ into account.

In all three cases, the set of forbidden values is F = {f1 . . . , fk} ∪
[⋃∞

i=0 F
′ + i`

]
, where

|F ′| <∞ and f > fj for all indexes j and f ∈ F ′.

Be the previous lemma, we can compute the forbidden values in polynomial time. It

remains to be shown that we can decide the winner in game, where we take the forbidden

values into account. To this end, we look at the winning values that remain winning if we

avoid the forbidden values.

Lemma 4.14. Let (A0, E, z0) be a Z-VAS game and W0 ⊆ Z+ its winning set. Let

Ffin ⊆ (0, a] ⊆ W0 be a subset of forbidden values in W0 and Finf ⊆ (a, b] ⊆ W0 such that

the set of all forbidden values is Ffin ∪
[⋃∞

i=0 Finf + i(b− a)
]
. There exists a finite set X

such that Ffin ∪ Finf ⊆ X ⊆ W0 and we can compute the values of X avoiding the values

of F in polynomial time. The symmetrical claim holds if the winning set consists of only

negative values.

Proof. Let m = min(A0) and M = max(A0) be the smallest and the largest moves of Adam.

Let X = (m, b + (b − a) + M]. Clearly Ffin ∪ Finf ⊆ X. We can construct a reachability

game on a finite arena X by having two copies of the interval X, one for Eve and one

for Adam. We connect integers in Eve’s (Adam’s) interval to integers in Adam’s (Eve’s)

interval corresponding to her (his) moves.

The interval X can be partitioned into three parts, (−m, a], (a, b] and (b, b+(b−a)+M].

Intuitively, the first interval (−m, a] corresponds to Ffin, the second interval (a, b] to Finf

and the final interval to the set
⋃∞
i=1 Finf + i(b− a). As the finite interval corresponds to

several sets, Eve can also move from x ∈ (b+m, 2b− a+M] to y if there exists a move

from x+ (b− a) to y. Additionally, if f ∈ Ffin ∪ Finf ∪ Finf + b− a, then Adam can move to

the sink state > which is losing for Eve. Finally, there exists an edge from a state x if the

owner of the state has a move y in the Z-VAS game such that x+ y < 0.

Section 4.2. Flat Z-VASS games in dimension one 79

More formally, Adam has states QA = {� × [0, 2b − a]} ∪ {>} and Eve has states

QE = {©× [m, 2b− a+M]}. The transitions of the game are

T = {((�, x), (©, y)) ∈ QA ×QE | y − x ∈ A}

∪ {((©, x), (�, y)) ∈ QE ×QA | y − x ∈ E}

∪ {((©, x), (�, y)) ∈ QE ×QA | y − (x+ b− a) ∈ E, x ∈ (b+m, 2b− a+M]}

∪ {((�, x),>) | x ∈ Ffin ∪ Finf ∪ Finf + b− a}

∪ {((©, x),>) ∈ QE ×QA | ∃e ∈ E, x+ e < 0} ∪ {(>,>)}.

Eve wins the game if she can reach (�, 0). The winning values of this game can be computed

using the attractor construction in polynomial time [75].

Example 4.15. Let ({⟪t,−1, t⟫}), ({⟪s,−1, s⟫, ⟪s,−2, s⟫}) be a Z-VAS game. Let F =

{3} ∪ {x ∈ Z+ | x ≡ 2 mod 3, x > 2} be the set of forbidden values. By Lemma 4.14 we

can construct a reachability game G depicted in Figure 4.9.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

>

>

[0, a) (a, b] (b,∞)

Figure 4.9: A reachability game on finite arena constructed from a Z-VAS game and a set
of forbidden values.

Now we are ready to extend Adam’s state structure to flat graphs. The algorithm is

essentially the same as the one described previously. We utilise the topological sorting to

remove forbidden points from the winning sets starting from the end of the graph using

Lemma 4.13. Then we construct the set of avoidable values using Lemma 4.14.

Theorem 4.16. One-dimensional flat Z-VASS games are EXPTIME-complete.

Proof. Let (A,E, c0) be a flat Z-VASS, where Adam has k states, t1, . . . , tk, such that

⟪ti, z, tj⟫ ∈ A only if i ≤ j. Denote by Ai = {⟪ti, z, ti⟫ ∈ A}. Using the algorithm of [9],

we compute the winning set for each pair (Ai, E). Then, starting from k, we compute sets

80 Reino Niskanen

of forbidden values using Lemma 4.13. After computing the forbidden values, we compute

the avoidable values using Lemma 4.14. Finally, we update the sets of winning values using

the forbidden and avoidable values.

It is natural to consider the dual of Theorem 4.16. That is, what is the complexity of

Z-VASS games where Adam is stateless and Eve has flat states? Following the result of [110]

on flatness of vector addition systems with states, we analyse whether the corresponding

games are also flat. In [110], it was proven that one-dimensional VASS are flat. As VASS

games of [1, 29] are also VASS, so VASS games are also flat. The reductions in [138]

and [88] do not create nested loops, so the games remain flat. The same thing applies to

our reduction from counter reachability games to Z-VASS games. Thus, we have a following

result on Z-VASS games where Adam is stateless and Eve has flat states:

Corollary 4.17. One-dimensional Z-VASS games, where Adam is stateless and Eve has

flat states, are EXPSPACE-complete.

4.3 VAS games in dimension one

In this section, we consider VAS games, i.e., where the arena is limited to the positive half

line Z+.

Remark 4.18. In a d-dimensional VAS game, if the configuration is x and all moves of a

player result in a configuration, where at least one component is negative, then that player

loses. In other words, forcing another player into a deadlock is a winning condition.

Theorem 4.19. One-dimensional VAS games are EXPTIME-complete.

Proof. Consider, the algorithm of [9, 137] that computes the winning set for Eve in a

given one-dimensional Z-VAS game. It can be modified to take the VAS semantics into

account. The algorithm computes the winning set for Eve, which consists of two sets. See

Remark 4.11 for more detailed description. The first set is the infinite set that is similar

to the solution of the Frobenius problem. That is, integers sufficiently far from the origin

are winning for Eve. The second set is a finite set consisting of winning values that are

winning for Eve but are not “sufficiently” far from the origin. It is easy to see that the

former set is not affected by the VAS semantics and in the latter set VAS semantics can

be easily implemented as the set is finite. That is, deciding which player has a winning

strategy in VAS games is decidable in EXPTIME.

Chapter 4. One-dimensional Z-VASS games 81

The proof of EXPTIME-hardness of one-dimensional Z-VAS games [9,137] applies as such.

In the proof, Adam’s moves are positive, Eve’s moves are negative. Moreover, a+ e < 0 for

every a ∈ A and e ∈ E. That is, only Eve can reach a deadlock and the game is played for

finitely many rounds until either Eve wins by reaching 0 or Eve reaches a deadlock and

Adam wins.

We have proved that one-dimensional VAS games are EXPTIME-complete.

4.4 Concluding remarks and open problems

In this chapter, we considered several one-dimensional games. The most important result

of the chapter is showing that deciding which player has a winning strategy in Z-VASS

games is EXPSPACE-complete problem. In our construction Eve had states, while Adam

was stateless. Motivated by this, we considered games where Adam had states and Eve

was stateless. When limiting Adam’s state structure to flat automata, we showed that the

games are EXPTIME-complete. Furthermore, but analysing the construction of previous

results on VASS and CRG games, we showed that the problem is EXPSPACE-complete when

Eve’s state structure is flat. The tight complexity of Z-VASS games where Adam has an

arbitrary state structure and Eve is stateless, remains open.

Chapter 5

Two-dimensional Z-VAS games

In the previous chapters, we proved that most of Attacker-Defender games are undecidable

when moves are multidimensional objectives (such as matrices and pairs of words) and

decidable when moves are one-dimensional (such as binary words and integers). The

decidability status of multidimensional games, where moves are integers, has been studied

in [1, 2, 29], where the authors proved that in games with VASS semantics, the problem is

undecidable. That is, in games played on a single graph with vertices partitioned between

players and Nd being the vector space. Later, in [136, 138], the model was extended to

counter reachability games, where the vector space is Zd. Doyen and Rabinovich [62]

proposed two simple game scenarios with open decidability status, that they called robot

games and robot games with states.

In robot games, or Z-VAS games in our terminology, the authors claimed, based on

personal communications, that the problem is decidable in dimension one, which was later

published as [9] and that the problem is undecidable starting from dimension nine. On

the other hand, the robot games with states, or Z-VASS games as we call them, were

claimed to be undecidable starting from dimension three. Moreover, they claimed that

games with states of dimension d can be reduced to games without states of dimension d+6.

Unfortunately, the latter three results were never published. Later, significant progress was

done by Reichert, who proved in his thesis [137] that Z2-VASS games and Z3-VAS games

are undecidable.

In the chapter, we solve the open problem of [62] of deciding the winner of Zd-VAS

games for dimension d = 2. We close the gap by showing that it is undecidable to check

which of the players has a winning strategy in a two-dimensional Z-VAS game, i.e., in a

82

83

very restricted fragment of counter reachability games with stateless players playing on

integer grid Z2. Before studying the stateless games, we consider two-dimensional games

on integer vector addition systems with states, to illustrate the proof better.

The undecidablity of Z2-VASS games was proved already in [137] and we first reiterate

the proof with different notation. Then we present our proof of undecidability of Z2-VAS

games that incorporates the original construction from the proof of three-dimensional games,

together with new techniques that allow us to encode one of the dimensions into the other

two.

The basis of our proofs are two-counter Minsky machines, for which the halting problem

is undecidable. For a two-counter machine, we construct a game where Eve has to simulate

the machine and Adam verifies that Eve does not cheat. The intuition is that the counters

of the machine are multiplied by constants and represented by two-dimensional vectors.

Additionally, the states of the machine are encoded in the least significant digits of the

vectors. We analyse all the possible deviations from simulating the counter machine and

show that the opponent has a winning strategy in that case. The biggest challenge is to

ensure that all possible ways to cheat can be caught without introducing new ways to cheat

for the other player.

We prove the main theorem by considering the undecidable problem of determining

whether a 2CM M reaches a configuration where both counters are zero. In Section 5.1,

we construct a Z2-VASS game that follows the computation of M. To simulate zero checks

present in two-counter machines, Adam has a move allowing him to check whether or not

a counter is positive. This check leads, deterministically, either to Adam’s victory with a

correct guess or to his loss otherwise. In the second section, we map the states and state

transitions into integers and embed them into the least significant digits in vectors of a

two-dimensional Z-VAS game. Our proof uses two successive reductions making the proof

shorter and more intuitive in contrast to a direct reduction from 2CM that would lead to a

longer proof with significantly more cases to consider.

Known results on Zd-VAS games in different dimensions are summarised in Table 5.1.

Apart from the solution of the open problem, the main contribution of the chapter is a

collection of new, original encodings and constructions that allow simulating zero-checks

and state space of a universal machine within a minimalistic two-dimensional system of

two non-deterministic stateless players.

We conclude the chapter with considerations of two-dimensional VAS games and show

that, similarly to Section 4.3, restricting the arena to positive quadrant does not affect the

84 Reino Niskanen

XXXXXXXXXXXGame
Dimension

1 2 3

Zd-VAS
EXPTIME-complete

[9]
undecidable

(Corollary 5.13)

undecidable
[137]

VAS
EXPTIME-complete

(Theorem 4.19)
undecidable

(Theorem 5.14)
—

Table 5.1: The results on complexity of deciding whether Eve has a winning strategy in
Zd-VAS and VAS games.

complexity. That is, the problem remains undecidable.

5.1 Z-VASS games in two dimensions

In this section, we prove that the decision problem for Z2-VASS games is unsolvable. By

Corollary 4.10, the undecidability of Z2-VASS games follows from the undecidability of

counter reachability games [138]. We use a different reduction that makes the reduction in

Section 5.2 easier to follow. This construction was first presented in [137].

We show that for each two-counter machine, there exists a corresponding Z2-VASS game

where Eve has a winning strategy if and only if the machine reaches a configuration where

both counters are zero. The simulation is rather straightforward apart from zero-checks of

the machine. To simulate zero checks present in two-counter machines, we use two-player

dynamics by giving Adam a move allowing him to check whether the counter is positive or

not.

Theorem 5.1. Let (Q,T, s0) be a two-counter machine. There exists a two-dimensional

Z-VASS game (A,E, c0) where Eve has a winning strategy if and only if (Q,T, s0) reaches

a configuration in Q× {(0, 0)}.

The idea is that in the Z2-VASS, Eve simulates the computation of the 2CM while

Adam does not interfere with the computation. If Eve deviates from the computation, then

Adam has a winning strategy from that point on. On the other hand, if Adam intervenes

in a faithful simulation, then Eve has a winning strategy.

Essentially, there are four ways the game can progress. These ways are depicted in

Figure 5.1. Three of the outcomes have a predetermined winner which does not depend

on the 2CM. In the last case where Eve correctly simulates the 2CM and Adam does not

Chapter 5. Two-dimensional Z-VAS games 85

interfere (plays only a 0-move), the winner depends on whether the 2CM reaches [s, (0, 0)]

for some s ∈ Q or not.

• If Eve’s move corresponds to the simulation of the 2CM and Adam replies with a

0-move (a move that does not modify the counters), then iteratively applying only

this turn-based interaction, Eve wins if and only if the 2CM reaches [s, (0, 0)] for some

s ∈ Q (Lemma 5.2).

• If Eve’s move incorrectly simulates the 2CM, then Adam has a winning strategy

from this moment on, starting with a positivity check that makes Eve’s target

unreachable (Lemma 5.3).

• If Adam plays his positivity check following a correct simulating move of Eve,

then Eve has a winning strategy from this moment on, starting with an emptying

move, allowing Eve to empty both counters and reach (0, 0) (Lemma 5.4).

• Finally, if Eve plays an emptying move instead of a simulating move, in that case

Adam has a winning strategy starting by playing his 0-move (Lemma 5.5).

E AA

Adam wins
(Lemma 5.3)

A

Adam wins
(Lemma 5.5)

E

Eve wins
(Lemma 5.4)

simulation
(correct)

0-move

simulation
(incorrect)

positivity
check

emptying
move

0-move

positivity
check

emptying
move

Eve’s moves:
• simulation of 2CM

(correct/incorrect)
• emptying move

Adam’s moves:
• 0-move
• positivity check

Eve wins if
2CM reaches Q× (0, 0)

Adam wins if
2CM does not reach Q× (0, 0)

(Lemma 5.2)

Figure 5.1: Progress of a Z2-VASS game.

Before presenting the detailed constructions of Eve’s and Adam’s state spaces, we

consider a simple modification to a 2CM, making it non-deterministic. For any 2CM

(Q,T, s0), we construct a 2CM (Q′, T ′, s′0), where Q′ is Q with additional information

on positivity of the both counters and T ′ is like T with guards ensuring that the extra

86 Reino Niskanen

information in states of Q′ correspond to the actual values of the counters. We denote the

states of Q′ by sab, where s ∈ Q and a, b ∈ {0,+} are flags indicating whether the value of

a counter is positive or equal to 0, i.e., a (b) is + if the first (second) counter is positive

or 0 if the counter is zero. The transition set T ′ consists of the following sets

{〈sab, c1++, t+b〉 | 〈s, c1++, t〉 ∈ T, a, b ∈ {0,+}} , {〈sab, c2++, ta+〉 | 〈s, c2++, t〉 ∈ T, a, b ∈ {0,+}} ,

{〈s+b, c1−−, tab〉 | 〈s, c1−−, t〉 ∈ T, a, b ∈ {0,+}} , {〈sa+, c2−−, tab〉 | 〈s, c2−−, t〉 ∈ T, a, b ∈ {0,+}} ,

{〈s0b, c1==0, t0b〉 | 〈s, c1==0, t〉 ∈ T, b ∈ {0,+}} , {〈sa0, c2==0, ta0〉 | 〈s, c2==0, t〉 ∈ T, a ∈ {0,+}} .

Now, after decrementing counters from a state with + flag, a state will be changed to a

state with + or 0 flag depending on the current counter value.

counter value flag flag

ci > 1 + → + correct flag

ci > 1 + → 0 wrong flag

ci = 1 + → + wrong flag

ci = 1 + → 0 correct flag

At the moment, we assume that the machine moves to a state with the correct flag

(correct simulation) and does not move to the incorrect flag (incorrect simulation). Later in

the Z2-VASS game, Adam will act as guards (i.e., checks whether ci > 1 or ci = 1) using his

positivity check if Eve picks a wrong transition resulting in a state with the wrong flag.

Now we present the moves of the players. Eve’s states are the states of Q′, correspond-

ing to the simulation of the 2CM, together with emptying states {>00,>+0,>0+,>++},
associated with emptying moves. The moves of Eve correspond to transitions in T ′ where

incrementing and decrementing of the first counter is by 4 rather than by 1. We call these

moves simulating moves.

Transition with c1 Eve’s move

〈s, c1++, t〉 ⟪s, (4, 0), t⟫
〈s, c1−−, t〉 ⟪s, (−4, 0), t⟫
〈s, c1==0, t〉 ⟪s, (0, 0), t⟫

Transition with c2 Eve’s move

〈s, c2++, t〉 ⟪s, (0, 1), t⟫
〈s, c2−−, t〉 ⟪s, (0,−1), t⟫
〈s, c2==0, t〉 ⟪s, (0, 0), t⟫

The other type of moves, emptying moves, are related to the new states and are

used to empty the counters. Note that there is a hierarchy in the emptying states — Eve

cannot move from a state with 0 to a state with +. Let us define the emptying partition of

Eve’s automaton where for every possible move of Adam there is a cancelling move with

additional decrementing of the counters eventually leading to the sink state >00.

Section 5.1. Z-VASS games in two dimensions 87

• {⟪>++, (−4− e,−1), t⟫ | e ∈ {0, 1}, t ∈ {>++,>+0,>0+,>00}};

• {⟪>+0, (−4− e, 0), t⟫ | e ∈ {0, 1}, t ∈ {>+0,>00}};

• {⟪>0+, (−e,−1), t⟫ | e ∈ {0, 1}, t ∈ {>0+,>00}};

• {⟪>00, (−e, 0),>00⟫ | e ∈ {0, 1}}.

Finally, we define transitions connecting the simulating partition of Eve’s automaton with

the emptying partition. For each state sab ∈ Q′, Eve has a transition ⟪sab, (−1, 0),>ab⟫.
Adam is stateless, i.e., he has one state and his moves are self-loops. There are two

types of moves: the 0-move, (0, 0), with which Adam agrees that Eve simulated the 2CM

correctly and the positivity check, (1, 0), with which Adam checks whether a flag matches

the counter (i.e., Eve simulated incorrectly). Control states of the players are depicted in

Figure 5.2.

s0+ s++

t++

>++

>0+ >+0

>00simulation
of 2CM emptying

· · ·

(0, 0), (1, 0)

Figure 5.2: An illustration of state transitions of Eve and Adam.

Since Adam is stateless, we simplify the notation by writing the configuration as [s,x],

i.e., we omit Adam’s state. To avoid Eve winning trivially every play in the Z2-VASS

game, we do not use [s′00, (0, 0))] as the initial configuration, but instead consider the

configuration that is reached in (Q′, T ′) after one step of the run of the machine. We write

the configuration after one step as [sab, (y, z)] and we define a = +, b = 0 if y = 1 and

a = 0, b = + if y = 0. The initial configuration c0 in the Z2-VASS game is then [sab, (4y, z)].

The effect of simulating moves, emptying moves and positivity check modulo four is depicted

in Figure 5.3.

Next, we prove which player has a winning strategy in the scenarios presented previously.

Lemma 5.2. In a sequence where Adam plays only the 0-move and Eve plays only correct

simulating moves, Adam wins if the two-counter machine does not reach a configuration

with zeros in both counters and Eve wins otherwise.

88 Reino Niskanen

4 4

simulating move

positivity check

emptying move

Figure 5.3: An illustration of changes in an interval when simulating or emptying moves of
Eve or positivity check of Adam are applied.

Proof. It easy to see that correct moves of Eve simulate the 2CM and that a configuration

[s, (0, 0)] of the 2CM is reachable if and only if it is reachable in the Z2-VASS game.

Lemma 5.3. If Eve plays an incorrect move, i.e., after her turn a flag does not match the

counter value (i.e., the flag is + while the counter is 0 or vice versa), then Adam has a

winning strategy starting with the positivity check.

Proof. Assume that Eve made a mistake regarding the positivity of the first counter. As

noted previously, there are two ways she can make a mistake. Either the configuration is

[s0b, (4x, y)], where x ≥ 1 or [s+b, (0, y)]. In both cases Adam plays his positivity check

which changes the parity of the first counter. That is, after Adam’s turn, the first counter

is 1 mod 4. It is easy to see that if Eve does not change the parity of the counter back to

zero with her following turn, then Adam has a winning strategy. Indeed, in this case, he

will play his positivity check if and only if the first counter is not 3 mod 4. Eve cannot

make the counter 0, as she cannot even make it 0 mod 4. Thus, Eve has to play a move

adding −1 to the first counter. The only move for that is ⟪sab, (−1, 0),>ab⟫ which takes

Eve to an emptying state. In the first case, the emptying state is >0b and all the transitions

from it do not modify the first counter, i.e., Eve cannot reach (0, 0). In the second case,

the emptying state is >+b, the next transition subtracts 4 from the first counter making it

negative, and there are no moves that increment the counters. Again, Eve cannot reach the

origin. The case where Eve makes a mistake with the second counter is proven analogously

and, in fact, Adam’s strategy is the same.

Lemma 5.4. Assume that Eve plays only correct simulating moves before Adam plays

the positivity check for the first time. If Adam plays the positivity check, then Eve

has a winning strategy starting with an emptying move.

Proof. Similarly as in the previous proof, if Eve does not play an emptying move, then

Adam has a winning strategy. Now, the configuration is [sab, (4x+ 1, y)] after Adam’s turn

Chapter 5. Two-dimensional Z-VAS games 89

and Eve plays ⟪sab, (−1, 0),>ab⟫. From that point onward, Eve can empty the counters

ensuring that the first counter is 0 mod 4 and that the flags match the positivity of the

counters. That is, every time Adam plays his positivity check, Eve plays an emptying

move subtracting one from the first counter. Eventually, Eve will reach the configuration

[>00, (0, 0)] and win the game.

Lemma 5.5. If Adam plays only the 0-move and Eve plays an emptying move. Adam

has a winning strategy starting with the 0-move.

Proof. After Eve’s move, the first counter is 3 mod 4. As in the proof of Lemma 5.3, Adam

ensures that the first counter stays non-zero modulo four and wins the game.

We are ready to prove the main theorem.

Theorem 5.1. Let (Q,T, s0) be a two-counter machine. There exists a two-dimensional

Z-VASS game (A,E, c0) where Eve has a winning strategy if and only if (Q,T, s0) reaches

a configuration in Q× {(0, 0)}.

Proof. Let (A,E, c0) be the Z2-VASS game constructed in this section. Assume first that

(Q,T, s0) reaches a configuration in Q×{(0, 0)}. Now by Lemma 5.2, Eve’s winning strategy

is to respond with the correct simulating moves if Adam plays the 0-move, and if Adam

plays the positivity check, then Eve has a sequence of moves described in Lemma 5.4

that leads to the configuration [>00, (0, 0)].

Assume then that (Q,T, s0) never reaches a configuration in Q×{(0, 0)}. We show that

Eve does not have a winning strategy. If Adam plays only the 0-move, then, by Lemma 5.2,

Eve does not win by responding with just the correct simulating moves. Alternatively, if

at some point, she plays either an incorrect simulating move or an emptying move,

then by Lemma 5.3 and Lemma 5.5, respectively, Adam has winning strategies making

sure that a configuration with counter values (0, 0) is not reachable. As we analysed all the

possible moves of Eve, we have shown that Eve does not have a winning strategy.

By Theorem 2.4 and Theorem 5.1, we have the following corollary regarding decidability

of games on two-dimensional integer vector addition systems with states.

Corollary 5.6. Let (A,E, c0) be a Z2-VASS game. It is undecidable whether Eve has a

winning strategy to reach [s, t, (0, 0)], for any s ∈ QE and t ∈ QA, from c0. The problem is

undecidable even when Adam is stateless and does not modify the second counter.

90 Reino Niskanen

5.2 Z-VAS games in two dimensions

In this section, we prove the main result of the chapter. We prove that it is undecidable

whether Eve has a winning strategy in a game on a two-dimensional integer vector addition

system. We prove the claim by constructing a Z2-VAS game that simulates a Z2-VASS

game. In some ways, the construction is similar to the construction of a game with states

in the previous section as can be seen in similarities of Figure 5.1 and Figure 5.4. The

construction of the stateless game is more complex as the information on two counters,

states and state transitions has to be embedded into two-dimensional vectors.

Theorem 5.7. Let (A1, E1, c0) be a two-dimensional Z-VASS game, where Adam is stateless

and does not modify the second counter. There exists a two-dimensional Z-VAS game

(A,E,x0) where Eve has a winning strategy if and only if Eve has a winning strategy in

(A1, E1, c0).

Similarly to the construction of Section 5.1, the idea is that, in the Z2-VAS game, Eve

and Adam simulate a play of the Z2-VASS game where Adam is stateless and does not

modify the second counter. As Adam is stateless, we again simplify the notation and write

a configuration of the Z2-VASS game as [s,x], where s ∈ QE and x ∈ Z2.

In the Z2-VAS game, if one of the players deviates from the play of the Z2-VASS game,

the opponent has a winning strategy from that point onward. In Figure 5.4, we present a

schema similar to Figure 5.1, depicting the possible ways two-dimensional Z-VAS games

can go. Three of the outcomes have a predetermined winner, which does not depend on

the Z2-VASS game. In the last case, where Eve and Adam correctly simulate the Z2-VASS

game, the winner depends on the winner of the Z2-VASS game, i.e., whether Eve has a

winning strategy to reach [s, (0, 0)], for some state s, or not.

• If Eve’s move corresponds to a move in a play of the Z2-VASS game, that we call a

regular move, and Adam replies with his regular move, then iteratively applying

only this turn-based interaction, Eve has a winning strategy if and only if she has a

winning strategy in the corresponding Z2-VASS game (Lemma 5.9).

• If Eve’s move incorrectly simulates the Z2-VASS game, then Adam has a winning

strategy from this moment on starting with a state-check that makes Eve’s target

unreachable (Lemma 5.10).

Section 5.2. Z-VAS games in two dimensions 91

• If Adam plays his state-check following a correct regular move of Eve, then Eve

has a winning strategy from this moment on starting with a state-defence move

allowing Eve to empty both counters and reach (0, 0) (Lemma 5.11).

• Finally, if Eve plays a state-defence move instead of a regular move, in that case

Adam has a winning strategy starting by playing his regular move (Lemma 5.12).

E AA

Adam wins
(Lemma 5.10)

A

Adam wins
(Lemma 5.12)

E

Eve wins
(Lemma 5.11)

simulation
(correct)

regular move

simulation
(incorrect)

state-
check

state-defence
move

regular
move

state-check

state-defence
move

Eve’s moves:
• simulation of Z2-VASS

game (correct/incorrect)
• state-defence move

Adam’s moves:
• regular move
• state-check

Eve wins if
Eve wins in Z2-VASS game

Adam wins if
Adam wins in Z2-VASS game

(Lemma 5.9)

Figure 5.4: Progress of a Z2-VAS game.

Intuitively, we encode the states in the second counter as powers of 8 such that the

coefficient of 8i is 1 if and only if Eve’s state in Z2-VASS game is si. When the state

changes from si to sj , −8i + 8j is added to the second counter. We represent states as

coefficients of powers of eight because we need the extra space smaller bases do not possess.

It is easy to see that simply encoding states as powers of 8 is not enough as incorrect

transitions can result in a correct configuration. For example, if the configuration of the

Z2-VASS is [si, (x, y)] and moves corresponding to ⟪sj , (a, b), sk⟫ and ⟪sk, (c, d), sj⟫ are

used, the resulting configuration corresponds to [si, (x+ a+ c, y + b+ d)]. Another way to

cheat is to use carries as incrementing the coefficient of 8i eight times is indistinguishable

from incrementing the coefficient of 8i+1 once. Both types of cheating can be countered

with Adam’s state-checks.

We now show how we embed the states and state transitions into the second counter

of the game. Similarly to how in the previous section we created additional space in the

first counter by multiplying the moves modifying the first counter by four, we multiply the

92 Reino Niskanen

second counter by 4 · 8n, where n = m+ 7 and m is the number of states, creating enough

space to store all the needed information of the underlying automaton. The multiplication

by 4 · 8n rather than just 8n has two purposes. The first one is similar to multiplying the

first counter by four in Section 5.1. Namely, certain moves will move between different

intervals modulo 4 · 8n ensuring the correct response from the opponent. This is illustrated

in Figure 5.5. The second purpose is to ensure that above described cheating with carries

is not possible. A configuration of a Z2-VASS game is mapped to a vector in Z2 by

[si, (c1, c2)] 7→ (c1, c2 · 4 · 8n + 8i).

4 · 8n 4 · 8n

simulating move

state check

state-defence

Figure 5.5: An illustration of changes in interval when simulating or state-defence moves of
Eve or state check of Adam are applied.

Before presenting the detailed constructions of Eve’s and Adam’s moves, we note that

we can assume that the Z2-VASS game has the information on the positivity of the counters,

and players have to update the information correctly. Indeed, this was done in the previous

section by using flags 0 and +. Recall that, because of this, the first counter is incremented

and decremented by 4. By this assumption, we can denote the states of Eve by sab as before.

We also assume that Eve’s underlying graph is without self-loops as they would allow Eve

to modify the counters without modifying coefficients of the states. Let Q be the set of

states of Eve in a Z2-VASS game. We create an emptying gadget for Eve similar to the

one constructed in the previous reduction. To avoid self-loops, there are seven emptying

states, {>ab,>′ab | a, b ∈ {0,+}} \ {>′00}. The state >′00 is not needed as >00 will not have

any moves from it. The moves in the emptying gadget are as in the emptying gadget

constructed in Section 5.1 but instead of self-loops, the transitions are between primed and

unprimed versions of the states, which is similar to the construction of Lemma 3.8. The

emptying moves can be found in Table 5.2

We denote T = {>++,>′++,>0+,>′0+,>+0,>′+0}. We think of elements of Q∪T ∪{>00}
as integers in {0, . . . , n− 1} such that >00 = 0, >′0+ = n− 6, >0+ = n− 5, >′+0 = n− 4,

>+0 = n− 3, >′++ = n− 2 and >++ = n− 1. We give names for update vectors that we

Chapter 5. Two-dimensional Z-VAS games 93

{⟪>++, (−4,−1)− α, t⟫ | α ∈ A1, t ∈ {>′++,>+0,>′+0,>0+,>′0+,>00}};
{⟪>′++, (−4,−1)− α, t⟫ | α ∈ A1, t ∈ {>++,>+0,>′+0,>0+,>′0+,>00}};
{⟪>+0, (−4, 0)− α, t⟫ | α ∈ A1, t ∈ {>′+0,>00}};
{⟪>′+0, (−4, 0)− α, t⟫ | α ∈ A1, t ∈ {>+0,>00}};
{⟪>0+, (0,−1)− α, t⟫ | α ∈ A1, t ∈ {>′0+,>00}};
{⟪>′0+, (0,−1)− α, t⟫ | α ∈ A1, t ∈ {>0+,>00}};

Table 5.2: The modified emptying gadget of a Z2-VASS game.

often use:

Add(1, x) := (x, 0); Move(j, k) := (0,−8j + 8k), for 0 ≤ j, k ≤ n− 1;

Add(2, x) := (0, 4x · 8n); Check(i) := (0,−5 · 8i − 8n), for n− 6 ≤ i ≤ n− 1.

The initial vector x0 of the Z2-VAS game is Add(1, x) +Add(2, y) +Move(>00, s), that is,

x0 = (x, 4 y · 8n + 8s− 80), where [s, (x, y)] is the initial configuration in the Z2-VASS game.

In the next example, we illustrate how the update vectors modify the counters.

Example 5.8. Let (A1, E1, c0) be a Z2-VASS game, where Eve has two states, s = 1

and t = 2, and the initial configuration c0 = [s, (1, 0)]. In Figure 5.6, we present a set of

configurations in the Z2-VAS game obtained from the corresponding initial configuration

when we apply Add(1,−1), Add(2, 1), Move(s, t) and Check(8) in succession.

Now we present the moves of the players. Adam has two types of moves: regular

moves that correspond to the moves in the Z2-VASS game and state-check moves,

{Check(i) | i ∈ T }. The moves of Eve correspond to moves in E1 where incrementing and

decrementing of the second counter is by 4 · 8n rather than by 1. Let ⟪s, (x, y), t⟫ ∈ E1,

then

Add(1, x) + Add(2, y) + Move(s, t) = (x, 4y · 8n − 8s + 8t) ∈ E.

We call these moves regular moves. We also need a move for Eve to finish the simulation

by removing any values corresponding to the automaton if the state is s00. That is, we add

moves {Move(s00,>00)− α | α ∈ A1}. The other type of moves, state-defence moves,

are used to empty the counters. As in the previous construction, Eve will be able to cancel

every move of Adam and decrement the counters at the same time. The full list of moves

can be found in Table 5.3.

94 Reino Niskanen

Z2-VASS game
counters︷ ︸︸ ︷

(1, 0 · 4 · 89 +

T︷ ︸︸ ︷
0 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 +

states of
Z2-VASS game︷ ︸︸ ︷
0 · 82 + 1 · 81

>00︷ ︸︸ ︷
−1 · 80)yAdd(1,−1)

(0, 0 · 4 · 89 + 0 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 + 0 · 82 + 1 · 81 − 1 · 80)yAdd(2, 1)

(0, 4 · 89 + 0 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 + 0 · 82 + 1 · 81 − 1 · 80)yMove(s, t)

(0, 4 · 89 + 0 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 + 1 · 82 + 0 · 81 − 1 · 80)yCheck(8)

(0, 3 · 89 − 5 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 + 1 · 82 + 0 · 81 − 1 · 80).

Figure 5.6: Applying vectors Add(1,−1), Add(2, 1), Move(s, t) and Check(8) in succes-
sion to a vector corresponding to configuration [s, (1, 0)] of a Z2-VASS game.

Finally, we define moves connecting the simulating partition of Eve’s automaton with

the emptying partition. For each state sab ∈ Q, where a, b are not both zero, Eve has a

move {Move(sab, k)−Check(i) | (a, b) ∈ {0,+}2 \ {(0, 0)}, k ∈ {>ab,>′ab}, k 6= i, i ∈ T }.
For s00, Eve has a move {Move(s00,>00)−Check(i) | i ∈ T }.

Next, we prove which player has a winning strategy in the scenarios presented previously.

Lemma 5.9. If both players only play regular moves and Eve plays only correct regular

moves, then Eve has a winning strategy if and only if she has a winning strategy in the

Z2-VASS game.

Proof. It easy to see that regular moves of the players simulate the Z2-VASS game and

that Eve has a winning strategy to reach a configuration [s00, (0, 0)] of the Z2-VASS game

if and only if she has a winning strategy to reach the vector (0, 0 · 4 · 8n + 8s00 − 8>00) in

the Z2-VAS game after which Eve wins by playing Move(s00,>00) − α, where α is the

regular move played by Adam.

Lemma 5.10. If Eve plays an incorrect move, i.e., after her turn the coefficient of some

8s is −1 or the coefficient of 8>00 is zero, then Adam has a winning strategy starting with a

state-check.

Section 5.2. Z-VAS games in two dimensions 95

Adam’s
move

Eve’s move

α ∈ A1

{Add(1,−4) + Add(2,−1) + Move(j, k)− α | j ∈ {>++,>′++}, k ∈ T , j 6= k}
{Add(1,−4) + Move(j, k)− α | j, k ∈ {>+0,>′+0}, j 6= k}
{Add(2,−1) + Move(j, k)− α | j, k ∈ {>0+,>′0+}, j 6= k}

{Add(1,−4) + Add(2,−1) + Move(j, 0)− α | j ∈ {>++,>′++}}
{Add(1,−4) + Move(j, 0)− α | j ∈ {>+0,>′+0}}
{Add(2,−1) + Move(j, 0)− α | j ∈ {>0+,>′0+}}

Check(i)

{Add((1,−4e1) + Add(2,−e2)−Check(i) | e1, e2 ∈ {0, 1}}
{Add(1,−4) + Add(2,−1) + Move(j, k)−Check(i) | i, j 6= k,

j ∈ {>++,>′++}, k ∈ T }
{Add(1,−4) + Add(2,−1) + Move(j, 0)−Check(i) | j ∈ {>++,>′++}}

{Add(1,−4) + Move(j, 0)−Check(i) | j ∈ {>+0,>′+0}}
{Add(2,−1) + Move(j, 0)−Check(i) | j ∈ {>0+,>′0+}}

Table 5.3: state-defence moves of Eve.

Proof. First, we prove that Eve loses if a coefficient corresponding to a state of the Z2-VASS

game is negative after one of her turns. A coefficient corresponding to a state of the Z2-VASS

game can only be increased, namely incremented, by Eve’s regular moves. Hence, if one

of the coefficients becomes negative, then Adam wins by playing a state-check move.

The reasoning is now similar to the usage of the positivity check in Lemma 5.3. We

consider the second counter modulo 4 · 8n. Before Adam’s state-check, the configuration

is in [0, 8n) mod 4 · 8n and after the check in [3 · 8n, 4 · 8n) mod 4 · 8n. If Eve does not

play a state-defence move (a move containing a Check(i)), then Adam has a winning

strategy by playing a state-check if the second counter is not in [3 · 8n, 4 · 8n) mod 4 · 8n

and a regular move otherwise (recall that Adam’s regular moves do not modify the

second counter). Thus, Eve has to play a state-defence move which does not make the

negative coefficient non-negative. Now at least one of the coefficients in T is non-zero, say i.

Adam will play Check(i) forcing Eve to play a move containing −Check(i) which will

make another coefficient in T non-zero (or keep the same coefficient non-zero). As long as

Adam keeps playing the correct state-check, Eve cannot make all the coefficients zero

and thus cannot win.

The second case where a coefficient of some state in T is negative has been proven

above. For the final case, where the coefficient of 8>00 is zero, we consider the next move

of Eve. During her next turn, Eve has to play a move containing Move(s, t) making the

coefficient of 8s negative, which has been covered previously.

96 Reino Niskanen

Lemma 5.11. Assume that Eve plays only correct regular moves before Adam plays a

state-check for the first time. If Adam plays a state-check, then Eve has a winning

strategy starting with a state-defence move.

Proof. Similarly as in the previous proof, if Eve does not play a state-defence move, then

Adam has a winning strategy. Now, Eve plays the state-defence move Move(sab, k)−
Check(i), where sab is the non-zero coefficient, Check(i) is the state-defence move

Adam played and k ∈ {>ab,>′ab}, k 6= i. From that point onward, Eve can empty the

counters as she has emptying moves with an opposite move of Adam. Eventually, Eve will

reach the configuration (0, 0) and win the game.

Lemma 5.12. If Adam plays only regular moves and Eve plays a state-defence

move, then Adam has a winning strategy starting with a regular move.

Proof. There are two cases to consider. Either the state-defence move contains Check(i)

or not. In the first case, since all such state-defence moves subtract −8n from the

second counter, after Eve’s move, the counter is in [8n, 2 · 8n) mod 4 · 8n. As in the proof of

Lemma 5.10, Adam ensures that the second counter does not return to the interval [0, 8n)

mod 4 · 8n. In the second case, the state-defence move contains Move(j, k) for some

j ∈ T , and then by Lemma 5.10, Adam has a winning strategy.

We are ready to prove the main theorem of the chapter.

Theorem 5.7. Let (A1, E1, c0) be a two-dimensional Z-VASS game where Adam is stateless

and does not modify the second counter. There exists a two-dimensional Z-VAS game

(A,E,x0) where Eve has a winning strategy if and only if Eve has a winning strategy in

(A1, E1, c0).

Proof. Let (A,E,x0) be the Z2-VAS game constructed in this section. Assume first that Eve

has a winning strategy in (A1, E1, c0). Now, Eve’s winning strategy in the two-dimensional

Z2-VAS game is to follow the strategy of (A1, E1, c0) as long as Adam plays regular

moves which is a winning strategy by Lemma 5.9. If Adam plays a state-check, then

Eve responds according to the winning strategy of Lemma 5.11.

Assume then, towards a contradiction, that Adam has a winning strategy in (A1, E1, c0)

and Eve has a winning strategy in (A,E,x0). If Adam plays only regular moves, then by

Lemma 5.9, Eve does not win by playing just the correct simulating moves. That is, Eve

has to, at some point, either play an incorrect simulation move or play a state-defence

Chapter 5. Two-dimensional Z-VAS games 97

move. By Lemma 5.10 and Lemma 5.12, Adam has winning strategies for both cases. As

we analysed all the possible moves of Eve, we have shown that Eve does not have a winning

strategy.

Corollary 5.13. Let (A,E,x0) be a two-dimensional Z2-VAS game. It is undecidable

whether Eve has a winning strategy to reach (0, 0) from x0.

Corollary 5.13 follows from Corollary 5.6 and Theorem 5.7.

5.3 VAS games in two dimensions

In this section, we consider VAS games, i.e., where the arena is limited to the positive

quadrant Z+2
. We prove that it is undecidable whether Eve has a winning strategy in

two-dimensional VAS games. Recall that the problem is undecidable for two-dimensional

VASS games, where the game is played on a vector addition system with states [1, 29]. Our

proof relies on the construction of the previous section.

In the Z2-VAS game constructed in the previous section, the initial vector is in Z+2
and

both players have moves containing Check(i) := (0,−5 · 8i − 8n), for n − 6 ≤ i ≤ n − 1

for some n ∈ Z+. Adam’s moves contain Check(i) and Eve’s moves contain −Check(i).

Other than these moves, all other moves of Adam have only non-negative components. By

considering Check′(i) := (0, 5 · 8i + 8n), we have a variant of the game where Adam’s

moves have only non-negative components. In other words, VAS semantics do not affect

Adam’s behaviour.

Theorem 5.14. Let (A,E,x0) be a two-dimensional VAS game. It is undecidable whether

Eve has a winning strategy to reach (0, 0) from x0.

Proof. Consider the two-dimensional Z2-VAS game (A1, E1,x0) of Corollary 5.13. We

modify the sets of moves by changing moves containing Check(i) into Check′(i). After

this, as all moves of Adam are positive, only Eve can reach a deadlock. Other than deadlocks,

the proof goes as in Section 5.2.

5.4 Concluding remarks and open problems

In this chapter, we proved the main result of the thesis. We showed that it is undecidable

which player has a winning strategy in Z2-VAS game. Additionally, we proved that the

result holds under VAS semantics as well.

98 Reino Niskanen

Korec showed in [99] that there exists a universal Minsky machine with 32 instructions,

in the sense that the universal machine can simulate any other Minsky machine. The

natural question of a universal game arises: Is it possible to construct a fixed Z2-VAS game

simulating a universal 2CM? This game would have fixed moves and only the initial vector

would affect the result.

Consider the universal Minsky machine with 32 instructions. We can construct a Z2-VAS

game from it and count the number of moves. Thus, it is undecidable whether Eve has a

winning strategy in a two-dimensional Z2-VAS game where Eve has at least 2419 moves

and Adam has eight moves. The optimal bounds on number of players’ moves between

decidability and undecidability remain an open problem.

Chapter 6

Controllability in Zd-VASS games

The Attacker-Defender games we have considered so far have been either undecidable or lie

in high complexity classes such as EXPTIME or EXPSPACE. In this chapter, we investigate

modifications to Zd-VASS games that could yield lower complexity bounds whilst remaining

nontrivial.

We observe that the gadgets present in Chapter 4 and Chapter 5 that ensure a faithful

simulation, rely on an infinite punishing behaviour by Adam. For example, in Section 5.1,

if Eve enters the emptying gadget prior to Adam playing (1, 0), then Adam has a simple

winning strategy, where he has to ensure that the first counter is not 3 mod 4. But if

we limit how many times Adam can play, then Eve can exhaust Adam’s moves and then

reach (0, 0) with an unfaithful simulation. Motivated by this behaviour, in this chapter, we

consider two variants of Zd-VASS games where players’ resources are limited.

• k-control Zd-VASS games with a safety objective, where Adam can apply his moves

only k times during any play and has to skip otherwise.

• k-control Zd-VASS games with a reachability objective, where Eve can apply her

moves only k times during any play and has to skip otherwise.

The results are highlighted in Table 6.1. Note, that k is fixed and is not part of the input.

Example 6.1. Let (A,E, x0) be a Z-VAS game, where A = {−2}, E = {1} and x0 < 0.

In the Z-VAS game, Adam has a winning strategy as, after the players play their moves,

the resulting configuration x = x0 − 2 + 1 is less than the initial configuration x0. If we

consider it as a k-control Z-VAS game with a safety objective for any k ∈ Z+, then Eve

99

100 Reino Niskanen

Game k = 0 k k =∞
d = 1 d ≥ 2

Zd-VAS games
(safety)

NP-c
[77]

NP-c
(Corollary 6.8) EXPTIME-c

[9]
undecid.

(Theorem 5.14)Zd-VAS games
(reachability)

PTIME
PTIME

(Theorem 6.12)
Zd-VASS games

(safety)
NP-c

[77,137]

NP-c
(Corollary 6.7) EXPSPACE-c

(Theorem 4.4)

undecid.
[137]Zd-VASS games

(reachability)
PTIME

NP

(Theorem 6.13)

Table 6.1: Summary of results on k-control games. Note that the games with safety and
reachability objectives are the same for k =∞.

has a winning strategy. Indeed, with at most 2k + |x0| moves, Eve can reach the origin as

Adam can apply his −2 move at most k times. Two plays are depicted in Figure 6.1.

0x0 0x0

Figure 6.1: A play of the Z-VAS game of Example 6.1 (left) and a play in the 1-control
Z-VAS game, where Adam can play his move only once (right).

The main result of the chapter is that checking whether Adam has a winning strategy

to ensure safety of a given configuration is NP-complete. The main observation is that, if

Adam has a winning strategy in a d-dimensional k-control Zd-VASS game, then he has

a winning strategy where his moves are played “close” to the target configuration. The

intuition is clear, if the configuration is “far” from the target, then Adam does not have to

use one of his moves to influence the play. On the other hand, if the configuration is “close”

to the target, then Adam has to play a move in order to avoid the target. The area “close”

to the target is polynomial in size, and to check whether Eve can reach it is in NP.

The second variant of the k-control Zd-VASS game, where Eve has limited number of

moves, relies on different observations. We notice that if Eve skips her move, then Adam

has a winning strategy as he can always choose a vector such that the zero vector is not

reachable. On the other hand, as Eve can play only k times, eventually, she will have to

only skip. That is, only a finite duration of the game needs to be considered.

Throughout the chapter, we will denote |A| = ` and |E| = m.

Section 6.1. Safety of k-control Zd-VASS games 101

6.1 Safety of k-control Zd-VASS games

In this section, we consider k-control Zd-VASS games with a safety objective. As Adam can

skip his turn, we have a lower bound from the reachability problem for Zd-VASS. In [77], it

was proved that the reachability problem is NP-complete. Thus, k-control Zd-VASS games

are NP-hard.

Let us then study 1-control Zd-VASS games to illustrate the idea of the proof better.

We denote E = {(s,−e) | ⟪s, e, s′⟫ ∈ E}, where E is the move set of Eve. The set E

consists of pairs in QE ×Zd from which she can win with one move. In the next lemma, we

show that if Adam has a winning strategy, he also has a winning strategy, where Adam

plays his move only if the configuration is [s, ṫ,x] for (s,x) ∈ E. In the proof, we consider

a path reaching (s,x) ∈ E using only moves of Eve. Because Adam has a winning strategy,

then in the game following this path, he plays a move ⟪t,a, t′⟫ making 0 unreachable for

Eve. If Adam plays ⟪t,a, t′⟫ in [s, ṫ,x], then Eve cannot reach the origin from the resulting

configuration [ṡ, t′,x + a]. The idea is depicted in Figure 6.2.

0

E

x0

Losing
for Eve

Losing
for Eve

Figure 6.2: An illustration of Lemma 6.2 in a Z2-VAS game.

Lemma 6.2. Let σ be a winning strategy of Adam in a 1-control Zd-VASS game with a

safety objective (A,E, [s0, t0,x0]). Then also σ′ is a winning strategy of Adam, where

σ′([s, t,x]) =

Skip if (s,x) /∈ E

σ([s′, t,y]) if (s,x) ∈ E, for some [s′, t,y].

Proof. Let σ be a winning strategy of Adam. Consider (s,x) ∈ E that is reachable from

[s0, t0,x0] using Eve’s moves only. Let p be this path. Consider then a play in which Eve

102 Reino Niskanen

follows p. That is,

p = [s0, t0,x0][sij , t0,x1] · · · [s′, t0,y] · · · [s, t0,x].

Since σ is a winning strategy, there is a configuration [s′, t0,y] for which the winning

strategy σ([s′, t0,y]) = ⟪t0,a, t⟫, for some ⟪t0,a, t⟫ ∈ A, making 0 unreachable using Eve’s

moves. If (s′,y) = (s,x), then we are done. If (s′,y) 6= (s,x), then consider a strategy of

Adam, where he skips unless (s,x) is reached and then plays ⟪t0,a, t⟫. This play is winning

for Adam. Indeed, assume that on the contrary Eve can reach 0 from [s, t,x + a] by a

path p′. Then Eve can also reach 0 from [s′, t,y + a] by playing the same moves as in the

suffix of p followed by p′, which is not possible as σ is a winning strategy.

By repeating this procedure for every (s,x) ∈ E, we find a move of Adam that, according

to σ, Adam needs to play in [s, t0,x]. We construct σ′ such that σ′([s, t0,x]) = Skip if

(s,x) /∈ E and σ′([s, t0,x]) = σ([s′, t0,y]) if (s,x) ∈ E. By the previous argument, σ′ is a

winning strategy of Adam.

Now, by the previous lemma, it is enough to only consider strategies where Adam always

skips or where an element of E is reached after which Adam plays his move.

Let us consider the game with k = 0 in more details, that is, reachability in Zd-VASS.

In [77], it was shown that deciding whether (qf ,0) is reachable from (q0,x0) is decidable

in NP. We call this algorithm ZVASS(E, (q0,x0), (qf ,0)). In Zd-VASS games, the target

is just the counter value 0. This does not increase the complexity as Eve can guess the

state qf , where the counter becomes 0, and call ZVASS(E, (q0,x0), (qf ,0)).

input : A 1-control Zd-VASS game (A,E, [s0, t0,x0]).
output : The player that has a winning strategy in the safety game.

1 if ZVASS(E, (s0,x0), (s,0)) = Adam forall s ∈ QE then
2 return Adam;
3 else

4 foreach element (s, e) ∈ E do
5 if ZVASS(E, (s0,x0), (s, e)) = Eve and forall ⟪t0,a, t⟫ ∈ A,

ZVASS(E, (s, e + a), (s′,0)) = Eve then return Eve;

6 end
7 return Adam;

8 end

Algorithm 6.1: Solving a 1-control Zd-VASS game with a safety objective.

Chapter 6. Controllability in Zd-VASS games 103

Theorem 6.3. It is decidable in NP, which player has a winning strategy in a 1-control

Zd-VASS game with a safety objective for Adam.

Proof. We claim that Algorithm 6.1 solves the problem in non-deterministic polynomial

time.

First, we prove the correctness of the algorithm. Assume that Adam has a winning

strategy. There are two types of strategies, one where Adam only skips and another where

he plays one of his moves. In the first case, Adam has a winning strategy if and only if

Eve cannot reach 0 from the initial configuration [s0, t0,x0]. That is, 0 is not reachable in

the underlying Zd-VASS. This is verified on line 1. In the second case, by Lemma 6.2, it is

enough to consider values in E. As Adam has a winning strategy, for any value (s, e) ∈ E,

that is reachable using only the moves of Eve, Adam has a move ⟪t,a, t′⟫ such that the

origin is not reachable from (s, e + a). This is verified in the loop on line 4. It both cases

the correct output is produced.

It is clear that the algorithm terminates. In total, there are at most m`+m calls to solve

the reachability in Zd-VASS. The reachability in Zd-VASS can be solved in non-deterministic

polynomial time, and thus Algorithm 6.1 is in NP.

We are ready to consider the general case of k-control Zd-VASS game (A,E, [s0, t0,x0]).

Recall that k is fixed and is not part of the input. Lemma 6.2 generalizes in a natural way.

Denote by Ek the set of all pairs in QE × Zd from which the shortest path to reach an

element of QE × {0} is of length k. That is,

Ek =
{

(s,x) | (s,x)→k (s′,0) for some s′ ∈ QE and

(s,x) 6→k′ (s′′,0) for any s′′ ∈ QE , k′ < k
}

The size of Ek is at most
(
m+k−1

k

)
=
(
m+k−1

k

)
, which is polynomial in the size of the input.

The relationship between E2 and E of a Z2-VAS game is illustrated in Figure 6.3.

Lemma 6.4. Let σ be a winning strategy of Adam in a k-control Zd-VASS game with a

safety objective (A,E, [s0, t0,x0]). Then also σ′ is a winning strategy of Adam, where

σ′([s, t,x]) =

Skip if (s,x) /∈ E ∪ E2 ∪ . . . ∪ Ek

σ([s′, t′,y]) if (s,x) ∈ E ∪ E2 ∪ . . . ∪ Ek for some [s′, t′,y].

104 Reino Niskanen

0

E

E2

Figure 6.3: An illustration of E2 and E in a Z2-VAS game.

Proof. Let σ be a winning strategy of Adam. Consider (s,x) ∈ Ek that is reachable from

[s0, t0,x0] using Eve’s moves only. Because σ is a winning strategy, there are k′ ≤ k moves

of Adam application of which leads to Eve not being able to reach QE × {0}. Using the

same reasoning as in Lemma 6.2, it is clear that Adam can play these sequence of moves

starting from Ek′ and still win.

By repeating the procedure for every element of E ∪E2 ∪ . . .∪Ek, we obtain a winning

strategy σ′, where Adam skips outside E ∪ E2 ∪ . . . ∪ Ek.

We illustrate the need of Lemma 6.4, when k > 1 in the next example.

Example 6.5. Consider a k-control Z2-VAS game (A,E,x0), where Adam’s move set is

A = {(1, 1)}, Eve’s move set is E = {(−1, 0), (0, 1), (2, 1)} and x0 = (−2n,−n−1), for some

n > 1, is the initial configuration. If k = 1, then Eve has a winning strategy. Indeed, if

Adam skips and the current configuration is not (0,−1), Eve plays (2, 1). Then, at (0,−1),

Eve plays (0, 1) and wins the play. Consider then a play where Adam plays his move. After

his move, the configuration is (−2n′,−n′−1) + (1, 1) = (−2n′+ 1,−n′) for some 0 ≤ n′ ≤ n.

After this Eve plays (−1, 0), followed by (2, 1) n′ times and wins the play.

In contrast, if k > 1, then Adam has a winning strategy. His strategy is to play (1, 1)

if the configuration is (−2n′,−n′ − 1) or (−2n′,−n′) for some n′ > 0. Note, that Adam

has to play for the first time before the configuration is (0,−1), as in that case Eve has a

winning strategy. Two plays are depicted in Figure 6.4.

This example illustrates that this approach of k = 1 is not sufficient for larger k. Namely,

Adam might not have a winning strategy if he only moves when the configuration is in E.

Section 6.1. Safety of k-control Zd-VASS games 105

x0

(−2,−2)

(0,−1)

(1, 0)(0, 0)

x0

(−2,−2)

(−1,−1)

(−1, 0) (0, 0)

Figure 6.4: Plays of two k-control Zd-VAS games of Example 6.5, with k = 1 (left) and
k > 1 (right). Red points are elements of E and orange are elements of E2.

Now, we are ready to prove the main result of the section.

Theorem 6.6. It is decidable in NP, which player has a winning strategy in a k-control

Zd-VASS game with a safety objective for Adam.

Proof. We argue that Algorithm 6.2 solves the game and is in NP.

We prove the correctness of the algorithm by induction on k. If k = 0, then the algorithm

produces the correct output as in this case Adam cannot influence the play and Eve has a

winning strategy if and only if 0 is reachable in the underlying one-player Zd-VASS. This is

checked on lines 2 and 5. Assume that the algorithm is correct for 0 ≤ k′ < k. Consider

then k′ + 1. By Lemma 6.4, it is enough to consider plays, where Adam skips outside of⋃k′+1
i=1 Ei. Assume first that Eve has a winning strategy. That is, there exists a reachable

element (s, e) ∈ ×Ek′+1 from which Eve has a winning strategy in the k′-control Zd-VASS

game with the initial configuration [s, t, e+a] for any ⟪t′,a, t⟫. By our induction hypothesis,

the algorithm returns the correct winner of k′-control Zd-VASS game and thus also returns

the correct result for k′ + 1 as well. The case where Adam has a winning strategy is proved

analogously.

It is clear that Algorithm 6.2 terminates. If Eve has a winning strategy, the algorithm

ControlZVASS(A,E, [s0, t0,x0], k) will solve at most
(
m+k−1

k

)
+m instances of reachabil-

ity problem of the underlying Zd-VASS, and make at most `
(
m+k−1

k

)
recursive calls for

ControlZVASS(A,E, [s, t,x], k − 1). The complexity of Algorithm 6.2 is O(`kmk2), where

`k and mk2 are polynomial in the size of the input, together with the complexity of solving

the reachability problem in the underlying Zd-VASS, which is in NP.

Corollary 6.7. Deciding which player has a winning strategy in a k-control Zd-VASS

games with a safety objective is NP-complete.

Proof. The upper bound follows from Theorem 6.6 and the lower bound from the observation

in the beginning of the section by considering 0-control Zd-VASS games.

106 Reino Niskanen

1 function ControlZVASS(A,E, [s0, t0,x0], k)

input : A k-control Zd-VASS game (A,E, [s0, t0,x0]).
output : The player that has a winning strategy in the safety game.

2 if ZVASS(E, (s0,x0), (s,0)) = Adam forall s ∈ QE then
3 return Adam;
4 else
5 if k = 0 then
6 return Eve
7 else

8 foreach element (s, e) ∈ Ek do
9 if ZVASS(E, (s0,x0), (s, e)) = Eve and forall ⟪t0,a, t⟫ ∈ A,

ControlZVASS(A,E, [s, t, e + a], k − 1) = Eve then return Eve;

10 end
11 return Adam;

12 end

13 end

14 end

Algorithm 6.2: Solving a k-control Zd-VASS games with a safety objective, where k
is fixed.

We conclude the section with considerations of safety in k-control Zd-VAS games. It

is clear that the upper bound from Theorem 6.6 holds for stateless games as well. The

lower bound also holds as it has been proven in [77] that the reachability for Zd-VAS is

NP-complete.

Corollary 6.8. Deciding which player has a winning strategy in a k-control Zd-VAS games

with a safety objective for Adam is NP-complete.

Note, that it is possible to extract winning strategies from Algorithms 6.1 and 6.2.

6.2 Safety of k-control Zd-VASS games with the target de-

fined by a hyperplane

In this section, we consider generalization of the objective of k-control Zd-VASS games

with a safety objective. We extend the target from a single point in Zd, first to a line, and

then to a hyperplane, and prove that the complexity does not increase. This extension

is similar to [47, 48], where the authors studied extensions of the orbit problem. Recall,

Chapter 6. Controllability in Zd-VASS games 107

that in the orbit problem, we are given a single rational matrix and a vector and iterate

the vector with the matrix. The question considered in [47] was whether a polyhedron

can be reached by this iteration. The authors proved that the problem is in PSPACE, for

arbitrary sized matrices and polyhedra of dimension at most two, or when both the matrix

and the polyhedron is of dimension three. On the other hand, in [48], where the target

is a general vector space, the problem is in PTIME if the vector space is of dimension one

and in NPRP if the target space has dimension two or three. Note that both problems are

over rational numbers, while we restrict ourselves to integers. Also, our model has simpler

transformations, as the moves are vector additions rather than linear transformations. On

the other hand, we are not restricted to a single move and, moreover, we are interested in a

game scenario rather than single-player iteration.

In the first variant we study, Eve’s objective is to reach a line L rather than the origin. By

considering a line L with irrational slope, we can see that lower bounds follow from k-control

Zd-VASS games with the origin as the objective. On the other hand, a line with rational

slope can be added into the algorithms as an additional equation that needs to be satisfied.

Indeed, for example, Algorithm 6.2 can be modified by replacing ZVASS(E, (q0,x0), (q,0))

on the second line by ZVASS(E, (q0,x0), (q,x)) and checking whether x ∈ L. Clearly, the

complexity does not change as a linear equation can be solved in polynomial time.

Theorem 6.9. Let L be a line in Rd. Deciding which player has a winning strategy in a

k-control Zd-VASS game with safety objectives, where the targets are integer points of L, is

NP-complete.

Similarly, if the target is given by a system of linear equations with equalities and

inequalities, then the game can be solved in non-deterministic polynomial time. A play

of a k-control Zd-VAS game, where the objective is defined by two linear equations with

inequality and a single equation with equality, is depicted in Figure 6.5.

We write a system of linear equations with equalities and inequalities in a matrix form.

A system of linear equations

m11x1 +m21x2 + . . .+md1xd ∼1 b1,

...

m1nx1 +m2nx2 + . . .+mdnxd ∼n bn,

108 Reino Niskanen

Figure 6.5: An illustration of a two-dimensional k-control Z-VAS game, where the objective
is defined by a system of linear equations with equalities and inequalities.

where ∼i∈ {=, 6=, <,>} for all i = 1, . . . , n, can be written as M ∈ Zd×n, b ∈ Zn, and

∼= (∼1, . . . ,∼n).

Theorem 6.10. Consider a system of linear equations with equalities and inequalities

defined by M ∈ Zd×n, b ∈ Zn and ∼∈ {=, 6=, <,>}n. Deciding which player has a winning

strategy in a k-control Zd-VASS game with safety objectives, where the targets satisfy the

system of linear equations, is NP-complete.

Proof. Let M ∈ Zd×n, b ∈ Zn and ∼∈ {=, 6=, <,>}n, be a system of linear equations

with equalities and inequalities. Finding x1, . . . , xd ∈ Z satisfying these equations is a

well-known NP-complete problem. Incorporating solving this system of linear equations into

Algorithm 6.2 does not increase the complexity and thus the problem is in NP. Hardness

follows by the same arguments as in the previous section. That is, by considering a strategy

of Adam where he only skips.

On the other hand, if the target set is defined by a semi-linear set, the complexity grows

significantly. The problem of checking whether x is in a given semi-linear set is in double

exponential time [69], which increases the complexity of the whole algorithm.

6.3 Reachability of k-control Zd-VASS games

In this section, we consider the dual setting, where Eve can play her moves k times and

Adam has unlimited resources. First, we present a simple lemma showing that Adam has

a winning strategy in a Zd-VASS game where he has more moves. This is illustrated in

Figure 6.6.

Lemma 6.11. Let (A,E, [s0, t0,x0]) be a Zd-VASS game. If for each s ∈ QE and t ∈ QA,

deg(s) < deg(t) and deg(t) > 1, then Adam has a winning strategy.

Section 6.3. Reachability of k-control Zd-VASS games 109

Proof. Let [s, ṫ,x] be a configuration of the game. Since deg(t) > 1 and deg(t) > deg(s),

there exists at least one move ⟪t,a, t′⟫ such that from [ṡ, t′,x + a], no move of Eve results

in [s′, t′,0]. This is obvious as otherwise, there would exist a move of Eve ⟪s, e, s′⟫ ∈ QE
such that for two moves of Adam ⟪t,a1, t1⟫, ⟪t,a2, t2⟫ ∈ QA, where a1 6= a2, such that

x + a1 + e = 0 = x + a2 + e.

x0

(0, 0)

Figure 6.6: A Z2-VAS game, where Adam has moves (−3, 0), (0,−2) and (1, 1) and Eve
has moves (1,−1) and (−2, 1).

Before considering Zd-VASS games, we consider stateless games and prove that the

winner can be decided in polynomial time. We prove the claim by showing that Eve can

reach only finite number of points in Zd, that is, the arena is finite.

Theorem 6.12. Deciding which player has a winning strategy in k-control Zd-VAS games

with a reachability objective is in PTIME.

Proof. We observe that only a finite area needs to be considered. Indeed, by a similar

argument as in Lemma 6.11, Adam can avoid the origin if Eve played Skip. That is, after

Eve has played all k moves, Adam has a trivial winning strategy.

If we only consider effect of Eve’s moves during a play, then there are at most
(
m+1+k−1

k

)
vectors she can reach. We denote this number by q. It is clear that Adam wins as soon as

he can reach more than q vectors. Due to commutativity of vector addition, the arena is

finite and polynomial in size of the input. We can compute whether the initial vector is

winning for Eve in polynomial time using the standard attractor construction.

It is easy to see that, by guessing the state transitions of the players’, deciding which

player has a winning strategy in a reachability k-control Zd-VASS game is in NP. This

contrasts the safety k-control games where there was no complexity difference between the

variant with states and without states.

110 Reino Niskanen

Theorem 6.13. Deciding which player has a winning strategy in reachability k-control

Zd-VAS games is in NP.

6.4 Concluding remarks and open problems

In this chapter, we considered k-control Zd-VASS games with limited resources. If we limit

the available resources of Adam by allowing him to only play at most k times, then the

problem of deciding the winner is NP-complete. On the other hand, if we limit number of

times Eve is allowed to play, then the problem is in PTIME for stateless games and in NP

for games with states.

The k-control VAS games remain open for future research. The reachability problem

for VAS is a hard problem that has been known to be decidable [118] for over 35 years, and

only recently Leroux and Schmitz provided the first known upper bound [109]. Also the

corresponding k-control game should be challenging.

In our considerations, the number of Adam’s moves, k, is not part of the input. If k is a

part of the input, then the algorithms for k-control Zd-VAS games and k-control Zd-VASS

games with states are exponential in contrast to general Z2-VAS games, where checking for

existence of a winning strategy is undecidable.

Chapter 7

Single-player reachability games

In this chapter, we shift our focus from two-player dynamics to one-player systems. While

most of the thesis is about different two-player games, it is vital to understand the

behaviour of the system with a single player. Consider for example braid games on B3

of subsection 3.2.5. We showed that checking for existence of a winning strategy is an

undecidable problem. On the other hand, if Adam can only play a trivial braid, then in

this single-player game, it is decidable in NP whether the trivial braid can be reached from

the trivial braid and NP-complete from a given braid [96].

We consider two one-player systems. First, we consider the reachability problem for

register machines with polynomial updates and after that the identity problem for matrices.

Polynomial register machines are a generalization of VASS and related models such as

VASS with resets [63] and Zd-VASS [77]. Consider the operations on the counter in a VASS

or a Z-VASS, they are all of the form x = x+ a for some a ∈ Z, while the resets are of the

form x = 0 ·x. In polynomial register machines, the update function can be any polynomial

with integer coefficients.

More precisely, we consider the reachability problem for polynomial iteration. That

is, we are given a set of integer valued polynomials {p1(x), p2(x), . . . , pn(x)} ⊆ Z[x], two

integers x0 and xf , and are asked whether there exists a finite sequence of polynomials

pi1(x), pi2(x), . . . , pij (x) that maps x0 to xf , i.e., whether

pij (pij−1(· · · pi2(pi1(x0)) · · ·) = xf .

The problem can be seen as a special case of polynomial register machines of [68], where

111

112 Reino Niskanen

the machine has a single state. In [68], it was proved that the reachability problem is

PSPACE-complete. We show that the reachability problem for polynomial iteration has

the same complexity. The upper bound follows naturally from [68] and we highlight the

authors’ observations regarding this surprising complexity. The first observation is that

the reachability set is not semi-linear, which can be seen by considering the polynomial

p(x) = x2 and its reachability set. The second observation is that the representation of

evaluations of x grows exponentially with the number of times a polynomial is applied.

Example 7.1. Let P = {x2+x+3, x4+2x3+3x2+2x+1,−x+5} be the set of polynomials,

x0 = 6 be the initial integer and xf = 0 be the target integer. Denote p1(x) = x2 + x+ 3,

p2(x) = x4 + 2x3 + 3x2 + 2x+ 1 and p3(x) = −x+ 5. We see that, for these polynomials,

xf is reachable from x0 as p3(p1(p2(p3(6)))) = 0. This iteration is depicted in Figure 7.1

0 6

p3(x)

p2(x)
p1(x)

p3(x)

Figure 7.1: Polynomial iteration.

To prove the lower bound, we need to modify the proof of PSPACE-hardness for register

machines with polynomial updates to remove the need for the state structure of the

machine. To this end, we follow the proof of [68] and reduce the reachability problem for

linear-bounded automata to polynomial iteration. Linear-bounded automata were studied

in [106,107], where the authors showed that the linear-bounded automata accept exactly

context-sensitive languages. A linear-bounded automaton is a Turing machine with a

finite tape whose length is bounded by a linear function of the length of the input. The

reachability problem for the linear-bounded automaton is to decide whether starting from

the initial state and the read/write head in the leftmost cell of the empty tape, the machine

can reach a final state with the empty tape. The length of the tape is n and is part of

the input. The problem is a well-known PSPACE-complete problem. We use an encoding

similar to the encoding used in [68], where the tape content of a linear-bounded automaton

was encoded as a solution to a system of linear congruences and the state structure was

encoded as a state structure of a polynomial register machine. Unlike Finkel’s, Göller’s and

Chapter 7. Single-player reachability games 113

Haase’s encoding, we will also encode the state structure of the linear-bounded automaton

as a solution to additional linear congruences making our automaton stateless.

We also consider iterating multidimensional polynomials and show that the reachability

problem is undecidable for three-dimensional polynomials. The result is not surprising

as the reachability problem for register machines with two-dimensional affine updates is

undecidable [137]. Unfortunately, we are not able to obtain as strong a result for polynomial

iteration as, in our construction, simulating the state structure requires an additional

dimension and polynomials of higher degree than one.

In the second section, we consider the identity problem for matrix semigroups. This

model is similar to the single-player variant of matrix games on vectors of subsection 3.2.4,

but rather than considering whether a given vector can be transformed into a target vector

using provided matrices, we are asked whether the identity matrix can be constructed via

matrix multiplication.

First, in analogy to a result from 1999 on non-existence of embedding into 2× 2 matrix

semigroups [36], we expand a horizon of the decidability area for matrix semigroups and

show that there is no embedding from a set of pairs of words over a semigroup alphabet

to any matrix semigroup in SL(3,Z) and in H(3,C). From the first result it follows

almost immediately that there is no embedding from a set of pairs of group words into

Z3×3.12 The matrix semigroup in SL(3,Z) has attracted a lot of attention recently as it

can be represented by a set of generators and relations [55, 56] similar to SL(2,Z), where it

was possible to convert numerical problems into symbolic problems and solve them with

novel computational techniques, see [11,45,134,135]. Comparing to the relatively simple

representation of SL(2,Z), the case of SL(3,Z) looks more challenging, as it contains many

types of non-commutative and partially commutative elements.

As the decidability status of the identity problem in dimension three is a long standing

open problem, we look for a subclass of SL(3,Z) for which the identity problem could

be decidable following our result on existence of embeddings. The Heisenberg group is

an important subgroup of SL(3,Z) which is useful in the description of one-dimensional

quantum mechanical systems [32,74, 100]. We show that the identity problem for a matrix

semigroup generated by matrices from H(3,Q) is decidable in polynomial time. Furthermore,

12The idea that such a result may hold was motivated by analogy from combinatorial topology, where the
identity problem is decidable for the braid group B3 which is the universal central extension of the modular
group PSL(2,Z) [133], the embedding for a set of pairs of words into the braid group B5 exists, see [18], and
non-existence of embeddings were proved for B4 in [4]. So SL(3,Z) was somewhere in the goldilocks zone
between B3 and B5.

114 Reino Niskanen

we extend the decidability result to H(d,Q) and show that the problem is still solvable in

any dimension. As the identity problem is computationally equivalent to the subgroup

problem all above results hold for the subgroup problem as well.

Moreover, we fill the gap between decidability and undecidability results by improving

the first undecidability result for the identity problem by substantially reducing the bound

on the size of the generator set from 48 to eight for 4× 4 matrix semigroups over integers.

The better bound is achieved by developing a novel reduction technique which exploits

the properties of anti-diagonal coordinates, in contrast to the previous technique, where a

computation is repeated over several disjoint group alphabets [14].

7.1 Iterating polynomials

In this section, we prove that the reachability problem for iterating polynomials is PSPACE-

complete. The proof of the lower bound is similar to the proof of PSPACE-hardness of

the reachability problem for polynomial register machines. Both proofs reduce from the

reachability problem for LBA. Let us fix an LBA M with a tape of n letters for the

remainder of the section. The main difference of the proofs is that in [68], the states of PRM

contain partial information from a configuration of M: the state of M, the position of the

read/write head and the letter that the head is currently reading, while the tape content is

encoded as an integer and modified by the transitions according to the instructions of M.

In our proof, the whole configuration of M is encoded as an integer and updated according

to the instructions of M.

First, let us recall some definitions from [68]. Let pi denote the (i+ 3)-th prime number,

that is, p1 = 7, p2 = 11, . . . and let P be the product of m such primes, P =
∏m
i=1 pi, where

m = n+ n · |Q|.
The main idea of the encoding is to consider the integer line Z modulo P and integers

as the corresponding residue classes. We are interested in the residue classes that satisfy

linear congruences modulo pi for different pi. The first n primes will correspond to each

cell of the tape and the next n · |Q| primes will correspond to the head being in a particular

state in a particular cell. Note, that for the sake of simplicity, we omit the behaviour of

the head on the border letters. In fact, it is quite easy to deal with them as, among other

information, we also encode the position of the head into our integer. Then it is easy to

hard-code the behaviour ofM on the border letters into corresponding polynomials. Indeed,

consider a configuration [q, 1, .w/] such that the next configuration is [q′, 0, .w′/], where

Section 7.1. Iterating polynomials 115

w[i] = w′[i] for i = 2, . . . , n. As the head respects the border letters, the next configuration

is [q′′, 1, .w′/]. That is, we need to simulate a transition from state q to q′′ and possible

rewriting of the first letter of w.

We are not interested in all residue classes modulo P and only a tiny fraction of the

residue classes is used to store information. A residue class r is of interest to us, if for every

1 ≤ i ≤ m, there is some bi ∈ {0, 1, 2} such that r ≡ bi mod pi. We call such residue class

sane and denote the set of all sane residue classes by S. A configuration [qj , i, .w/], where

i = {1, . . . , n} and w ∈ {0, 1}n, corresponds to a residue class r satisfying the system of

congruence equations

r ≡ w[1] mod p1,

r ≡ w[2] mod p2,

...

r ≡ w[n] mod pn,

r ≡ 1 mod p` if ` = n+ j + (i− 1)|Q|,

r ≡ 0 mod p` if ` > n and ` 6= n+ j + (i− 1)|Q|.
(7.1)

Intuitively, the first n congruence equations encode the tape content and the next n|Q|
equations encode the state and position of the head. We illustrate how a configuration

[q3, 2, .1001 · · · 1/] of an LBA corresponds to the residue class r satisfying the system of

linear congruences (7.1) in Figure 7.2.

Since the head of an LBA modifies the tape locally, to simulate a transition, for example,

δ(qj , a) = (qk, a
′, L), it is enough to check that the residue class r satisfies congruence

equations

r ≡ 1 mod pn+j+(i−1)|Q| and r ≡ a mod pi

for some i ∈ {1, . . . , n}. Then, the transition is simulated by moving from r to a residue

class r′ satisfying congruence equations

r′ ≡ 0 mod pn+j+(i−1)|Q|,

r′ ≡ 1 mod pn+k+(i−2)|Q|,

r′ ≡ a′ mod pi,

r′ ≡ r mod p` for all

` ∈ {1, . . . , n+ n · |Q|} \ {i, n+ j + (i− 1)|Q|, n+ k + (i− 2)|Q|}.

116 Reino Niskanen

q3

. /· · ·
n

tape
content

1st cell 2nd cell nth cellPosition of the head:

...

mod p1
mod p2

...

mod pn

...

mod pn+1
mod pn+2
mod pn+3

...

mod pn+|Q|

...

mod pn+|Q|+1
mod pn+|Q|+2
mod pn+|Q|+3

...

mod pn+2|Q|

· · · ...

mod pn+(n−1)|Q|+1
mod pn+(n−1)|Q|+2
mod pn+(n−1)|Q|+3

...

mod pn+n|Q|

←− state q1
←− state q2
←− state q3

...

←− state q|Q|

Figure 7.2: An illustration how configuration [q3, 2, .1001 · · · 1/] of an LBA (left) is encoded
as residue class r satisfying a system of linear congruences. Here, letters 0 and 1 are
represented by white and grey squares, respectively. A grey square in the ith cell column
and the jth state row represents the head being in the ith cell in state qj .

That is, to simulate a transition of the LBA, first we need to check that the current residue

class r corresponds to a configuration [qj , i, .w/], where w[i] = a, for some i and the other

letters of w are irrelevant. Then we move to the residue class r′ corresponding to the

configuration [qk, i− 1, .w′/], where w′[i] = a′ and w′[`] = w[`], for all ` = {1, . . . , n} \ {i}.
Analogously, to simulate a transition where the head moves to the right, similar checks

need to be performed.

To this end, we need to locally modify the residue classes. That is, we need to have

a polynomial p(x) such that p(r) = r′. There are three mappings that are defined for

each index i ∈ {1, . . . ,m}, flipi,eqzeroi,eqonei : S → S. The mapping flipi is used to

change the value on the right-hand side in the congruence of pi, the mappings eqzeroi and

eqonei check that on the right-hand side of the congruence of pi is zero or one, respectively.

Let us describe the mappings in more details. For the mapping flipi(r) there are three

cases depending on whether r ≡ 0, 1, 2 mod pi:

if r ≡ 0 mod pi : if r ≡ 1 mod pi : if r ≡ 2 mod pi :

flipi(r) ≡

1 mod pi

r mod pj
flipi(r) ≡

0 mod pi

r mod pj
flipi(r) ≡

2 mod pi

r mod pj ,

Chapter 7. Single-player reachability games 117

where j 6= i.

Similarly, for the remaining two mappings, there are three cases depending on whether

r ≡ 0, 1, 2 mod pi:

if r ≡ 0 mod pi : if r ≡ 1, 2 mod pi :

eqzeroi(r) ≡

0 mod pi

r mod pj
eqzeroi(r) ≡

2 mod pi

r mod pj

if r ≡ 1 mod pi : if r ≡ 0, 2 mod pi :

eqonei(r) ≡

1 mod pi

r mod pj
eqzeroi(r) ≡

2 mod pi

r mod pj ,

where j 6= i.

The move δ(qj , 0) = (qk, 0, L) of LBAM when the head is in ith position is now realized

by a composition of the functions

flipn+k+(i−2)|Q| ◦ flipn+j+(i−1)|Q| ◦ eqzeroi ◦ eqonen+j+(i−1)|Q|.

In Figure 7.3 we illustrate how moves δ(qj , 0) = (qk, 0, L) and δ(qj , 1) = (qk, 0, R) of LBA

M are realized for the configuration [q, i, .w/]. Note, that we do not assume that q = qj

or that w[i] = 0 for the first move or w[i] = 1 for the second move. Moves eqzero` and

eqone` verify that the bit encoded in the residue class modulo p` is 0 or 1, respectively.

δ(qj , 0) = (qk, 0, L)

eqzeroi

flipn+k+(i−2)|Q| ◦ flipn+j+(i−1)|Q| ◦ eqonen+j+(i−1)|Q|

δ(qj , 1) = (qk, 0, R)

flipi ◦ eqonei

flipn+k+i|Q| ◦ flipn+j+(i−1)|Q| ◦ eqonen+j+(i−1)|Q|

Figure 7.3: An illustration of mappings corresponding to moves of LBA.

The crucial ingredient for the simulation is that the functions flipi, eqzeroi and

eqonei can be realized by polynomials with coefficients in {0, . . . , P − 1}. We present the

lemma of [68].

118 Reino Niskanen

Lemma 7.2. For any 1 ≤ i ≤ m and any of flipi,eqzeroi,eqonei : S → S, there is

a quadratic polynomial with coefficients from {0, . . . , P − 1} that realizes the respective

function.

Proof. First, we show the polynomials corresponding to the mappings flipi, eqzeroi and

eqonei that map the values correctly when considering only Z/piZ. Then we mention how

to modify them to also map the values correctly for all Z/pjZ, where j 6= i.

It is easy to verify that the polynomials

peqzero(x) = −x2 + 3x,

peqone(x) = x2 − 2x+ 2 and

pflip(x) = 3 · 2−1x2 − 5 · 2−1x+ 1

realize the respective mappings. Note that since pi ≥ 7, 2 has a multiplicative inverse. For

example, let pi = 11, then 2−1 = pi−1
2 = 6 and the evaluations of polynomials peqzero(x),

peqone(x) and pflip(x) are presented in Table 7.1.

x peqzero(x) peqone(x) pflip(x)

0 −02 + 3 · 0 ≡ 0 02 − 2 · 0 + 2 ≡ 2 3 · 6 · 02 − 5 · 6 · 0 + 1 ≡ 1
1 −12 + 3 · 1 ≡ 2 12 − 2 · 1 + 2 ≡ 1 3 · 6 · 12 − 5 · 6 · 1 + 1 = −11 ≡ 0
2 −22 + 3 · 2 ≡ 2 22 − 2 · 2 + 2 ≡ 2 3 · 6 · 22 − 5 · 6 · 2 + 1 = 13 ≡ 2

Table 7.1: Evaluations of polynomials peqzero(x), peqone(x) and pflip(x) in Z/11Z

Although these polynomials realize the conditions of flipi, eqzeroi and eqonei for i,

they (generally) do not realize the conditions when j 6= i. That is, peqzero(x) 6= x when

considering the polynomials in Z/pjZ. To illustrate this, consider peqzero(1) as above, but

now with respect to pj = 7. By the definition of eqzeroi, it should remain unchanged, that

is peqzero(1) = 1 with respect to pj . This is not the case, as 1 and 2 are different residue

classes. To obtain polynomials corresponding to flipi, eqzeroi and eqonei, we consider

polynomials peqzero(x), peqone(x) and pflip(x) as a2x2 + a1x+ a0 and construct a system of

congruences for each ` = {0, 1, 2}:

x ≡ a` mod pi

x ≡ b` mod pj for each j ∈ {1, . . . ,m} \ {i},

Section 7.1. Iterating polynomials 119

where b1 = 1 and b0 = b2 = 0. By applying the Chinese remainder theorem, we obtain the

unique solution for each coefficient and obtain the polynomials peqzero,i(x), peqone,i(x) and

pflip,i(x) by replacing the original coefficients with these unique solutions.

Now, for each i ∈ {1, . . . ,m} and each transition δ(qj , a) = (qk, a
′, D), where a, a′ ∈

{0, 1} and D = {L,R}, there exists a polynomial of at most degree 32 realizing this

transition by Lemma 7.2. These polynomials are exactly our set of polynomials P. Note,

that our simulation is slightly different from [68] as there, in each step, the PRM guessed

(and verified) the content of the cell where the head moves in the successive configuration

and only correct moves are available due to the state structure. In our model, as there is

no state structure, each time a move is simulated, we have to verify that indeed both the

state and current cell are correct. The initial value x0 satisfies

x0 ≡ 1 mod pn+1 and x0 ≡ 0 mod p` if ` 6= n+ 1.

The main idea is still the same, ifM is simulated incorrectly, the value x becomes 2 modulo

some prime p` and will remain 2 forever.

It should be also pointed out that simulating behaviour on the border of the tape is easy

and results in polynomials of at most degree 32. Moreover, the sequence of configurations

[qj , 1, .w/]→ [qk, 0, .w
′/]→ [qj , 1, .w

′/] does not require any special considerations as each

polynomial contains eqonen+j ensuring that this sort of loop cannot be used to unfaithfully

modify the first letter on the tape.

By induction on the length of the run of LBA M, it is easy to see that [q1, 0, .0
n/]→∗

[qf , 0, .0
n/] in M if and only if a residue class r, such that

r ≡ 1 mod pn+|Q| and r ≡ 0 mod p` if ` 6= n+ |Q|,

is reachable from x0 by applying polynomials from P . To reach 0, we need three additional

polynomials: one polynomial to move to a residue class r′ such that r′ ≡ 0 mod p`

for all 1 ≤ ` ≤ m, and two polynomials to move from the integer r′ to 0. The first

polynomial is pflip,n+|Q|(peqone,n+|Q|(x)) as we assumed that the final state appears only in

the configuration [q|Q|, 0, .0
n/]. The latter polynomials are p+(x) = x+P and p−(x) = x−P .

We have proved the following lemma:

Lemma 7.3. The reachability problem for polynomial iteration is PSPACE-hard for polyno-

mials with integer coefficients.

120 Reino Niskanen

We illustrate the simulation of an LBA with polynomials.

Example 7.4. Let M be an LBA with a single state, a tape with two cells and a move

δ(q1, 0) = (q1, 1, R). We need two primes for the tape and another two for the head. That

is, we use primes 7, 11, 13 and 17. For the sake of readability, we present all the integers

modulo P = 7 · 11 · 13 · 17 = 17017. The integers r and s representing configurations

[q1, 1, .00/] and [q1, 2, .10/] can be solved from the system of congruences

r ≡ 0 mod 7, s ≡ 1 mod 7

r ≡ 0 mod 11, s ≡ 0 mod 11,

r ≡ 1 mod 13, s ≡ 0 mod 13,

r ≡ 0 mod 17, s ≡ 1 mod 17

using the Chinese remainder theorem. That is, r = 3927 and s = 715. The move

δ(q1, 0) = (q1, 1, R) is realized by flip1 ◦ eqzero1 ◦ flip4 ◦ flip3 ◦ eqone3. By Lemma 7.2,

eqone3 is realized by a quadratic polynomial a′2x
2 + a′1x+ a′0 with coefficients satisfying

the congruences

a′2 ≡ 0 mod 7, a′1 ≡ 1 mod 7, a′0 ≡ 0 mod 7,

a′2 ≡ 0 mod 11, a′1 ≡ 1 mod 11, a′0 ≡ 0 mod 11,

a′2 ≡ 1 mod 13, a′1 ≡ −2 mod 13, a′0 ≡ 2 mod 13,

a′2 ≡ 0 mod 17, a′1 ≡ 1 mod 17, a′0 ≡ 0 mod 17.

Solving these systems using the Chinese remainder theorem, we see that peqone,3(x) =

3927x2+5237x+7854. The other polynomials are solved from similar systems of congruences

and are

pflip,3 = 14399x2 + 11782x+ 3927, pflip,4 = 12012x2 + 6007x+ 8008,

peqzero,1 = 7293x2 + 2432x, pflip,1 = 14586x2 + x+ 9724.

Finally, the composition of the polynomials is p(x) = 11968x4 + 8041x3 + 9207x2 +

11056x+ 8569. It can be easily verified that p(x) simulates the move δ(q1, 0) = (q1, 1, R)

from the configuration [q1, 1, .00/] correctly, i.e., p(r) = s.

Note, that in the previous example, the polynomial composed of five quadratic poly-

Chapter 7. Single-player reachability games 121

nomials is not of degree 32 but only of degree four. This is the case in general due

to the coefficients of the polynomials satisfying the particular congruences. For exam-

ple, consider the composition of two quadratic polynomials Polyi and Poly′`, where

Poly,Poly′ ∈ {flip,eqone,eqzero} and i 6= `. Let α, β be the coefficients of the

highest power. They can be expressed as integers

α = x ·
m∏
j=1,
j 6=i

pj and β = y ·
m∏
j=1,
j 6=`

pj ,

where x, y ∈ Z and i, ` ∈ {1, . . . ,m} and i 6= `. Now, in the composition of Polyi and

Poly′`, the coefficient of x4 is α · β, which is

α · β = x ·
m∏
j=1,
j 6=i

pj · y ·
m∏
j=1,
j 6=`

pj = xy ·
m∏
j=1,
j 6=i,`

pj ·
m∏
j=1

pj .

The coefficient is divisible by P and, thus, can be replaced by 0 in our considerations. In a

similar fashion, we can show that for the polynomial p(x) simulating a transition of M, all

the coefficients of degrees higher than four are divisible by P .

To prove that the reachability problem is PSPACE-complete, it remains to prove that

the problem can be solved in PSPACE.

Lemma 7.5. The reachability problem for polynomial iteration is PSPACE for polynomials

with integer coefficients.

Proof. Consider the set P as a PRM with a single state and where the transitions are

labelled by the polynomials of P. The reachability problem for PRM can be solved in

PSPACE and thus also the reachability problem for polynomial iteration is in PSPACE.

We highlight some crucial observations from the proof that the reachability problem for

PRM is in PSPACE of [68]. Firstly, most of the polynomials have monotonic behaviour when

integers with large absolute values are evaluated, and this absolute value is of polynomial

size of the input. Secondly, the only polynomials that do not have monotonic behaviour

are of the form ±x+ b for some b ∈ Z. They can be simulated by a one-dimensional vector

addition system with states extracted from the given PRM. Moreover, simulating to which

integers, with small absolute values, the polynomials of the form ±x+ b can return to can

be done in polynomial space.

122 Reino Niskanen

Combining lemmas 7.3 and 7.5, we have our main result.

Theorem 7.6. The reachability problem for polynomial iteration is PSPACE-complete for

polynomials with integer coefficients.

Next, we extend the previous results by considering polynomials over the field Q.

Additionally, we modify the polynomials to ensure that the image is always in [0, 1].

Let p(x) be a polynomial from our set P. Then the corresponding set of rational

polynomials Q has a polynomial p′(x) = 1
p(1
x

)
. It is easy to see that in fact p′ is of the form

r(x)
q(x) for some r(x), q(x) ∈ Z[x]. We can inherit the lower bound for the reachability for

rational polynomials from Lemma 7.3.

Corollary 7.7. The reachability problem for polynomial iteration is PSPACE-hard, when

the polynomials are of form r(x)
q(x) : [0, 1]→ [0, 1] over polynomial ring Q[x].

Finally, we prove that the reachability problem for multidimensional polynomial iteration

is undecidable. We construct three-dimensional polynomials that simulate a two-dimensional

PRM with affine updates with undecidable reachability problem [137].

Theorem 7.8. The reachability problem for multidimensional polynomial iteration is

undecidable already for three-dimensional polynomials.

Proof. Let M be a two-dimensional PRM with affine updates and n states. Let Q =

{q1, . . . , qn} be its states and ∆ the set of transitions. Without loss of generality, we can

assume that q1 is the initial state and qn is the final state. We construct a three-dimensional

set of polynomials P such that the first two dimensions are updated as in M and the third

dimension is used to simulate the state transition of M. As in the beginning of the section,

let pi be (i+3)-th prime number and P be the product of n primes P =
∏n
i=1 pi. Intuitively,

we will encode current state qj into a residue class r satisfying r ≡ 1 mod pj and r ≡ 0

mod p` if ` 6= j. Then a transition qj → qk is simulated by a polynomial corresponding to

flipk ◦ flipj ◦ eqonej . By Lemma 7.2, such polynomials exist. More formally, for each

transition (qj , (p1(x), p2(x)), qk) ∈ ∆ the polynomial (p1(x), p2(x), pflip,k(pflip,j(peqone,j(x)))

is added to P.

It is easy to see that [q1, (x0, y0)]→∗M [qn, (xf , yf)] if and only if (xf , yf , rf) is reachable

from (x0, y0, r0), where r0 is the residue class satisfying r0 ≡ 1 mod p1 and r0 ≡ 0 mod p`

if ` > 1 and r1 satisfies rf ≡ 1 mod pn and rf ≡ 0 mod p` if ` < n. We add polynomials

Section 7.2. Non-existence of embedding from pairs of words into 3× 3 matrices 123

p−(x, y, z) = (x, y, z−P), p+(x, y, z) = (x, y, z+P) and p(x, y, z) = (x, y, pflip,n(peqone,n(z)))

to P to reach (0, 0, 0).

The reachability problem for two-dimensional PRM with affine updates is undecidable

[137] and hence so is the reachability for three-dimensional polynomial iteration.

While we considered multidimensional polynomial iteration with univariate polynomials

in each dimension, it is natural to consider multidimensional polynomials, where polynomials

are really multivariate. In particular, multidimensional affine polynomials as they can

be expressed as a matrix. This trade-off between degree of polynomials and dimension

leads to interesting problems in matrix theory. Especially, when rather than iteration of

a given vector, we consider questions regarding composition of polynomials or matrices.

In case of our multidimensional univariate polynomials, composition questions are not

interesting as we considered polynomials with integer coefficients where a composition of

two polynomials increases the degree. But when considering multivariate polynomials, a

composed polynomial degree can increase or decrease. This leads to a natural question:

is there a composition of given multidimensional polynomials resulting in the identity

polynomial? In terminology of matrix problems, this is the identity problem.

7.2 Non-existence of embedding from pairs of words into

3× 3 matrices

Let us consider a single-player matrix multiplication game with the identity matrix as

the objective. We will first look for possible domains where the reachability problem

could be decidable. The identity problem was shown to be undecidable for matrices from

SL(4,Z) [12]. As with most undecidability proofs for matrix problems, the main ingredient

was to encode a universal computation into matrices. Roughly speaking, the proofs of

undecidability rely on embedding pairs of words into matrices. In [36], the authors showed

there is no embedding from a set of pairs of words into two-by-two matrices, even when the

elements are complex numbers. In this section, we show that there is no embedding from a

set of pairs of words over a semigroup alphabet to the special linear group SL(3,Z). This

suggests that the identity problem could be decidable for 3× 3 matrices.

Let Σ = {0, 1}. The monoid Σ∗×Σ∗ has a generating set S = {(0, ε), (1, ε), (ε, 0), (ε, 1)},
where ε is the empty word. We simplify the notation by setting a = (0, ε), b = (1, ε),

124 Reino Niskanen

c = (ε, 0) and d = (ε, 1). It is easy to see that we have the following relations:

ac = ca, bc = cb, ad = da, bd = db. (7.2)

In other words, a and b commute with c and d. Furthermore, these are the only relations.

That is, a and b do not commute with each other, neither do c and d, and there are no

other nontrivial relations. Let ϕ : Σ∗ × Σ∗ → SL(3,Z) be an injective morphism and

denote A = ϕ(a), B = ϕ(b), C = ϕ(c) and D = ϕ(d). Our goal is to show that ϕ does not

exist. Unfortunately, the technique developed in [36], where the contradiction was derived

from simple relations, resulting from the matrix multiplication, cannot be used for a case

of SL(3,Z) as it creates a lot of equations which do not limit the possibility of embeddings.

In contrast to [36], we found new techniques to show non-existence of ϕ by analysis of

eigenvalues and the Jordan normal forms.

Lemma 7.9. Let Σ = {0, 1}. If there is an injective morphism ϕ : Σ∗ × Σ∗ → SL(3,Z)

and the matrices A,B,C and D correspond to ϕ((0, ε)), ϕ((1, ε)), ϕ((ε, 0)) and ϕ((ε, 1))

respectively, then the matrices A,B,C and D have a single eigenvalue and additionally the

Jordan normal form is
(

1 1 0
0 1 0
0 0 1

)
.

Proof. We prove the claim by considering Jordan normal forms of matrices and showing

that all but one normal form result in additional relations beside relations (7.2). Moreover,

this form fixes the eigenvalues to be 1, as for other eigenvalues, the matrices are no longer

in SL(3,Z).

Let ϕ be an injective morphism from S = {(0, ε), (1, ε), (ε, 0), (ε, 1)} into SL(3,Z).

Because of obvious symmetries, it sufficies to prove the claim for A = ϕ((0, ε)). Now, the

only relations in SL(3,Z) are AC = CA, AD = DA, BC = CB and BD = DB.

Since the conjugation by an invertible matrix does not influence the injectivity, we can

conjugate the four matrices by some X ∈ R3×3 such that A is in the Jordan normal form.

For a 3× 3 matrix, there are six different types of matrices in the Jordan normal form. If

A has three different eigenvalues, then

A =

λ 0 0

0 µ 0

0 0 ν

 . (7.3)

Chapter 7. Single-player reachability games 125

If A has two eigenvalues, then

A =

λ 0 0

0 µ 0

0 0 µ

 or A =

λ 0 0

0 µ 1

0 0 µ

 . (7.4)

Finally, if A has only one eigenvalue, then

A =

λ 0 0

0 λ 0

0 0 λ

 or A =

λ 1 0

0 λ 0

0 0 λ

 or A =

λ 1 0

0 λ 1

0 0 λ

 . (7.5)

The first case (7.3) can be easily ruled out since A only commutes with diagonal matrices.

Then C and D should be commuting with A by the suggested relations and as a result, C

and D commute with each other.

Now let us consider the second case (7.4) where A has two eigenvalues λ and µ. Note

that the determinant of A is one since ϕ((0, ε)) ∈ SL(3,Z). Namely, det(A) = λµ2 = 1.

Also, tr(A) = tr(ϕ((0, ε)) ∈ Z and thus the eigenvalues are not complex numbers. Consider

then the subcase, where the Jordan normal form is

(
λ 0 0
0 µ 1
0 0 µ

)
and let C =

(
a b c
d e f
g h `

)
. Now

AC =

λ 0 0

0 µ 1

0 0 µ


a b c

d e f

g h `

 =

 λa λb λc

g + µd h+ µe `+ µf

µg µh µ`

 and

CA =

a b c

d e f

g h `


λ 0 0

0 µ 1

0 0 µ

 =

λa µb b+ µc

λd µe e+ µf

λg µh h+ µ`

 .

Since these matrices are equal, and since λ 6= µ, we have that b = c = d = g = h = 0 and

e = `. Similar calculation gives us D =

(
a′ 0 0
0 e′ f ′

0 0 e′

)
. Now, matrices C and D commute as

follows:a 0 0

0 e f

0 0 e


a
′ 0 0

0 e′ f ′

0 0 e′

 =

aa
′ 0 0

0 ee′ ef ′ + fe′

0 0 ee′

 =

a
′ 0 0

0 e′ f ′

0 0 e′


a 0 0

0 e f

0 0 e

 ,

126 Reino Niskanen

which is not one of the allowed relations.

The second subcase, where matrix A is diagonal and has two eigenvalues is ruled out in

a similar fashion. First, similarly to the previous cases, we solve C =

(
a b c
d e f
g h `

)
from the

equation AC = CA. That is,

AC =

λ 0 0

0 µ 0

0 0 µ


a b c

d e f

g h `

 =

λa λb λc

µd µe µf

µg µh µ`

 and

CA =

a b c

d e f

g h `


λ 0 0

0 µ 0

0 0 µ

 =

λa µb µc

λd µe µf

λg µh µ`

 ,

and we have that b = c = d = g = 0. It is easy to see that C is diagonalizable, and thus as

matrices A and C commute, they can be simultaneously diagonalized. That is, we can write

A =

λ 0 0

0 µ 0

0 0 µ

 and C =

λ
′ 0 0

0 µ′ 0

0 0 ν ′

 ,

where λ′, µ′ and ν ′ are the eigenvalues of C. Let D =

(
a′ b′ c′

d′ e′ f ′

g′ h′ `′

)
. It is easy to see that C

and D do not commute if and only if the eigenvalues µ′ and ν ′ are nonequal:

CD =

λ
′ 0 0

0 µ′ 0

0 0 ν ′


a
′ b′ c′

d′ e′ f ′

g′ h′ `′

 =

λ
′a′ 0 0

0 µ′e′ µ′f ′

0 ν ′h′ ν ′`′

 and

DC =

a
′ b′ c′

d′ e′ f ′

g′ h′ `′


λ
′ 0 0

0 µ′ 0

0 0 ν ′

 =

λ
′a′ 0 0

0 µ′e′ ν ′f ′

0 µ′h′ ν ′`′

 .

But if C has three distinct eigenvalues λ′, µ′ and ν ′, then as when we considered case (7.3),

matrix B is diagonal and hence commutes with A.

Finally, we consider the case (7.5) where A has only one eigenvalue. In the first subcase,

the matrix A is diagonal and it is easy to see that then A commutes with all matrices,

including B.

Section 7.2. Non-existence of embedding from pairs of words into 3× 3 matrices 127

Let us then consider the second subcase, where the matrix A is in the following

form
(
λ 1 0
0 λ 1
0 0 λ

)
and let C =

(
a b c
d e f
g h `

)
. Now

AC =

λ 1 0

0 λ 1

0 0 λ


a b c

d e f

g h `

 =

d+ aλ e+ bλ f + cλ

g + dλ h+ eλ `+ fλ

gλ hλ `λ

 and

CA =

a b c

d e f

g h `


λ 1 0

0 λ 1

0 0 λ

 =

aλ a+ bλ b+ cλ

dλ d+ eλ e+ fλ

gλ g + hλ h+ `λ

 .

Since these matrices are equal, we have that d = g = h = 0, a = e = ` and b = f . Similar

calculation gives us D =
(
a′ b′ c′

0 a′ b′

0 0 a′

)
and now matrices C and D commute by Lemma 2.2.

Indeed, matrix C can be expressed as C = a

(
1 b
a

c
a

0 1 b
a

0 0 1

)
∈ H(3,Q) and matrix D has an

analogous expression. Then it is clear that b
a
b′

a′ = b′

a′
b
a and thus matrices C and D commute.

Now the only possibility for A is the following form: A =
(
λ 1 0
0 λ 0
0 0 λ

)
, where λ is the single

eigenvalue of A. Since det(A) = λ3 = 1 and tr(ϕ(0, ε)) = tr(A) = 3λ, the only solution is

λ = 1.

Based on the restriction on the Jordan normal form of matrices and number of distinct

eigenvalues, we prove that there is no injective morphism from the set of pairs of words

over a binary alphabet Σ into SL(3,Z).

Theorem 7.10. There is no injective morphism ϕ : Σ∗ × Σ∗ → SL(3,Z) for any binary

alphabet Σ.

Proof. Assume to the contrary that an injective morphism ϕ from Σ∗ × Σ∗ into SL(3,Z)

exists. Since the conjugation by an invertible matrix does not influence the injectivity, we

suppose that the image of a is in the Jordan normal form as proven in Lemma 7.9. Let us

denote the images of the generators a, b, c and d as A, B, C and D, respectively. Then we

have the following matrices corresponding to the generators a, b, c and d as follows:

A =

1 1 0

0 1 0

0 0 1

 , B =

aB bB cB

dB eB fB

gB hB `B

 , C =

aC bC cC

dC eC fC

gC hC `C

 , D =

aD bD cD

dD eD fD

gD hD `D

 .

128 Reino Niskanen

Note that B,C,D ∈ R3×3 as we conjugate the matrices in order for A to be in the

Jordan normal form.

Since A and C commute with each other by one of the given relations in (7.2), we have

AC =

aC + dC bC + eC cC + fC

dC eC fC

gC hC `C

 =

aC aC + bC cC

dC dC + eC fC

gC gC + hC `C

 = CA.

It is easy to see that dC = gC = fC = 0 and aC = eC . Therefore,

C =

aC bC cC

0 aC 0

0 hC `C

 and D =

aD bD cD

0 aD 0

0 hD `D

 .

Since ϕ(c) and ϕ(d) are in SL(3,Z), the determinants of C and D are 1. Now, the

determinant of C is a2
C`C and the eigenvalues are aC and `C . As C is similar to ϕ(c), the

matrices have the same eigenvalues, namely the single eigenvalue is 1 by Lemma 7.9. Thus,

aC = `C = 1. Analogously, we can also see that aD = `D = 1. Next, we observe that the

matrices C and D commute if and only if cChD = cDhC . By relations (7.2), C and D do

not commute and hence there are three cases to be considered:

1. cC = 0 and hC 6= 0; 2. cC 6= 0 and hC 6= 0; 3. cC 6= 0 and hC = 0.

We prove that each case leads to a contradiction, i.e., that C and D commute. Let us

examine the three cases in more details.

First, let us consider the case where cC = 0 and hC 6= 0. We know that cD is also

non-zero because otherwise C and D commute with each other since cChD = cDhC = 0.

We have the following calculations:

BC =

aB bB cB

dB eB fB

gB hB `B


1 bC 0

0 1 0

0 hC 1

 =

aB aBbC + bB + cBhC cB

dB dBbC + eB + fBhC fB

gB gBbC + hB + `BhC `B

 and

CB =

1 bC 0

0 1 0

0 hC 1


aB bB cB

dB eB fB

gB hB `B

 =

aB + dBbC bB + eBbC cB + fBbC

dB eB fB

dBhC + gB eBhC + hB fBhC + `B

 .

Chapter 7. Single-player reachability games 129

Since BC = CB, we have dBbC = 0, dBhC = 0, fBbC = 0, and fBhC = 0. By the

supposition hC 6= 0, we further deduce that dB = fB = 0. Then B is B =

(
aB bB cB
0 eB 0
gB hB `B

)
.

Note that we also have

aBbC + cBhC = eBbC and gBbC + `BhC = eBhC (7.6)

by the equality BC = CB.

The characteristic polynomial of B is

P (x) = −x3 + tr(B)x2 − (aBeB + aB`B + eB`B − cBgB)x+ det(B)

which has roots λ = eB and λ = 1
2(aB + `B ±

√
(aB − `B)2 + 4cBgB). We know that the

only eigenvalue of B is 1 by Lemma 7.9 and therefore, we have aB = eB = `B = 1 and

cBgB = 0.

Moreover, it follows from equation (7.6) that cB = 0 and gBbC = 0. Note that gB 6= 0

because otherwise the matrix B commutes with A. Finally, we consider

BD =

 1 bB 0

0 1 0

gB hB 1


1 bD cD

0 1 0

0 hD 1

 =

 1 bB + bD cD

0 1 0

gB gBbD + hB + hD gBcD + 1



DB =

1 bD cD

0 1 0

0 hD 1


 1 bB 0

0 1 0

gB hB 1

 =

cDgB + 1 bB + bD + cDhB cD

0 1 0

gB hB + hD 1

 .

It is easy to see that bD = cD = 0 and then D commutes with C. Therefore, we have a

contradiction.

Let us consider the second case where cC 6= 0 and hC = 0. It is quite similar to the

previous case. Consider the products BC and CB as follows:

BC =

aB bB cB

dB eB fB

gB hB `B


1 bC cC

0 1 0

0 0 1

 =

aB aBbC + bB aBcC + cB

dB dBbC + eB dBcC + fB

gB gBbC + hB gBcC + `B

 and

CB =

aB + dBbC + gBcC bB + eBbC + hBcC cB + fBbC + `BcC

dB eB fB

gB hB `B

 .

Since the matrix B commutes with C, we have dBbC = 0, gBbC = 0, gBcC = 0, and

130 Reino Niskanen

dBcC = 0. By the supposition cC 6= 0, we further deduce that dB = gB = 0. Then B is of

the following form: B =

(
aB bB cB
0 eB fB
0 hB `B

)
. Note that we also have

aBbC = eBbC + hBcC and aBcC = fBbC + `BcC (7.7)

by the equality BC = CB.

The characteristic polynomial of B is P (x) = −x3 + tr(B)x2 − (aBeB + aB`B + eB`B −
fBhB)x + det(B) which has roots λ = eB and λ = 1

2(eB + `B ±
√

(aB − `B)2 + 4fBhB).

We know that the only eigenvalue of B is 1 by Lemma 7.9 and therefore, we have aB =

eB = `B = 1 and fBhB = 0.

We can further deduce from equation (7.7) that hB = 0 and fBbC = 0. By a similar

argument for the matrices B and D that should commute with each other as in the first

case, we have a contradiction.

Finally, consider the third case where cC 6= 0 and hC 6= 0. It is obvious that cD and hD

are also non-zero because otherwise C and D would commute. Now consider the matrix B

which is commuting with C and D. We can deduce from the relation BC = CB that

dB = gB = fB = 0 and aB = eB = `B = 1 since they are eigenvalues of B. Hence,

B =

(
1 bB cB
0 1 0
0 hB 1

)
.

Now we have cChB = cBhC since B and C commute with each other. Note that hB and

cB are both non-zero since A and B commute if hB = cB = 0. Let us denote cC
hC

= cB
hB

= x.

We also have cDhB = cBhD from the relation BD = DB and have cD
hD

= cB
hB

= x. From

x = cC
hC

= cD
hD

, we have cChD = cDhC which results in the relation CD = DC. Therefore,

we also have a contradiction.

Since we have examined all possible cases and found contradictions for every case, we

can conclude that there is no injective morphism from Σ∗×Σ∗ into the special linear group

SL(3,Z).

Corollary 7.11. There is no injective morphism ϕ : FG(Γ) × FG(Γ) → Z3×3 for any

binary group alphabet Γ.

Proof. We proceed by contradiction. Assume that there exists such an injective morphism ϕ

from the set of pairs of words over a group alphabet to the set of matrices in Z3×3. Suppose

that A = ϕ(a, ε), where a ∈ Σ. Then the inverse matrix A−1 corresponding to (a, ε) must

be in Z3×3. This implies that the determinant of A is 1 because otherwise the determinant

Section 7.3. Decidability of the identity problem in the Heisenberg group 131

of A−1 becomes a non-integer. By Theorem 7.10, such injective morphism ϕ does not

exist.

Next, we show that there does not exist an embedding from pairs of words over a

semigroup alphabet into matrices from H(3,C).

Theorem 7.12. There is no injective morphism ϕ : Σ∗ × Σ∗ → H(3,C) for any binary

alphabet Σ.

Proof. Assume to the contrary that there is an injective morphism ϕ from Σ∗ × Σ∗ into

H(3,C). Using the notations and relations of (7.2), we set ϕ(a) = A, ϕ(b) = B, ϕ(c) =

C, ϕ(d) = D for some matrices A,B,C,D ∈ H(3,C). By Lemma 2.2, two matrices

M,N ∈ H(3,C) commute if and only if ~v(M) × ~v(N) = 0. Denote ~v(A) = (a1, a2) and

~v(B), ~v(C), ~v(D), ~v(E) are denoted analogously. From the relations (7.2), it follows that

a1c2 = c1a2, a1d2 = d1a2, b1c2 = c1b2, b1d2 = d1b2, a1b2 6= b1a2, c1d2 6= d1c2.

Observe first, that a1, a2, b1, b2, c1, c2, d1, d2 6= 0. If, say, a1 = 0, then, from the first two

equations, it follows that either a2 = 0 or c1 = d1 = 0. If a2 = 0, then the first inequality

does not hold, since a1b2 = 0 = b1a2, and if c1 = d1 = 0, then the second inequality does

not hold, since c1d2 = 0 = d1c2.

Now, we can solve a1 from the first two equalities, a2c1c2
= a1 = a2d1

d2
. That is, c1d2 = d1c2,

which contradicts the last relation and proves our claim.

7.3 Decidability of the identity problem in the Heisenberg

group

The decidability of the identity problem in dimension three is a long standing open problem.

Following our findings on non-existence of embedding into SL(3,Z), in this section we

consider the decidability of an important subgroup of SL(3,Z), the Heisenberg group, which

is well-known in the context of quantum mechanical systems [32,74,100]. Recently a few

decidability results have been obtained for a knapsack variant of the membership problem

in dimension three (i.e., H(3,Z)), where the goal was to solve a single matrix equation with

a specific order of matrices [98].

In this section, we prove that the identity problem is decidable for the Heisenberg group

over rational numbers. First, we provide more intuitive solution for dimension three, i.e.,

132 Reino Niskanen

H(3,Q), which still requires a number of techniques to estimate possible values of elements

under permutations in matrix products. In the end of the section, we generalize the result

for H(d,Q) case using analogies in the solution for dimension three.

Here we prove that the identity problem for matrix semigroups in the Heisenberg

group over rationals is decidable by analyzing the behaviour of multiplications especially

in the upper-right coordinate of matrices. From Lemma 2.2, it follows that the matrix

multiplication is commutative in the Heisenberg group if and only if matrices have pairwise

parallel superdiagonal vectors. So we analyse two cases of products for matrices with

pairwise parallel and none pairwise parallel superdiagonal vectors and then provide the

algorithms that solves the problem in polynomial time. The most difficult part is to show

that only limited number of conditions must be checked to guarantee the existence of a

product that results in the identity.

Lemma 7.13. Let G = {M1,M2, . . . ,Mr} ⊆ H(3,Q) be a set of matrices from the Heisen-

berg group such that superdiagonal vectors of matrices are pairwise parallel. If there exists

a sequence of matrices M = Mi1Mi2 · · ·Mik , where ij ∈ [1, r] for all 1 ≤ j ≤ k, such that

ψ(M) = (0, 0, c) for some c ∈ Q, then,

c =
k∑
j=1

(cij −
q

2
a2
ij)

for some q ∈ Q, dependent only on G.

Proof. Consider the sequence Mi1Mi2 · · ·Mik and let Mi =
(1 ai ci

0 1 bi
0 0 1

)
for each i ∈ [1, r].

Since the superdiagonal vectors are parallel, we have q = bi
ai
∈ Q and thus aiq = bi for all

i ∈ [1, r]. Let us consider the product of the matrices. Then the value c is equal to

c =
k∑
j=1

cij +
k−1∑
`=1

(∑̀
j=1

aij

)
ai`+1

q =

k∑
j=1

cij +
1

2

(
k∑
`=1

k∑
j=1

ai`aijq −
k∑
j=1

a2
ijq

)

=
k∑
j=1

(cij −
q

2
a2
ij).

The value c would be preserved in case of reordering of matrices due to their commutativity.

Note that the previous lemma also holds for H(3,R).

Chapter 7. Single-player reachability games 133

It is worth mentioning that the identity problem in the Heisenberg group is decidable

if any two matrices have pairwise parallel superdiagonal vectors since now the problem

reduces to solving a system of two Diophantine equations. Hence, it remains to consider the

case when there exist two matrices with non-parallel superdiagonal vectors in the sequence

generating the identity matrix. In the following, we prove that the identity matrix is always

constructible if we can construct any matrix with the zero superdiagonal vector by using

matrices with non-parallel superdiagonal vectors.

Lemma 7.14. Let S = 〈M1, . . . ,Mr〉 ⊆ H(3,Q) be a finitely generated matrix semigroup.

Then the identity matrix exists in S if there exists a sequence of matrices Mi1Mi2 · · ·Mik ,

where ij ∈ [1, r] for all 1 ≤ j ≤ k, satisfying the following properties:

(i) ψ(Mi1Mi2 · · ·Mik) = (0, 0, c) for some c ∈ Q, and

(ii) ~v(Mij1
) and ~v(Mij2

) are not parallel for some j1, j2 ∈ [1, k].

Proof. Let M = Mi1Mi2 · · ·Mik and ψ(M) = (0, 0, c) for some c ∈ Q. If c = 0, then M is

the identity matrix, hence we assume that c > 0 as the case of c < 0 is symmetric.

Given that Mi is the ith generator and ψ(Mi) = (ai, bi, ci), we have
∑k

j=1 aij = 0 and∑k
j=1 bij = 0. Since c > 0, the following also holds:

c =

k−1∑
`=1

∑̀
j=1

aijbi`+1
+

k∑
j=1

cij > 0. (7.8)

If the matrix semigroup S ⊆ H(3,Q) has two different matrices M1 and M2 such that

ψ(M1) = (0, 0, c1) and ψ(M2) = (0, 0, c2) and c1c2 < 0, then the identity matrix exists

in S. Let ψ(M1) = (0, 0, p1q1) and ψ(M2) = (0, 0, p2q2), where p1, q1, q2 ∈ Z are positive and

p2 ∈ Z is negative. Then it is easy to see that the matrix M−q1p21 M q2p1
2 exists in S and that

ψ(M−q1p21 M q2p1
2) = (0, 0, 0).

Now we will prove that if S contains a matrix M such that ψ(M) = (0, 0, c), where

c > 0, then there also exists a matrix M ′ such that ψ(M ′) = (0, 0, c′), where c′ < 0.

First, we classify the matrices into four types as follows. A matrix with a superdiagonal

vector (a, b) is classified as

1) the (+,+)-type if a, b > 0,

2) the (+,−)-type if a ≥ 0 and b ≤ 0,

134 Reino Niskanen

3) the (−,−)-type if a, b < 0, and

4) the (−,+)-type if a < 0 and b > 0.

Let G = {M1,M2, . . . ,Mr} be the generating set of the matrix semigroup S. Then

G = G(+,+) t G(+,−) t G(−,−) t G(−,+) such that G(ξ1,ξ2) is the set of matrices of the

(ξ1, ξ2)-type, where ξ1, ξ2 ∈ {+,−}.
Recall that we assume M = Mi1 · · ·Mik and ψ(M) = (0, 0, c) for some c > 0. The

main idea of the proof is to generate a matrix M ′ such that ψ(M ′) = (0, 0, c′) for some

c′ < 0 by duplicating the matrices in the sequence M = Mi1 · · ·Mik multiple times and

reshuffling. Note that any permutation of the sequence generating the matrix M such

that ψ(M) = (0, 0, c) still generates matrices M ′ such that ψ(M ′) = (0, 0, c′) since the

multiplication of matrices exchanges the first two coordinates in a commutative way.

Moreover, we can still obtain matrices M ′′ such that ψ(M ′′) = (0, 0, c′′) for some c′′ ∈ Q if

we shuffle two different permutations of the sequence Mi1 · · ·Mik by the same reason.

b1 b2 b3 b4 |b5| |b6| |b7| |b8| |b9| b10 b11 b12 b13

a6

a5

a4

a3

a2

a1

|a7|

|a8|

|a9|
|a10|
|a11|
|a12|
|a13|

: positive

: negative

Figure 7.4: The histogram describes how the upper-right corner of M1 · · ·M13 is computed
by multiplications. The blue dotted (red lined) area implies the value which will be added
to (subtracted from) the upper-right corner of the final matrix after multiplications of
matrices in the sequence.

Let us illustrate the idea with the following example. See Figure 7.4 and Figure 7.5 for

pictorial descriptions of the idea. Let {Mi | 1 ≤ i ≤ 4} ⊆ G(+,+), {Mi | 5 ≤ i ≤ 7} ⊆ G(+,−),

{Mi | 8 ≤ i ≤ 9} ⊆ G(−,−), and {Mi | 10 ≤ i ≤ 13} ⊆ G(−,+). Then assume that

M1M2 · · ·M13 =
(

1 0 x
0 1 0
0 0 1

)
, where x is computed by equation (7.8). As we mentioned above,

Section 7.3. Decidability of the identity problem in the Heisenberg group 135

x changes if we change the order of multiplications. In this example, we first multiply

(+,+)-type matrices and accumulate the values in the superdiagonal coordinates since these

matrices have positive values in the coordinates. Indeed, the blue dotted area implies the

value we add to the upper-right corner by multiplying such matrices. Then we multiply

(+,−)-type matrices and still increase the ‘a’-value. The ‘b’-values in (+,−)-type matrices

are negative thus, the red lined area is subtracted from the upper-right corner. We still

subtract by multiplying (−,−)-type matrices since the accumulated ‘a’-value is still positive

and ‘b’-values are negative. Then we finish the multiplication by adding exactly the last

blue dotted area to the upper-right corner. It is easy to see that the total subtracted value

is larger than the total added value.

However, we cannot guarantee that x is negative since
∑13

i=1 ci could be larger than

the contribution from the superdiagonal coordinates. This is why we need to copy the

sequence of matrices generating the matrix corresponding to the triple (0, 0, c) for some

c ∈ Q. In Figure 7.5, we describe an example where we duplicate the sequence eight times

and shuffle and permute them in order to minimize the value in the upper-right corner.

Now the lengths of both axes are m (m = 8 in this example) times larger than before and

it follows that the area also grows quadratically in m. Since the summation m ·
∑13

i=1 ci

grows linearly in m, we have x < 0 when m is large enough.

: positive

: negative

b(+,+)m |b(+,−)|m |b(−,−)|m b(−,+)m

|a(−,+)|m

|a(−,−)|m

a(+,+)m

a(+,−)m

Figure 7.5: The histogram describes how the value in the upper-right corner of matrix
Mm

(+,+)M
m
(+,−)M

m
(−,−)M

m
(−,+) is computed by multiplications. Here m = 8.

For each ξ1, ξ2 ∈ {+,−}, let us define multisets S(ξ1,ξ2) that are obtained from the

136 Reino Niskanen

sequence Mi1 · · ·Mik by partitioning the product according to the matrix types. That is,

S(ξ1,ξ2) contains exactly the matrices of (ξ1, ξ2)-type in the product (possibly with several

copies of each matrix).

For each ξ1, ξ2 ∈ {+,−}, let us define a(ξ1,ξ2), b(ξ1,ξ2), c(ξ1,ξ2) such that

(a(ξ1,ξ2), b(ξ1,ξ2), c(ξ1,ξ2)) =
∑

M∈S(ξ1,ξ2)

ψ(M).

In other words, a(ξ1,ξ2) (b(ξ1,ξ2) and c(ξ1,ξ2), respectively) is the sum of the values in the ‘a’

(‘b’ and ‘c’, respectively) coordinate from the matrices in the multiset S(ξ1,ξ2).

Now consider a permutation of the sequence Mi1 · · ·Mik , where the first part of the

sequence only consists of the (+,+)-type matrices, the second part only consists of the

(+,−)-type matrices, the third part only consists of the (−,−)-type, and finally the last part

only consists of the (−,+)-type.

Let us denote by M(+,+) the matrix which results from the multiplication of the first

part, namely, M(+,+) =
∏
M∈S(+,+)

M. Then ψ(M(+,+)) = (a(+,+), b(+,+), x(+,+)) holds, where

x(+,+) < c(+,+) + a(+,+)b(+,+). Let us define M(+,−), M(−,−) and M(−,+) in a similar fashion.

Note that for M(+,−) and M(−,+), the term x is bounded from below.

Now we claim that there exists an integer m > 0 such that Mm
(+,+)M

m
(+,−)M

m
(−,−)M

m
(−,+)

corresponds to the triple (0, 0, c′) for some c′ < 0. Let N be a matrix in H(3,Q) and

ψ(N) = (a, b, c). Then the upper-triangular coordinates of the mth power of N are

calculated as follows: ψ(Nm) = (am, bm, cm+ ab · 1
2m(m− 1)).

z1 = |a(+,+)||b(+,+)| ·
1

2
m(m− 1),

z2 = m2|a(+,+)||b(+,−)|+ |a(+,−)||b(+,−)| ·
1

2
m(m− 1),

z3 = |a(−,+)||b(−,−)|m2 + |a(−,−)||b(−,−)| ·
1

2
m(m− 1) and

z4 = |a(−,+)||b(−,+)| ·
1

2
m(m− 1).

Table 7.2: Values z1, z2, z3 and z4 in the product Mm
(+,+)M

m
(+,−)M

m
(−,−)M

m
(−,+).

Next, we consider how the upper-triangular coordinates are affected by multiplication of

matrices Mm
(+,+), M

m
(+,−), M

m
(−,−) and Mm

(−,+). Let us consider the first part of the product,

Chapter 7. Single-player reachability games 137

Mm
(+,+), that is, ψ(Mm

(+,+)) = (a(+,+)m, b(+,+)m,x(+,+)m + z1), where z1 can be found in

Table 7.2. Now we multiply Mm
(+,+) by the second part Mm

(+,−). Then the resulting matrix

Mm
(+,+)M

m
(+,−) corresponds to

ψ(Mm
(+,+)M

m
(+,−)) = ((a(+,+) + a(+,−))m, (b(+,+) + b(+,−))m, (x(+,+) + x(+,−))m+ z1 − z2),

where z2 can be found in Table 7.2. Similarly, we compute z3 and z4 that will be added to

the upper-right corner as a result of multiplying Mm
(−,−) and Mm

(−,+) and present them in

Table 7.2.

After the multiplying all four parts, we have

ψ(Mm
(+,+)M

m
(+,−)M

m
(−,−)M

m
(−,+)) = (0, 0, (x(+,+) + x(+,−) + x(−,−) + x(−,+))m+ z1 − z2 − z3 + z4).

Denote z = z1 − z2 − z3 + z4. From Table 7.2, we can see that z can be represented as

a quadratic equation of m and that the coefficient of m2 is always negative if S(ξ1,ξ2) 6= ∅
for each ξ1, ξ2 ∈ {+,−}. That is, the coefficient of m2 is

1

2
(|a(+,+)||b(+,+)|+ |a(−,+)||b(−,+)|)−

1

2
(|a(+,−)||b(+,−)|+ |a(−,−)||b(−,−)|)

+ |a(+,+)||b(+,−)|+ |a(−,+)||b(−,−)|.

Let us simplify the equation by denoting |a(+,+)|+ |a(+,−)| = |a(−,+)|+ |a(−,−)| = a′ and

|b(+,+)|+ |b(−,+)| = |b(+,−)|+ |b(−,−)| = b′. Note, that the equations hold as we are considering

the product, where ‘a’ and ‘b’ elements add up to zero. Then

a′b′ = a′(|b(+,−)|+ |b(−,−)|) = a′|b(+,−)|+ a′|b(−,−)|

= (|a(+,+)|+ |a(+,−)|)|b(+,−)|+ (|a(−,+)|+ |a(−,−)|)|b(−,−)|.

Now the coefficient of m2 in z can be written as

−a′b′ + 1

2
(|a(+,+)||b(+,+)|+ |a(−,+)||b(−,+)|+ |a(−,−)||b(−,−)|+ |a(+,−)||b(+,−)|). (7.9)

Without loss of generality, suppose that |a(+,+)| ≥ |a(−,+)|. Then we have

|a(+,+)||b(+,+)|+ |a(−,+)||b(−,+)| ≤ |a(+,+)|b′ and |a(−,−)||b(−,−)|+ |a(+,−)||b(+,−)| ≤ |a(−,−)|b′.

138 Reino Niskanen

From (|a(+,+)|+ |a(−,−)|)b′ ≤ 2a′b′, we can see that the coefficient of the highest power of the

variable is negative in z if |a(+,+)|+ |a(−,−)| < 2a′. By comparing two terms in equation (7.9),

we can see that the coefficient is negative if all subsets S(−,+), S(+,−), S(+,+) and S(−,−)

are non-empty. Since the coefficient of the highest power of the variable is negative, z

becomes negative when m is large enough. Therefore, we have a matrix corresponding to

the triple (0, 0, c′) for some c′ < 0 as a product of multiplying matrices in the generating

set and the identity matrix is also reachable.

It should be noted that there are some subcases where some of subsets from S(+,+),

S(−,+), S(+,−), and S(−,−) are empty. We examine all possible cases and prove that the

coefficient of m2 is negative in every case and the matrix with a negative number in the

corner is constructible. First, we prove that the coefficient of m2 in z is negative when only

one of the subsets from S(+,+). S(+,−), S(−,−), and S(−,+) is empty as follows:

Assume that only S(+,+) = ∅. In this case, note that |a(+,−)| = a′ and |b(−,+)| = b′ since

|a(+,+)| = |b(+,+)| = 0 by S(+,+) = ∅ being empty. Then the coefficient of m2 becomes

−a′b′ +
|a(−,+)|b′ + |a(−,−)||b(−,−)|+ a′|b(+,−)|

2
.

We can see that the coefficient can be at most 0 since |a(−,+)|b′ and |a(−,−)||b(−,−)|+a′|b(+,−)|
can be maximized to a′b′. If we maximize |a(−,+)|b′ by setting |a(−,+)| = a′, then |a(−,−)|
is 0 since |a(+,+)| + |a(−,+)| = a′. Then |a(−,−)||b(−,−)| + a′|b(+,−)| can be a′b′ only when

|b(+,−)| = b′. This leads to the set S(−,−) being empty since we have |a(−,−)| = 0 and

|b(−,−)| = 0. Therefore, we have a contradiction.

The remaining cases, S(+,−) = ∅, or S(−,−) = ∅, or S(−,+) = ∅ are proven analogously.

Figure 7.6 shows the cases when one of subsets from S(+,+), S(−,+), S(+,−), and S(−,−)

is empty. Lastly, it remains to consider the cases where two of the subsets are empty. Note

that we do not consider the cases where three of the subsets are empty because the sum

of a’s and b’s cannot be both zero in such cases. Here we assume one of S(+,+) and S(−,−)

contains two matrices whose superdiagonal vectors are not parallel by the statement of this

lemma. Then we can always make the negative contribution larger by using matrices with

different superdiagonal vectors. See Figure 7.7 for an example. More formally, we consider

the two cases as follows:

Assume first that S(+,+) = ∅ and S(−,−) = ∅. Without loss of generality, assume

that S(−,+) contains two matrices M1 and M2 with non-parallel superdiagonal vectors.

Let ~v(M1) = (a1, b1) and ~v(M2) = (a2, b2) be superdiagonal vectors for M1 and M2,

Section 7.3. Decidability of the identity problem in the Heisenberg group 139

(a) The case of S(−,+) being empty.

: positive
: negative

(b) The case of S(+,+) being empty.

: positive
: negative

(c) The case of S(+,−) being empty.

: positive
: negative

(d) The case of S(−,−) being empty.

: positive
: negative

Figure 7.6: Subcases where one of the subsets from S(+,+), S(−,+), S(+,−), and S(−,−) is
empty.

respectively, such that |a1b1 | > |
a2
b2
|. To simplify the proof, we assume the set S(+,−) only uses

one matrix M3, where ~v(M3) = (a3, b3), to generate a matrix with a zero superdiagonal

vector. This implies that a1x+ a2y+ a3 = 0 and b1x+ b2y+ b3 = 0 for some x, y ∈ Q. Here

the idea is that we first multiply the matrix M1 and then multiply M2 later. For instance,

we first multiply Mm
1 and then Mm

2 . Then the coefficient of the highest power in z becomes
−a′b′+2|a2||b1|+|a1||b1|+|a2||b2|

2 . Since a′ = |a1|+ |a2| and b′ = |b1|+ |b2|, the coefficient of m2

is now |a2||b1|−|a1||b2|
2 . By the supposition |a1b1 | > |

a2
b2
|, we prove that the coefficient of the

highest power in z is always negative.

The second case, where S(+,−) = ∅ and S(−,+) = ∅, is proven analogously.

(a) When S(+,+) and S(−,−) are empty.

: positive
: negative

(b) When S(−,+) and S(+,−) are empty.

: positive
: negative

Figure 7.7: Subcases where two of the subsets from S(+,+), S(−,+), S(+,−), and S(−,−) are
empty.

140 Reino Niskanen

As we have proven that it is always possible to construct a matrix M ′ such that

ψ(M ′) = (0, 0, c′) for some c′ < 0, we complete the proof.

Note that in the above proof, we do not give optimal bounds on number of repetitions

of a sequence.

We illustrate Lemma 7.14 in the next example.

Example 7.15. Consider a semigroup S generated by matrices1 −4 20

0 1 −6

0 0 1

 ,

1 3 20

0 1 −2

0 0 1

 ,

1 −1 20

0 1 1

0 0 1

 ,

1 2 20

0 1 7

0 0 1

 .

A simple calculation shows that a product of the four matrices (in any order) is a matrix M

such that ψ(M) = (0, 0, 80 + x) for some x ∈ Z. Our goal, is to minimize x by multiplying

the matrices in a different order. Denote the given matrices by M(+,+) =
(

1 2 20
0 1 7
0 0 1

)
, M(+,−) =(

1 3 20
0 1 −2
0 0 1

)
, M(−,−) =

(
1 −4 20
0 1 −6
0 0 1

)
and M(−,+) =

(
1 −1 20
0 1 1
0 0 1

)
, and

N1 = M(+,+)M(+,−)M(−,−)M(−,+) =

1 0 47

0 1 0

0 0 1

 .

That is, x = −33. By considering several copies of the product, we can have a negative

value in the top right corner. Indeed, consider the product of 16 matrices

N2 = M4
(+,+)M

4
(+,−)M

4
(−,−)M

4
(−,+) =

1 0 −22

0 1 0

0 0 1

 .

Since, we have a matrix with negative value in the top corner, the identity matrix can be

generated for example by the product N22
1 N47

2 .

Theorem 7.16. The identity problem for finitely generated matrix semigroups in the

Heisenberg group H(3,Q) is decidable in polynomial time.

Proof. Let S be the matrix semigroup in H(3,Q) generated by the set G = {M1, . . . ,Mr}.
There are two possible cases of having the identity matrix in the matrix semigroup in H(3,Q).

Chapter 7. Single-player reachability games 141

Either the identity matrix is generated by a product of matrices with pairwise parallel

superdiagonal vectors or there are at least two matrices with non-parallel superdiagonal

vectors.

Consider the first case. Lemma 7.13 provides a formula to compute the value in the top

corner regardless of the order of the multiplications. That is, we need to solve a system of

linear Diophantine equations with solutions over non-negative integers. We partition the

set G into several disjoint subsets G1, G2, . . . , Gs, where s is at most r, and each subset

contains matrices with parallel superdiagonal vectors. Since superdiagonal vectors being

parallel is a transitive and symmetric property, each matrix needs to be compared to a

representative of each subset. If there are no matrices with parallel superdiagonal vectors,

then there are r subsets Gi containing exactly one matrix and O(r2) tests were done.

Let us consider Gi = {Mk1 , . . . ,Mksi
}, i.e., one of the subsets containing si matrices and

ψ(Mkj) = (akj , bkj , ckj). By considering each matrix as the trivial product, by Lemma 7.13,

we write

Mkj =

1 akj ckj −
qi
2 a

2
kj

0 1 akjqi

0 0 1

 ,

for a fixed qi ∈ Q.

We solve the system of two linear Diophantine equations Ay = 0, where

A =

(
ak1 ak2 · · · aksi

2ck1 − qia2
k1

2ck2 − qia2
k2
· · · 2cksi − qia

2
ksi

)

and y ≥ 0. The first row corresponds to element a being zero, and thus also the superdiagonal

vector being zero, and the second row to the upper corner being zero.

It is obvious that the identity matrix is in the semigroup if we have a solution in the

system of homogeneous linear Diophantine equations for any subset Gi. That is, we need

to solve at most r systems of homogeneous linear Diophantine equations.

Next, we consider the second case, where by Lemma 7.14, it is enough to check

whether there exists a sequence of matrices generating a matrix with zero superdiagonal

vector and containing two matrices with non-parallel superdiagonal vectors. Let us say that

Mi1 ,Mi2 ∈ G, where 1 ≤ i1, i2 ≤ r are the two matrices. Recall that G = {M1,M2, . . . ,Mr}
is a generating set of the matrix semigroup and let ψ(Mi) = (ai, bi, ci) for all 1 ≤ i ≤ r. We

142 Reino Niskanen

can see that there exists such a product containing the two matrices by solving a system of

two homogeneous linear Diophantine equations of the form By = 0, where

B =

(
a1 a2 · · · ar

b1 b2 · · · br

)
,

with an additional constraint that the numbers in the solution y that correspond to Mi1

and Mi2 are non-zero since we must use these two matrices in the product. We repeat this

process at most r(r − 1) times until we find a solution. Therefore, the problem reduces

again to solving at most O(r2) systems of linear Diophantine equations.

Finally, we conclude the proof by mentioning that the identity problem for matrix

semigroups in the Heisenberg group over rationals can be decided in polynomial time as a

system of two homogeneous linear Diophantine equations can be solved in polynomial time

when the solution is restricted to non-negative integers [140].

Next, we generalize the above algorithm for the identity problem in the Heisenberg

group H(3,Q) to the domain of the Heisenberg groups for any dimension over the rational

numbers. Similarly to the case of dimension three, we establish the following result for the

case of matrices where multiplication is commutative.

Lemma 7.17. Let G = {M1,M2, . . . ,Mr} ⊆ H(d,Q) be a set of matrices from the Heisen-

berg group such that ψ(Mi) = (ai,bi, c) and ψ(Mj) = (aj ,bj , c) and ai ·bj = aj ·bi for any

1 ≤ i 6= j ≤ r. If there exists a sequence of matrices M = Mi1Mi2 · · ·Mik , where ij ∈ [1, r]

for all 1 ≤ j ≤ k, such that ψ(M) = (0,0, c) for some c ∈ Q, then,

c =
k∑
j=1

(cij −
1

2
aij · bij).

Proof. Consider the sequence Mi1Mi2 · · ·Mik and let ψ(Mi) = (ai,bi, ci) for each i ∈ [1, r].

From the multiplication of matrices, we have the following equation:

c =

k∑
j=1

cij +
k−1∑
`=1

∑̀
j=1

aij

 · bi`+1
=

k∑
j=1

cij +
1

2

 k∑
`=1

k∑
j=1

ai` · bij −
k∑
j=1

aij · bij


=

k∑
j=1

(cij −
1

2
aij · bij).

Section 7.3. Decidability of the identity problem in the Heisenberg group 143

From the above equation, we prove the statement claimed in the lemma. Moreover, due

to the commutativity of multiplication, the value c does not change even if we change the

order of multiplicands.

Lemma 7.14 does not generalize to H(d,Q) in the same way as we cannot classify

matrices according to types to control the value in upper-right corner, so we use a different

technique to prove that the value in the upper corner will be diverging to both positive and

negative infinity quadratically as we repeat the same sequence generating any matrix M

such that ψ(M) = (0,0, c).

Lemma 7.18. Let S = 〈M1, . . . ,Mr〉 ⊆ H(d,Q) be a finitely generated matrix semigroup.

Then the identity matrix exists in S if there exists a sequence of matrices Mi1Mi2 · · ·Mik ,

where ij ∈ [1, r] for all 1 ≤ j ≤ k, satisfying the following properties:

(i) ψ(Mi1Mi2 · · ·Mik) = (0,0, c) for some c ∈ Q, and

(ii) aij1 · bij2 6= aij2 · bij1 for some j1, j2 ∈ [1, k], where ψ(Mi) = (ai,bi, ci) for 1 ≤ i ≤ r.

Proof. From the first property claimed in the lemma, we know that any permutation of

the sequence of matrix multiplications of Mi1 · · ·Mik results in matrices M ′ such that

ψ(M ′) = (0,0, y) for some y ∈ Q since the multiplication of matrices in the Heisenberg

group performs additions of vectors which is commutative in the top row and the rightmost

column excluding the upper-right corner. From the commutative behaviour in the horizontal

and vertical vectors of matrices in the Heisenberg group, we also know that if we duplicate

the matrices in the sequence Mi1 · · ·Mik and multiply the matrices in any order, then the

resulting matrix has a non-zero coordinate in the upper triangular coordinates only in the

upper right corner.

Now let j1, j2 ∈ [1, k] be two indices such that aij1 · bij2 6= aij2 · bij1 as claimed in

the lemma. Then consider the following matrix Md that can be obtained by duplicat-

ing the sequence Mi1 · · ·Mik of matrices into ` copies and shuffle the order as follows:

Md = M `
ij1
M `
ij2
M `
x, where Mx is a matrix that is obtained by multiplying the matrices in

Mi1 · · ·Mik except the two matrices Mj1 and Mj2 . Then it is clear that ψ(Md) = (0,0, z) for

some z. Let us say that ψ(Mx) = (ax,bx, cx). Then it is easy to see that aij1 +aij2 +ax = 0

and bij1 + bij2 + bx = 0. Now we show that we can always construct two matrices that

have only one non-zero rational number in the upper right corner with different signs.

144 Reino Niskanen

First, let us consider the `th power of the matrix Mij1
as follows:

ψ(M `
ij1

) = (aij1 `,bij1 `, cij1 `+
`−1∑
h=1

h(aij1 · bij1)) = (aij1 `,bij1 `, cij1 `+ aij1 · bij1
(`− 1)`

2
).

It follows that the matrix Md satisfies the equation ψ(Md) = (0,0, z) such that

z = y`+ (aij1 · bij1 + aij2 · bij2 + ax · bx)
(`− 1)`

2
+ (aij1 · bij2 + (aij1 + aij2) · bx)`2

=
1

2
((aij1 · bij1 + aij2 · bij2 + ax · bx) + 2(aij1 · bij2 + (aij1 + aij2) · bx))`2

+
1

2
(2y − (aij1 · bij1 + aij2 · bij2 + ax · bx))`.

Now the coefficient of the highest term `2 in z can be simplified as follows:

1

2
((aij1 · bij1 + aij2 · bij2 + ax · bx) + 2(aij1 · bij2 + (aij1 + aij2) · bx))

=
1

2
((aij1 + aij2) · (bij1 + bij1) + aij1 · bij2 − aij2 · bij1 + (aij1 + aij2) · bx)

=
1

2
((−ax) · (−bx) + aij1 · bij2 − aij2 · bij1 + (−ax) · bx)

=
1

2
(aij1 · bij2 − aij2 · bij1).

By the second property claimed in the lemma, we know that the coefficient of the highest

term `2 in z cannot be zero. Moreover, the value of z will be diverging to negative or positive

infinity depending on the sign of aij1 ·bij2−aij2 ·bij1 . Now we consider a different matrix Me

which is defined to be the following product M `
ij2
M `
ij1
M `
x and say that ψ(Me) = (0,0, e)

for some e ∈ Q. Since we have changed the role of two matrices Mij1
and Mij2

, the value

of e can be represented by a quadratic equation where the coefficient of the highest term

is aij2 · bij1 − aij1 · bij2 . Therefore, we have proved that it is always possible to construct

two matrices that have only one non-zero rational number in the upper right corner with

different signs. Then, as in the proof Lemma 7.14, the identity matrix always exists in the

semigroup as we can multiply these two matrices correct number of times to have zero in

the upper right coordinate as well.

Next, we prove that the identity problem is decidable for d-dimensional Heisenberg

matrices. In contrast to Theorem 7.16, we do not claim that the problem is decidable

Chapter 7. Single-player reachability games 145

in polynomial time since one of the steps of the proof is to partition matrices according

to dot products, which cannot be extended to higher dimensions than three. For higher

dimensions, partitioning matrices according to dot products takes an exponential time in

the number of matrices in the generating set.

Theorem 7.19. The identity problem for finitely generated matrix semigroups in the

Heisenberg group H(d,Q) is decidable.

Proof. Similarly to the proof of Theorem 7.16, there are two ways the identity matrix can

be generated. Either all the matrices commute or there are at least two matrices that do

not commute.

Let S be the matrix semigroup in H(d,Q) generated by the set G = {M1,M2, . . . ,Mr}.
Consider matrices N1, N2 and N3, such that ψ(N1) = (a1,b1, c1), ψ(N2) = (a2,b2, c2) and

ψ(N3) = (a3,b3, c3). If a1 · b2 = a2 · b1 and a2 · b3 = a3 · b2, it does not imply that

a1 ·b3 = a3 ·b1. Therefore, the number of subsets of G, where each subset contains matrices

that commute with other matrices in the same subset, is exponential in r as two different

subsets are not necessarily disjoint.

Now we examine whether it is possible to generate the identity matrix by multiplying

matrices in each subset by Lemma 7.17. If it is not possible, we need to consider the case of

having two matrices that do not commute with each other in the product with zero values

in the upper-triangular coordinates except the corner. Let us say that Mi1 ,Mi2 ∈ G, where

1 ≤ i1, i2 ≤ r are the two matrices. Recall that G = {M1,M2, . . . ,Mr} is a generating set of

the matrix semigroup and let ψ(Mi) = (ai,bi, ci) for all 1 ≤ i ≤ r. We also denote the mth

element of the vector ai (respectively, bi) by ai[m] (respectively, bi[m]) for 1 ≤ m ≤ d− 2.

Then we can see that there exists such a product by solving a system of 2(d − 2)

homogeneous linear Diophantine equations of the form By = 0, where

B =



a1[1] · · · ar[1]
...

. . .
...

a1[d− 2] · · · ar[d− 2]

b1[1] · · · br[1]
...

. . .
...

b1[d− 2] · · · br[d− 2]


,

with an additional constraint that the numbers in the solution y that correspond to Mi1

146 Reino Niskanen

and Mi2 are non-zero since we must use these two matrices in the product. We repeat this

process at most r(r − 1) times until we find a solution.

Hence, we can view the identity problem in H(d,Q) for d ≥ 3 as the problem of solving

systems of 2(d− 2) homogeneous linear Diophantine equations with some constraints on

the solution. As we can solve systems of linear Diophantine equations, we conclude that

the identity problem in H(d,Q) is also decidable.

7.4 The identity problem in matrix semigroups in dimension

four

In this section, we prove that the identity problem is undecidable for 4 × 4 matrices,

when the generating set has eight matrices, by introducing a new technique exploiting the

anti-diagonal entries.

Theorem 7.20. Given a semigroup S generated by eight 4×4 integer matrices, determining

whether the identity matrix belongs to S is undecidable.

Proof. We prove the claim by reducing from the PCP. We shall use an encoding to embed

an instance of the PCP into a set of 4× 4 integer matrices.

Let α be the mapping of Lemma 2.1 that maps elements of an arbitrary group alphabet

into a binary group alphabet Γ2 = {a, b, a, b}. We also define a monomorphism f : FG(Γ2)→
Z2×2 as f(a) = (1 2

0 1), f(a) =
(

1 −2
0 1

)
, f(b) = (1 0

2 1) and f(b) =
(

1 0
−2 1

)
. Recall that the

matrices (1 2
0 1) and (1 0

2 1) generate a free subgroup of SL(2,Z) [114]. The composition of

two monomorphisms α and f gives us the embedding from an arbitrary group alphabet

into the special linear group SL(2,Z). We use the composition of two monomorphisms α

and f to encode a set of pairs of words over an arbitrary group alphabet into a set of 4× 4

integer matrices in SL(4,Z) and denote it by β.

Let (g, h) be an instance of the PCP, where g, h : {a1, . . . , an}∗ → Σ∗2, where Σ2 = {a, b}.
Without loss of generality, we can assume that the solution starts with the letter a1.

Moreover, we assume that this is the only occurence of a1. We define the alphabet

Γ = Σ2 ∪Σ−1
2 ∪ΣB ∪Σ−1

B , where ΣB = {q0, q1, p0, p1} is the alphabet for the border letters

that enforce the form of a solution.

Section 7.4. The identity problem in matrix semigroups in dimension four 147

Let us define the following sets of words W1 ∪W2 ⊆ FG(Γ)× FG(Γ), where

W1 = {(q0aq0, p0ap0), (q0bq0, p0bp0) | a, b ∈ Σ2, q0, p0 ∈ ΣB} and

W2 =
{

(q0g(a1)q1, p0h(a1)p1), (q1g(ai)q1, p1h(ai)p1) | 1 < i ≤ n, q0, q1, p0, p1 ∈ ΣB

}
.

Intuitively, the words from set W1 are used to construct words over Σ2, and the words from

set W2 to cancel them according to the instance of the PCP.

Let us prove that (q0q1, p0p1) ∈ FG(W1 ∪W2) if and only if the PCP has a solution. It

is easy to see that any pair of non-empty words in FG(W1) is of the form (q0wq0, p0wp0)

for w ∈ Σ+
2 . Then there exists a pair of words in FG(W2) of the form (q0wq1, p0wp1) for

some word w ∈ FG(Γ) if and only if the PCP has a solution. Therefore, the pair of words

(q0q1, p0p1) can be constructed by concatenating pairs of words in W1 and W2 if and only

if the PCP has a solution.

For each pair of words (u, v) ∈ FG(W1∪W2), we define a matrix Au,v to be
(
β(u) 02

02 β(v)

)
∈

SL(4,Z), where 02 is the zero matrix in Z2×2. Moreover, we define the following matrix

Bq1q0,p1p0 =

(
02 β(q1q0)

β(p1p0) 02

)
∈ SL(4,Z).

Let S be a matrix semigroup generated by the set {Au,v, Bq1q0,p1p0 | (u, v) ∈W1 ∪W2}.
We already know that the pair (q0q1, p0p1) of words can be generated by concatenating

words in W1 and W2 if and only if the PCP has a solution. The matrix semigroup S has

the corresponding matrix Aq0q1,p0p1 and thus,(
β(q0q1) 02

02 β(p0p1)

)(
02 β(q1q0)

β(p1p0) 02

)
=

(
02 β(ε)

β(ε) 02

)
∈ S.

Then we see that the identity matrix I4 exists in the semigroup S as follows:(
02 β(ε)

β(ε) 02

)(
02 β(ε)

β(ε) 02

)
=

(
β(ε) 02

02 β(ε)

)
=

(
I2 02

02 I2

)
= I4 ∈ S.

Now we prove that the identity matrix does not exist in S if the PCP has no solution.

It is easy to see that we cannot obtain the identity matrix only by multiplying ‘A’ matrices

since there is no possibility of cancelling every border letter. We need to multiply the

matrix Bq1q0,p1p0 with a product of ‘A’ matrices at some point to reach the identity matrix.

148 Reino Niskanen

Note that the matrix Bq1q0,p1p0 cannot be the first matrix of the product, followed by the

‘A’ matrices, because the upper right block of Bq1q0,p1p0 , which corresponds to the first

word of the pair, should be multiplied with the lower right block of the ‘A’ matrix, which

corresponds to the second word of the pair.

Suppose that the ‘A’ matrix is of form
(
β(q0uq1) 02

02 β(p0vp1)

)
. Since the PCP instance has

no solution, either u or v is not the empty word. We multiply Bq1q0,p1p0 to the matrix and

then obtain the following matrix:(
β(q0uq1) 02

02 β(p0vp1)

)(
02 β(q1q0)

β(p1p0) 02

)
=

(
02 β(q0uq0)

β(p0vp0) 02

)
.

We can see that either the upper right part or the lower left part cannot be β(ε), which

actually corresponds to the identity matrix in Z2×2. Now the only possibility of reaching

the identity matrix is to multiply matrices which have SL(2,Z) matrices in the anti-diagonal

coordinates like Bq1q0,p1p0 . However, we cannot cancel the parts because the upper right

block (the lower left block) of the left matrix is multiplied with the lower left block (the

upper right block) of the right matrix as follows:(
02 A

B 02

)(
02 C

D 02

)
=

(
AD 02

02 BC

)
,

where A,B,C and D are matrices in Z2×2. As the first word of the pair is encoded in the

upper right block of the matrix and the second word is encoded in the lower left block, it is

not difficult to see that we cannot cancel the remaining blocks.

Currently, the undecidability bound for the PCP is five [122], and thus the semigroup

S is generated by eight matrices. Recall that, in the beginning of the proof, we assumed

that the letter a1 of the PCP is used exacly once and is the first letter of a solution. This

property is in fact present in [122].

Consider the membership problem called the special diagonal membership problem,

where the task is to determine whether a scalar multiple of the identity matrix exists in a

given matrix semigroup. The most recent undecidability bound is shown to be 14 by Halava

et al. [81]. We improve the bound to eight, as the identity matrix is the only diagonal

matrix of the semigroup S in the proof of Theorem 7.20. We also prove that the identity

problem is undecidable in H(Q)2×2 as well by replacing the composition f ◦ α of mappings

with a mapping from a group alphabet to the set of rational quaternions [13].

Chapter 7. Single-player reachability games 149

Corollary 7.21. Given a semigroup S generated by eight 4×4 integer matrices, determining

whether there exists any diagonal matrix in S is undecidable.

Corollary 7.22. Given a semigroup S generated by eight 2×2 rational quaternion matrices,

determining whether there exists the identity matrix S is undecidable.

7.5 Concluding remarks and open problems

In this chapter, we considered reachability problems for polynomial iteration and matrix

semigroups.

For polynomial iteration, we showed that, for one-dimensional polynomials, the problem

is PSPACE-complete and for three-dimensional polynomials it is undecidable. The remaining

case of two-dimensional polynomials remains open.

It would be interesting to see how the techniques of the proof can be applied to

polynomials over rational numbers. Corollary 7.7 provides a lower bound for polynomials

in the interval [0, 1] but the upper bound is not clear as there are infinititely many rational

numbers in the interval. It is possible that the p-adic norms used in similar settings in [24]

can be useful to provide an upper bound or, at the very least, to prove decidability.

Recently, several variants of polynomial iteration have been considered by Ko [94]. He

simplified the proof of the undecidability of three-dimensional polynomial iteration by

reducing the PCP to iterating three-dimensional affine polynomials, that is, polynomials of

the form ax+ b. He also showed that if the set of polynomials P does not have polynomials

of form ±x+ b, then the problem is PSPACE-complete in any dimension.

We also considered the identity problem in matrix semigroups and provided a better

bound on the number of matrices in the generator set for 4× 4 integer matrices, where the

problem is undecidable. More importantly, we showed that there is no embedding of pairs

of words into SL(3,Z). While this does not imply that the identity problem is decidable, it

does provide hope as most of the undecidability proofs for matrix semigroups reduce from

the PCP. We showed that the identity problem is decidable for Heisenberg groups. The

natural follow-up question is whether other standard matrix problems, such as membership,

are decidable in H(3,Z) or whether the identity problem is decidable for H(3,C).

Chapter 8

Summary

In this thesis, we studied several two-player turn-based games with respect to deciding

which player has a winning strategy. Mostly, we considered games played on the integer

lattice Zd, but also other, more exotic, arenas were considered. In several multidimensional

games, we showed that the problem is undecidable. On the other hand, the decidability

results fill-out the landscape for the considered games. The results are summarized in

Table 8.1.

Perhaps the main result of the thesis is Corollary 5.13 as the model is very simple and

could be easily used in more complex games. In fact, it has already been used to prove

undecidability of existence of modular winning strategies in games with six-dimensional

mean-payoff objectives [44] and a winning strategy in three-dimensional average-energy

games [25].

The results of Chapter 3 provide an injective mapping that has a potential to be applied

to other scenarios as well. The injective mappings are into different free groups, which

limits its usability. Still, for example, a word game on pairs of words is very interesting as

both initial and target configurations are the identity element.

In addition, we considered some related one-player systems. It would be interesting

to consider their two-player variants. Actually, the identity problem for matrices is very

closely related to the matrix games. Since the construction of the moves ensures that the

target vector can be reached if and only if the identity matrix can be constructed by the

turn-based multiplication. Similarly, polynomial iteration is closely connected to Z-VAS

games. Indeed, in Z-VAS, the updates can be seen as polynomials of the form p(x) = x+ a,

which were called counter polynomials in [68]. Two-player games with polynomial updates

150

151

Game Initial Target Complexity

Word game on FG(Γ) u ε
EXPTIME

(Theorem 3.13)

Word game on FG(Γ)× Z [u, 0] [ε, 0]
undecidable

(Theorem 3.9)

Word game on FG(Γ)× FG(Γ) [ε, ε] [ε, ε]
undecidable

(Theorem 3.11)

Matrix game on Z4×4 x0 0
undecidable

(Theorem 3.16)

Matrix game on Z3×3 x0 0
undecidable

(Theorem 3.19)

Braid game on B3 b0 1
undecidable

(Theorem 3.22)

Braid game on B5 1 1
undecidable

(Theorem 3.22)
Z-VASS

(Adam stateless, Eve any)
[s0, ṫ, z] [s, ṫ, 0]

EXPSPACE-complete
(Theorem 4.4)

Z-VASS
(Adam any, Eve flat)

[s0, ṫ0, z] [s, ṫ, 0]
EXPSPACE-complete

(Corollary 4.17)
Z-VASS

(Adam flat, Eve stateless)
[s, ṫ0, z] [s, ṫ, 0]

EXPTIME-complete
(Theorem 4.16)

Z2-VASS [s0, ṫ0, z0] [s, ṫ,0]
undecidable

(Corollary 5.6)13

Z2-VAS z0 0
undecidable

(Corollary 5.13)

VAS (1-dim) z 0
EXPTIME-complete

(Theorem 4.19)

VAS (2-dim) z0 0
undecidable

(Theorem 5.14)

Table 8.1: Summary of results of the thesis.

would be interesting in the case where there are no counter polynomials in players’ move

sets.

One of the most interesting directions is in Chapter 6. In which other scenarios can

k-control be considered? We showed that, for a fixed k, the k-control Zd-VASS games are

in NP, as opposed to EXPTIME when k is part of the input. Does limiting k by a polynomial

with respect to the input yield interesting bounds?

While we considered the complexity of deciding which player has a winning strategy,

we did not study the memory requirements for the strategies. For example, in the game

13Originally proven in [137].

152 Reino Niskanen

constructed in Section 4.1 finite memory is sufficient for both players as by Lemmas 4.5,

4.6, 4.7 and 4.8, players’ strategy depends on the degree of the vertex and the value of

the counter modulo four. Are there arenas where strategies with finite memory are not

sufficient?

We list some open problems related to the models studied in the thesis.

Open Problem 8.1. Is the universality problem decidable for two-state weighted automata

on infinite words?

Open Problem 8.2. Given a matrix game on vectors (A,E,x0,y), where A,E ⊆ Z2×2

are the moves of Adam and Eve, x0,y ∈ Z2 are the initial and target vectors. What is the

complexity of deciding whether Eve has a winning strategy?

Open Problem 8.3. Given a block diagonal matrix game on vectors (A,E,x0,y), where

A,E ⊆ Z3×3 are the moves of Adam and Eve, x0,y ∈ Z3 are the initial and target vectors,

and each matrix in A and E is block diagonal. What is the complexity of deciding whether

Eve has a winning strategy?

Open Problem 8.4. Given a braid game on B3, (A,E, 1), where A,E ⊆ B3 are the moves

of Adam and Eve, and the initial braid is the empty braid 1. What is the complexity of

deciding whether Eve has a winning strategy?

Open Problem 8.5. Given a Z-VASS game, where Eve is stateless and Adam has arbitrary

state structure. What is the complexity of deciding whether Eve has a winning strategy?

Open Problem 8.6. Given an Attacker-Defender game with move sets of players E and

A, for which it is undecidable to check for existence of a winning strategy. What is the

smallest size of A and E such that the problem remains undecidable?

While, the previous problem applies to most of the undecidable games present in the

thesis, it is the most relevant for word games and Z2-VAS games. Also, the same question

can be asked for games where deciding the winner is decidable as number of moves effects

the complexity.

Open Problem 8.7. Given a set of two-dimensional polynomials P ⊆ Z[x2] and x0. Is

the two-dimensional polynomial iteration decidable?

Open Problem 8.8. Given S = 〈M1, . . . ,Mr〉 ⊆ H(3,Q) and M ∈ H(3,Q). Does M ∈ S
hold?

Chapter 8. Summary 153

Open Problem 8.9. Given S = 〈M1, . . . ,Mr〉 ⊆ H(3,C). Does I3 ∈ S hold?

Last but not least, the identity problem for three-dimensional matrices:

Open Problem 8.10. Given S = 〈M1, . . . ,Mr〉 ⊆ Z3×3. Does I3 ∈ S hold?

Bibliography

[1] Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Deciding monotonic

games. In Proceedings of CSL 2003, volume 2803 of LNCS, pages 1–14. Springer,

2003. doi: 10.1007/978-3-540-45220-1 1.

[2] Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Monotonic and down-

ward closed games. Journal of Logic and Computation, 18(1):153–169, 2008. doi:

10.1093/logcom/exm062.

[3] Parosh Aziz Abdulla, Richard Mayr, Arnaud Sangnier, and Jeremy Sproston. Solving

parity games on integer vectors. In Proceedings of CONCUR 2013, volume 8052 of

LNCS, pages 106–120. Springer, 2013. doi: 10.1007/978-3-642-40184-8 9.

[4] Andrei M. Akimenkov. Subgroups of the braid group B4. Mathematical notes of the

Academy of Sciences of the USSR, 50(6):1211–1218, 1991. doi: 10.1007/BF01158260.

[5] Natasha Alechina, Nils Bulling, Stephane Demri, and Brian Logan. On the complexity

of resource-bounded logics. In Proceedings of RP, volume 9899 of LNCS, pages 36–50.

Springer, 2016. doi: 10.1007/978-3-319-45994-3 3.

[6] Natasha Alechina, Nils Bulling, Brian Logan, and Hoang Nga Nguyen. The virtues

of idleness: A decidable fragment of resource agent logic. Artificial Intelligence,

245:56–85, 2017. doi: 10.1016/j.artint.2016.12.005.

[7] Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted

automata? In Proceedings of ATVA 2011, volume 6996 of LNCS, pages 482–491.

Springer, 2011. doi: 10.1007/978-3-642-24372-1 37.

[8] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal

logic. Journal of the ACM, 49(5):672–713, 2002. doi: 10.1145/585265.585270.

154

http://dx.doi.org/10.1007/978-3-540-45220-1_1
http://dx.doi.org/10.1093/logcom/exm062
http://dx.doi.org/10.1093/logcom/exm062
http://dx.doi.org/10.1007/978-3-642-40184-8_9
http://dx.doi.org/10.1007/BF01158260
http://dx.doi.org/10.1007/978-3-319-45994-3_3
http://dx.doi.org/10.1016/j.artint.2016.12.005
http://dx.doi.org/10.1007/978-3-642-24372-1_37
http://dx.doi.org/10.1145/585265.585270

Bibliography 155

[9] Arjun Arul and Julien Reichert. The complexity of robot games on the integer line.

In Proceedings of QAPL 2013, volume 117 of EPTCS, pages 132–148, 2013. doi:

10.4204/EPTCS.117.9.

[10] László Babai, Robert Beals, Jin-yi Cai, Gábor Ivanyos, and Eugene M. Luks. Multi-

plicative equations over commuting matrices. In Proceedings of SODA 1996, pages

498–507. SIAM, 1996. http://dl.acm.org/citation.cfm?id=313852.314109.

[11] Paul C. Bell, Mika Hirvensalo, and Igor Potapov. The identity problem for matrix

semigroups in SL(2,Z) is NP-complete. In Proceedings of SODA 2017, pages 187–206.

SIAM, 2017. doi: 10.1137/1.9781611974782.13.

[12] Paul C. Bell and Igor Potapov. On undecidability bounds for matrix decision problems.

Theoretical Computer Science, 391(1-2):3–13, 2008. doi: 10.1016/j.tcs.2007.10.025.

[13] Paul C. Bell and Igor Potapov. Reachability problems in quaternion matrix and

rotation semigroups. Information and Computation, 206(11):1353–1361, 2008. doi:

10.1016/j.ic.2008.06.004.

[14] Paul C. Bell and Igor Potapov. On the undecidability of the identity correspon-

dence problem and its applications for word and matrix semigroups. Interna-

tional Journal of Foundations of Computer Science, 21(6):963–978, 2010. doi:

10.1142/S0129054110007660.

[15] Paul C. Bell and Igor Potapov. On the computational complexity of matrix semigroup

problems. Fundamenta Informaticae, 116(1-4):1–13, 2012. doi: 10.3233/FI-2012-663.

[16] Amir M. Ben-Amram. Mortality of iterated piecewise affine functions over the integers:

Decidability and complexity. Computability, 4(1):19–56, 2015. doi: 10.3233/COM-

150032.

[17] Dietmar Berwanger and Erich Grädel. Fixed-point logics and solitaire games. Theory

of Computing Systems, 37(6):675–694, 2004. doi: 10.1007/s00224-004-1147-5.

[18] Vladimir N. Bezverkhnii and Irina V. Dobrynina. Undecidability of the conjugacy

problem for subgroups in the colored braid group R5. Matematicheskie Zametki,

65(1):15–22, 1999. doi: 10.1007/BF02675004.

http://dx.doi.org/10.4204/EPTCS.117.9
http://dx.doi.org/10.4204/EPTCS.117.9
http://dl.acm.org/citation.cfm?id=313852.314109
http://dx.doi.org/10.1137/1.9781611974782.13
http://dx.doi.org/10.1016/j.tcs.2007.10.025
http://dx.doi.org/10.1016/j.ic.2008.06.004
http://dx.doi.org/10.1016/j.ic.2008.06.004
http://dx.doi.org/10.1142/S0129054110007660
http://dx.doi.org/10.1142/S0129054110007660
http://dx.doi.org/10.3233/FI-2012-663
http://dx.doi.org/10.3233/COM-150032
http://dx.doi.org/10.3233/COM-150032
http://dx.doi.org/10.1007/s00224-004-1147-5
http://dx.doi.org/10.1007/BF02675004

156 Reino Niskanen

[19] Jean-Camille Birget and Stuart W. Margolis. Two-letter group codes that preserve

aperiodicity of inverse finite automata. Semigroup Forum, 76:159–168, 2008. doi:

10.1007/s00233-007-9024-6.

[20] Kenneth R. Blaney and Andrey Nikolaev. A PTIME solution to the restricted

conjugacy problem in generalized Heisenberg groups. Groups Complexity Cryptology,

8(1):69–74, 2016. doi: doi:10.1515/gcc-2016-0003.

[21] Vincent D. Blondel and Alexandre Megretski, editors. Unsolved problems in mathe-

matical systems and control theory. Princeton University Press, 2004.

[22] Vincent D. Blondel and John N. Tsitsiklis. A survey of computational complexity

results in systems and control. Automatica, 36(9):1249–1274, 2000. doi: 10.1016/S0005-

1098(00)00050-9.

[23] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown

automata: Application to model-checking. In Proceedings of CONCUR 1997, volume

1243, pages 135–150. Springer, 1997. doi: 10.1007/3-540-63141-0 10.

[24] Olivier Bournez, Oleksiy Kurganskyy, and Igor Potapov. Reachability problems for

one-dimensional piecewise affine maps. Manuscript, 2017.

[25] Patricia Bouyer, Piotr Hofman, Nicolas Markey, Mickael Randour, and Martin

Zimmermann. Bounding average-energy games. In Proceedings of FoSSaCS 2017,

volume 10203 of LNCS, pages 179–195. Springer, 2017. doi: 10.1007/978-3-662-54458-

7 11.

[26] Andrey Bovykin and Lorenzo Carlucci. Long games on braids. Manuscript, 2006.

[27] Tomás Brázdil, Václav Brozek, and Kousha Etessami. One-counter stochastic games.

In Proceedings of FSTTCS 2010, volume 8 of LIPIcs, pages 108–119. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2010. doi: 10.4230/LIPIcs.FSTTCS.2010.108.

[28] Tomás Brázdil, Vojtech Forejt, Antońın Kucera, and Petr Novotný. Stability

in graphs and games. In Proceedings of CONCUR 2016, volume 59 of LIPIcs,

pages 10:1–10:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. doi:

10.4230/LIPIcs.CONCUR.2016.10.

http://dx.doi.org/10.1007/s00233-007-9024-6
http://dx.doi.org/10.1007/s00233-007-9024-6
http://dx.doi.org/doi:10.1515/gcc-2016-0003
http://dx.doi.org/10.1016/S0005-1098(00)00050-9
http://dx.doi.org/10.1016/S0005-1098(00)00050-9
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/978-3-662-54458-7_11
http://dx.doi.org/10.1007/978-3-662-54458-7_11
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.108
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.10
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.10

Bibliography 157

[29] Tomáš Brázdil, Petr Jančar, and Antońın Kučera. Reachability games on extended

vector addition systems with states. In Proceedings of ICALP 2010, volume 6199 of

LNCS, pages 478–489. Springer, 2010. doi: 10.1007/978-3-642-14162-1 40.

[30] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To reach or

not to reach? Efficient algorithms for total-payoff games. In Proceedings of CONCUR

2015, volume 42 of LIPIcs, pages 297–310. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2015. doi: 10.4230/LIPIcs.CONCUR.2015.297.

[31] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. Pseu-

dopolynomial iterative algorithm to solve total-payoff games and min-cost reachability

games. Acta Informatica, 54(1):85–125, 2017. doi: 10.1007/s00236-016-0276-z.

[32] Jean-Luc Brylinski. Loop spaces, characteristic classes, and geometric quantization.

Birkhäuser, 1993.

[33] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan.

Deciding parity games in quasipolynomial time. In Proceedings of STOC 2017, pages

252–263. ACM, 2017. doi: 10.1145/3055399.3055409.

[34] Lorenzo Carlucci, Patrick Dehornoy, and Andreas Weiermann. Unprovability results

involving braids. Proceedings of the London Mathematical Society, 102(1):159–192,

2011. doi: 10.1112/plms/pdq016.

[35] Julien Cassaigne, Vesa Halava, Tero Harju, and François Nicolas. Tighter undecid-

ability bounds for matrix mortality, zero-in-the-corner problems, and more. CoRR,

abs/1404.0644, 2014. https://arxiv.org/abs/1404.0644.

[36] Julien Cassaigne, Tero Harju, and Juhani Karhumäki. On the undecidability of

freeness of matrix semigroups. International Journal of Algebra and Computation,

9(03n04):295–305, 1999. doi: 10.1142/S0218196799000199.

[37] Jakub Chaloupka. Z-reachability problem for games on 2-dimensional vector addition

systems with states is in P. Fundamenta Informaticae, 123(1):15–42, 2013. doi:

10.3233/FI-2013-798.

[38] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theoretical

Computer Science, 458:49–60, 2012. doi: 10.1016/j.tcs.2012.07.038.

http://dx.doi.org/10.1007/978-3-642-14162-1_40
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.297
http://dx.doi.org/10.1007/s00236-016-0276-z
http://dx.doi.org/10.1145/3055399.3055409
http://dx.doi.org/10.1112/plms/pdq016
https://arxiv.org/abs/1404.0644
http://dx.doi.org/10.1142/S0218196799000199
http://dx.doi.org/10.3233/FI-2013-798
http://dx.doi.org/10.3233/FI-2013-798
http://dx.doi.org/10.1016/j.tcs.2012.07.038

158 Reino Niskanen

[39] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François

Raskin. Generalized mean-payoff and energy games. In Proceedings of FSTTCS

2010, volume 8 of LIPIcs, pages 505–516. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2010. doi: 10.4230/LIPIcs.FSTTCS.2010.505.

[40] Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.

Looking at mean-payoff and total-payoff through windows. Information and Compu-

tation, 242:25–52, 2015. doi: 10.1016/j.ic.2015.03.010.

[41] Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthe-

sis for multi-dimensional quantitative objectives. In Proceedings of CONCUR 2012,

volume 7454 of LNCS, pages 115–131. Springer, 2012. doi: 10.1007/978-3-642-32940-

1 10.

[42] Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy syn-

thesis for multi-dimensional quantitative objectives. Acta Informatica, 51(3):129–163,

2014. doi: 10.1007/s00236-013-0182-6.

[43] Krishnendu Chatterjee and Yaron Velner. Hyperplane separation technique for

multidimensional mean-payoff games. In Proceedings of CONCUR 2013, volume 8052

of LNCS, pages 500–515. Springer, 2013. doi: 10.1007/978-3-642-40184-8 35.

[44] Krishnendu Chatterjee and Yaron Velner. Hyperplane separation technique for

multidimensional mean-payoff games. Journal of Computer and System Sciences,

88:236–259, 2017. doi: 10.1016/j.jcss.2017.04.005.

[45] Christian Choffrut and Juhani Karhumäki. Some decision problems on integer

matrices. RAIRO - Theoretical Informatics and Applications, 39(1):125–131, 2005.

doi: 10.1051/ita:2005007.

[46] Ventsislav Chonev, Joël Ouaknine, and James Worrell. The orbit problem in

higher dimensions. In Proceedings of STOC 2013, pages 941–950. ACM, 2013. doi:

10.1145/2488608.2488728.

[47] Ventsislav Chonev, Joël Ouaknine, and James Worrell. The polyhedron-hitting

problem. In Proceedings of SODA 2015, pages 940–956. SIAM, 2015. doi:

10.1137/1.9781611973730.64.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.505
http://dx.doi.org/10.1016/j.ic.2015.03.010
http://dx.doi.org/10.1007/978-3-642-32940-1_10
http://dx.doi.org/10.1007/978-3-642-32940-1_10
http://dx.doi.org/10.1007/s00236-013-0182-6
http://dx.doi.org/10.1007/978-3-642-40184-8_35
http://dx.doi.org/10.1016/j.jcss.2017.04.005
http://dx.doi.org/10.1051/ita:2005007
http://dx.doi.org/10.1145/2488608.2488728
http://dx.doi.org/10.1145/2488608.2488728
http://dx.doi.org/10.1137/1.9781611973730.64
http://dx.doi.org/10.1137/1.9781611973730.64

Bibliography 159

[48] Ventsislav Chonev, Joël Ouaknine, and James Worrell. On the complexity of the

orbit problem. Journal of the ACM, 63(3):23:1–23:18, 2016. doi: 10.1145/2857050.

[49] Volker Claus. Some remarks on PCP(k) and related problems. Bulletin of EATCS,

12:54–61, 1980.

[50] Thomas Colcombet, Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz. Perfect

half space games. In Proceedings of LICS 2017, pages 1–11. IEEE, 2017. doi:

10.1109/LICS.2017.8005105.

[51] Graham P. Collins. Computing with quantum knots. Scientific American, 294(4):56–

63, 2006. doi: 10.1038/scientificamerican0406-56.

[52] Hubert Comon and Véronique Cortier. Flatness is not a weakness. In Proceedings of

CSL 2000, volume 1862 of LNCS, pages 262–276. Springer, 2000. doi: 10.1007/3-540-

44622-2 17.

[53] Hubert Comon and Yan Jurski. Multiple counters automata, safety analysis and

Presburger arithmetic. In Proceedings of CAV, 1998, volume 1427 of LNCS, pages

268–279. Springer, 1998. doi: 10.1007/BFb0028751.

[54] Hubert Comon and Yan Jurski. Timed automata and the theory of real numbers. In

Proceedings of CONCUR 1999, volume 1664 of LNCS, pages 242–257. Springer, 1999.

doi: 10.1007/3-540-48320-9 18.

[55] Marston Conder, Edmund Robertson, and Peter Williams. Presentations for 3-

dimensional special linear groups over integer rings. Proceedings of the American

Mathematical Society, 115(1):19–26, 1992. doi: 10.2307/2159559.

[56] Marston D. E. Conder. Some unexpected consequences of symmetry computations. In

SIGMAP 2014, volume 159 of PROMS, pages 71–79. Springer, 2016. doi: 10.1007/978-

3-319-30451-9 3.

[57] Jean-Baptiste Courtois and Sylvain Schmitz. Alternating vector addition systems

with states. In Proceedings of MFCS 2014, volume 8634 of LNCS, pages 220–231.

Springer, 2014. doi: 10.1007/978-3-662-44522-8 19.

http://dx.doi.org/10.1145/2857050
http://dx.doi.org/10.1109/LICS.2017.8005105
http://dx.doi.org/10.1109/LICS.2017.8005105
http://dx.doi.org/10.1038/scientificamerican0406-56
http://dx.doi.org/10.1007/3-540-44622-2_17
http://dx.doi.org/10.1007/3-540-44622-2_17
http://dx.doi.org/10.1007/BFb0028751
http://dx.doi.org/10.1007/3-540-48320-9_18
http://dx.doi.org/10.2307/2159559
http://dx.doi.org/10.1007/978-3-319-30451-9_3
http://dx.doi.org/10.1007/978-3-319-30451-9_3
http://dx.doi.org/10.1007/978-3-662-44522-8_19

160 Reino Niskanen

[58] Felipe Cucker, Pascal Koiran, and Steve Smale. A polynomial time algorithm for

Diophantine equations in one variable. Journal of Symbolic Computation, 27(1):21–29,

1999. doi: 10.1006/jsco.1998.0242.

[59] Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest. Ordering braids,

volume 148 of Mathematical Surveys and Monographs. Mathematical Surveys and

Monographs, 2008.

[60] Christoph Dittmann, Stephan Kreutzer, and Alexandru I. Tomescu. Graph operations

on parity games and polynomial-time algorithms. Theoretical Computer Science,

614:97–108, 2016. doi: 10.1016/j.tcs.2015.11.044.

[61] Jing Dong and Qinghui Liu. Undecidability of infinite Post correspondence problem for

instances of size 8. RAIRO - Theoretical Informatics and Applications, 46(3):451–457,

2012. doi: 10.1051/ita/2012015.

[62] Laurent Doyen and Alexander Rabinovich. Robot games. Technical Report LSV-13-02,

LSV, ENS Cachan, 2013. http://www.lsv.fr/Publis/RAPPORTS LSV/PDF/rr-lsv-

2013-02.pdf.

[63] Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between

decidability and undecidability. In Proceedings of ICALP 1998, volume 1443 of LNCS,

pages 103–115. Springer, 1998. doi: 10.1007/BFb0055044.

[64] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy

(extended abstract). In Proceedings of FOCS 1991, pages 368–377. IEEE, 1991. doi:

10.1109/SFCS.1991.185392.

[65] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for

the µ-calculus and its fragments. Theoretical Computer Science, 258(1-2):491–522,

2001. doi: 10.1016/S0304-3975(00)00034-7.

[66] David B. A. Epstein, Michael S. Paterson, James W. Cannon, Darek F. Holt, Silvio V.

Levy, and William P. Thurston. Word processing in groups. AK Peters, Ltd., 1992.

[67] Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jiŕı Srba. Energy games in multi-

weighted automata. In Proceedings of ICTAC 2011, volume 6916 of LNCS, pages

95–115. Springer, 2011. doi: 10.1007/978-3-642-23283-1 9.

http://dx.doi.org/10.1006/jsco.1998.0242
http://dx.doi.org/10.1016/j.tcs.2015.11.044
http://dx.doi.org/10.1051/ita/2012015
http://www.lsv.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2013-02.pdf
http://www.lsv.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2013-02.pdf
http://dx.doi.org/10.1007/BFb0055044
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1016/S0304-3975(00)00034-7
http://dx.doi.org/10.1007/978-3-642-23283-1_9

Bibliography 161

[68] Alain Finkel, Stefan Göller, and Christoph Haase. Reachability in register machines

with polynomial updates. In Proceedings of MFCS 2013, volume 8087 of LNCS, pages

409–420. Springer, 2013. doi: 10.1007/978-3-642-40313-2 37.

[69] Michael J. Fischer and Michael O. Rabin. Super-exponential complexity of Presburger

arithmetic. In Complexity of Computation, SIAM-AMS Proceedings, volume 7, pages

27–41. SIAM, 1974. doi: 10.1007/978-3-7091-9459-1 5.

[70] Esther Galby, Joël Ouaknine, and James Worrell. On matrix powering in low

dimensions. In Proceedings of STACS 2015, volume 30 of LIPIcs, pages 329–340,

2015. doi: 10.4230/LIPIcs.STACS.2015.329.

[71] Aniruddh Gandhi, Bakhadyr Khoussainov, and Jiamou Liu. Efficient algorithms for

games played on trees with back-edges. Fundamenta Informaticae, 111(4):391–412,

2011. doi: 10.3233/FI-2011-569.

[72] David Garber. Braid group cryptography. In Braids: Introductory lectures on braids,

configurations and their applications, volume 19, pages 329–403. World Scientific,

2010. doi: 10.1142/9789814291415 0006.

[73] Stephane Gaubert and Ricardo Katz. Reachability problems for products of matrices

in semirings. IJAC, 16(3):603–627, 2006. doi: 10.1142/S021819670600313X.

[74] Razvan Gelca and Alejandro Uribe. From classical theta functions to topological

quantum field theory. In The influence of Solomon Lefschetz in geometry and topology,

volume 621 of Contemprorary Mathematics, pages 35–68. American Mathematical

Society, 2014. doi: 10.1090/conm/621.

[75] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, logics, and

infinite games: A guide to current research, volume 2500 of LNCS. Springer, 2002.

doi: 10.1007/3-540-36387-4.

[76] Yuri Gurevich and Paul Schupp. Membership problem for the modular group. SIAM

Journal of Computing, 37(2):425–459, 2007. doi: 10.1137/050643295.

[77] Christoph Haase and Simon Halfon. Integer vector addition systems with states. In

Proceedings of RP 2014, volume 8762 of LNCS, pages 112–124. Springer, 2014. doi:

10.1007/978-3-319-11439-2 9.

http://dx.doi.org/10.1007/978-3-642-40313-2_37
http://dx.doi.org/10.1007/978-3-7091-9459-1_5
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.329
http://dx.doi.org/10.3233/FI-2011-569
http://dx.doi.org/10.1142/9789814291415_0006
http://dx.doi.org/10.1142/S021819670600313X
http://dx.doi.org/10.1090/conm/621
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1137/050643295
http://dx.doi.org/10.1007/978-3-319-11439-2_9
http://dx.doi.org/10.1007/978-3-319-11439-2_9

162 Reino Niskanen

[78] Vesa Halava. Finite substitutions and integer weighted finite automata. Licentiate the-

sis, University of Turku, Turku, Finland, 1998. http://tucs.fi/publications/view/?pub -

id=licHalava98a.

[79] Vesa Halava and Tero Harju. Undecidability in integer weighted finite automata.

Fundamenta Informaticae, 38(1-2):189–200, 1999. doi: 10.3233/FI-1999-381215.

[80] Vesa Halava and Tero Harju. Undecidability of infinite post correspondence problem

for instances of size 9. ITA, 40(4):551–557, 2006. doi: 10.1051/ita:2006039.

[81] Vesa Halava, Tero Harju, and Mika Hirvensalo. Undecidability bounds for integer

matrices using Claus instances. International Journal of Foundations of Computer

Science, 18(5):931–948, 2007. doi: 10.1142/S0129054107005066.

[82] Vesa Halava, Tero Harju, Reino Niskanen, and Igor Potapov. Weighted automata

on infinite words in the context of Attacker-Defender games. In Proceedings of CiE

2015, volume 9136 of LNCS, pages 206–215. Springer, 2015. doi: 10.1007/978-3-319-

20028-6 21.

[83] Vesa Halava, Tero Harju, Reino Niskanen, and Igor Potapov. Weighted automata

on infinite words in the context of Attacker-Defender games. Information and

Computation, 255:27–44, 2017. doi: 10.1016/j.ic.2017.05.001.

[84] Vesa Halava and Mika Hirvensalo. Improved matrix pair undecidability results. Acta

Informatica, 44(3):191–205, 2007. doi: 10.1007/s00236-007-0047-y.

[85] Vesa Halava, Yuri Matiyasevich, and Reino Niskanen. Small semi-Thue system

universal with respect to the termination problem. Fundamenta Informaticae, 154(1-

4):177–184, 2017. doi: 10.3233/FI-2017-1559.

[86] Vesa Halava, Reino Niskanen, and Igor Potapov. On robot games of degree two. In

Proceedings of LATA 2015, volume 8977 of LNCS, pages 224–236. Springer, 2015. doi:

10.1007/978-3-319-15579-1 17.

[87] Juha Honkala. A Kraft-McMillan inequality for free semigroups of upper-

triangular matrices. Information and Computation, 239:216–221, 2014. doi:

10.1016/j.ic.2014.09.002.

http://tucs.fi/publications/view/?pub_id=licHalava98a
http://tucs.fi/publications/view/?pub_id=licHalava98a
http://dx.doi.org/10.3233/FI-1999-381215
http://dx.doi.org/10.1051/ita:2006039
http://dx.doi.org/10.1142/S0129054107005066
http://dx.doi.org/10.1007/978-3-319-20028-6_21
http://dx.doi.org/10.1007/978-3-319-20028-6_21
http://dx.doi.org/10.1016/j.ic.2017.05.001
http://dx.doi.org/10.1007/s00236-007-0047-y
http://dx.doi.org/10.3233/FI-2017-1559
http://dx.doi.org/10.1007/978-3-319-15579-1_17
http://dx.doi.org/10.1007/978-3-319-15579-1_17
http://dx.doi.org/10.1016/j.ic.2014.09.002
http://dx.doi.org/10.1016/j.ic.2014.09.002

Bibliography 163

[88] Paul Hunter. Reachability in succinct one-counter games. In Proceedings of RP 2015,

volume 9328 of LNCS, pages 37–49. Springer, 2015. doi: 10.1007/978-3-319-24537-9 5.

[89] Paul Hunter and Jean-François Raskin. Quantitative games with interval objectives. In

Proceedings of FSTTCS 2014, volume 29 of LIPIcs, pages 365–377. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2014. doi: 10.4230/LIPIcs.FSTTCS.2014.365.

[90] Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Information

Processing Letters, 68(3):119–124, 1998. doi: 10.1016/S0020-0190(98)00150-1.

[91] Marcin Jurdziński. Small progress measures for solving parity games. In Proceedings

of STACS 2000, volume 1770 of LNCS, pages 290–301. Springer, 2000. doi: 10.1007/3-

540-46541-3 24.

[92] Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz. Fixed-dimensional energy

games are in pseudo-polynomial time. In Proceedings of ICALP 2015, volume 9135 of

LNCS, pages 260–272. Springer, 2015. doi: 10.1007/978-3-662-47666-6 21.

[93] Ravi Kannan and Richard J. Lipton. Polynomial-time algorithm for the orbit problem.

Journal of the ACM, 33(4):808–821, 1986. doi: 10.1145/6490.6496.

[94] Sang-Ki Ko. Personal communications, 2017.

[95] Sang-Ki Ko, Reino Niskanen, and Igor Potapov. On the identity problem for

the special linear group and the Heisenberg group. CoRR, abs/1706.04166, 2017.

https://arxiv.org/abs/1706.04166.

[96] Sang-Ki Ko and Igor Potapov. Composition problems for braids: Membership, identity

and freeness. CoRR, abs/1707.08389, 2017. http://arxiv.org/abs/1707.08389.

[97] Pascal Koiran, Michel Cosnard, and Max H. Garzon. Computability with low-

dimensional dynamical systems. Theoretical Computer Science, 132(2):113–128, 1994.

doi: 10.1016/0304-3975(94)90229-1.

[98] Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack and subset sum

problems in nilpotent, polycyclic, and co-context-free groups. Algebra and Computer

Science, 677:138–153, 2016. doi: 10.1090/conm/677/13625.

http://dx.doi.org/10.1007/978-3-319-24537-9_5
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.365
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1007/978-3-662-47666-6_21
http://dx.doi.org/10.1145/6490.6496
https://arxiv.org/abs/1706.04166
http://arxiv.org/abs/1707.08389
http://dx.doi.org/10.1016/0304-3975(94)90229-1
http://dx.doi.org/10.1090/conm/677/13625

164 Reino Niskanen

[99] Ivan Korec. Small universal register machines. Theoretical Computer Science,

168(2):267–301, 1996. doi: 10.1016/S0304-3975(96)00080-1.

[100] Bertram Kostant. Quantization and unitary representations. In Lectures in Modern

Analysis and Applications III, pages 87–208. Springer, 1970. doi: 10.1007/BFb0079068.

[101] Michal Kunc. Regular solutions of language inequalities and well quasi-orders. Theo-

retical Computer Science, 348(2-3):277–293, 2005. doi: 10.1016/j.tcs.2005.09.018.

[102] Michal Kunc. The power of commuting with finite sets of words. Theory Computing

Systems, 40(4):521–551, 2007. doi: 10.1007/s00224-006-1321-z.

[103] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic

approach to branching-time model checking. Journal of the ACM, 47(2):312–360,

2000. doi: 10.1145/333979.333987.

[104] Oleksiy Kurganskyy and Igor Potapov. Reachability problems for PAMs. In Proceed-

ings of SOFSEM 2016, volume 9587 of LNCS, pages 356–368. Springer, 2016. doi:

10.1007/978-3-662-49192-8 29.

[105] Oleksiy Kurganskyy, Igor Potapov, and Fernando Sancho-Caparrini. Reachability

problems in low-dimensional iterative maps. International Journal of Foundations of

Computer Science, 19(4):935–951, 2008. doi: 10.1142/S0129054108006054.

[106] Sige-Yuki Kuroda. Classes of languages and linear-bounded automata. Information

and Control, 7(2):207–223, 1964. doi: 10.1016/s0019-9958(64)90120-2.

[107] Peter S. Landweber. Three theorems on phrase structure grammars of type 1.

Information and Control, 6(2):131–136, 1963. doi: 10.1016/s0019-9958(63)90169-4.

[108] Jérôme Leroux, Vincent Penelle, and Grégoire Sutre. The context-freeness problem is

coNP-complete for flat counter systems. In Proceedings of ATVA 2014, volume 8837

of LNCS, pages 248–263. Springer, 2014. doi: 10.1007/978-3-319-11936-6 19.

[109] Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector ad-

dition systems. In Proceedings of LICS 2015, pages 56–67. IEEE, 2015. doi:

10.1109/LICS.2015.16.

http://dx.doi.org/10.1016/S0304-3975(96)00080-1
http://dx.doi.org/10.1007/BFb0079068
http://dx.doi.org/10.1016/j.tcs.2005.09.018
http://dx.doi.org/10.1007/s00224-006-1321-z
http://dx.doi.org/10.1145/333979.333987
http://dx.doi.org/10.1007/978-3-662-49192-8_29
http://dx.doi.org/10.1007/978-3-662-49192-8_29
http://dx.doi.org/10.1142/S0129054108006054
http://dx.doi.org/10.1016/s0019-9958(64)90120-2
http://dx.doi.org/10.1016/s0019-9958(63)90169-4
http://dx.doi.org/10.1007/978-3-319-11936-6_19
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1109/LICS.2015.16

Bibliography 165

[110] Jérôme Leroux and Grégoire Sutre. On flatness for 2-dimensional vector addition

systems with states. In Proceedings of CONCUR 2004, volume 3170 of LNCS, pages

402–416. Springer, 2004. doi: 10.1007/978-3-540-28644-8 26.

[111] Jérôme Leroux and Grégoire Sutre. Flat counter automata almost everywhere! In

Proceedings of ATVA 2005, volume 3707 of LNCS, pages 489–503. Springer, 2005.

doi: 10.1007/11562948 36.

[112] Alexei Lisitsa and Igor Potapov. Membership and reachability problems for row-

monomial transformations. In Proceedings of MFCS 2004, volume 3153 of LNCS,

pages 623–634. Springer, 2004. doi: 10.1007/978-3-540-28629-5 48.

[113] Olivier Ly and Zhilin Wu. On effective construction of the greatest solution of

language inequality XA ⊆ BX. Theoretical Computer Science, 528:12–31, 2014. doi:

10.1016/j.tcs.2014.02.001.

[114] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Springer, 1977.

doi: 10.1007/978-3-642-61896-3.

[115] Andrei A. Markov. On certain insoluble problems concerning matrices. Doklady

Akademii Nauk SSSR, 57(6):539–542, 1947.

[116] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.

doi: 10.2307/1971035.

[117] Yuri Matiyasevich and Géraud Sénizergues. Decision problems for semi-Thue sys-

tems with a few rules. Theoretical Computer Science, 330(1):145–169, 2005. doi:

10.1016/j.tcs.2004.09.016.

[118] Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In

Proceedings of STOC 1981, pages 238–246. ACM, 1981. doi: 10.1145/800076.802477.

[119] Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and

Applied Logic, 65(2):149–184, 1993. doi: 10.1016/0168-0072(93)90036-D.

[120] Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,

1967. https://dl.acm.org/citation.cfm?id=1095587.

http://dx.doi.org/10.1007/978-3-540-28644-8_26
http://dx.doi.org/10.1007/11562948_36
http://dx.doi.org/10.1007/978-3-540-28629-5_48
http://dx.doi.org/10.1016/j.tcs.2014.02.001
http://dx.doi.org/10.1016/j.tcs.2014.02.001
http://dx.doi.org/10.1007/978-3-642-61896-3
http://dx.doi.org/10.2307/1971035
http://dx.doi.org/10.1016/j.tcs.2004.09.016
http://dx.doi.org/10.1016/j.tcs.2004.09.016
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.1016/0168-0072(93)90036-D
https://dl.acm.org/citation.cfm?id=1095587

166 Reino Niskanen

[121] Alexei Mishchenko and Alexander Treier. Knapsack problem for nilpotent groups.

Groups Complexity Cryptology, 9(1):87–98, 2017. doi: 10.1515/gcc-2017-0006.

[122] Turlough Neary. Undecidability in binary tag systems and the Post correspondence

problem for five pairs of words. In Proceedings of STACS 2015, volume 30 of

LIPIcs, pages 649–661. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015. doi:

10.4230/LIPIcs.STACS.2015.649.

[123] Reino Niskanen. Robot games with states in dimension one. In Proceedings of RP

2016, volume 9899 of LNCS, pages 163–176. Springer, 2016. doi: 10.1007/978-3-319-

45994-3 12.

[124] Reino Niskanen. Reachability problem for polynomial iteration is PSPACE-complete.

In Proceedings of RP 2017, volume 10506 of LNCS, pages 132–143. Springer, 2017.

doi: 10.1007/978-3-319-67089-8 10.

[125] Reino Niskanen, Igor Potapov, and Julien Reichert. Undecidability of two-

dimensional robot games. In Proceedings of MFCS 2016, volume 58 of LIPIcs,

pages 73:1–73:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. doi:

10.4230/LIPIcs.MFCS.2016.73.

[126] Joël Ouaknine, João Sousa Pinto, and James Worrell. On termination of integer

linear loops. In Proceedings of SODA 2015, pages 957–969. SIAM, 2015. doi:

10.1137/1.9781611973730.65.

[127] Joël Ouaknine and James Worrell. On the positivity problem for simple linear

recurrence sequences. In Proceedings of ICALP 2014, volume 8573 of LNCS, pages

318–329. Springer, 2014. doi: 10.1007/978-3-662-43951-7 27.

[128] Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear

recurrence sequences. In Proceedings of ICALP 2014, volume 8573 of LNCS, pages

330–341. Springer, 2014. doi: 10.1007/978-3-662-43951-7 28.

[129] Prakash Panangaden and Éric Oliver Paquette. A categorical presentation of quantum

computation with anyons. In New structures for Physics, volume 813 of LNP, pages

983–1025. Springer, 2011. doi: 10.1007/978-3-642-12821-9 15.

[130] Michael S. Paterson. Unsolvability in 3× 3 matrices. Studies in Applied Mathematics,

49(1):105, 1970. doi: 10.1002/sapm1970491105.

http://dx.doi.org/10.1515/gcc-2017-0006
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.649
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.649
http://dx.doi.org/10.1007/978-3-319-45994-3_12
http://dx.doi.org/10.1007/978-3-319-45994-3_12
http://dx.doi.org/10.1007/978-3-319-67089-8_10
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.73
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.73
http://dx.doi.org/10.1137/1.9781611973730.65
http://dx.doi.org/10.1137/1.9781611973730.65
http://dx.doi.org/10.1007/978-3-662-43951-7_27
http://dx.doi.org/10.1007/978-3-662-43951-7_28
http://dx.doi.org/10.1007/978-3-642-12821-9_15
http://dx.doi.org/10.1002/sapm1970491105

Bibliography 167

[131] Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the American

Mathematical Society, 52(4):264–268, 1946.

[132] Igor Potapov. From Post systems to the reachability problems for matrix semigroups

and multicounter automata. In Proceedings of DLT 2004, volume 3340 of LNCS,

pages 345–356. Springer, 2004. doi: 10.1007/978-3-540-30550-7 29.

[133] Igor Potapov. Composition problems for braids. In Proceedings of FSTTCS 2013, vol-

ume 24 of LIPIcs, pages 175–187. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2013. doi: 10.4230/LIPIcs.FSTTCS.2013.175.

[134] Igor Potapov and Pavel Semukhin. Decidability of the membership problem for 2×2

integer matrices. In Proceedings of SODA 2017, pages 170–186. SIAM, 2017. doi:

10.1137/1.9781611974782.12.

[135] Igor Potapov and Pavel Semukhin. Membership problem in GL(2,Z) extended

by singular matrices. In Proceedings of MFCS 2017, volume 83 of LIPIcs,

pages 44:1–44:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. doi:

10.4230/LIPIcs.MFCS.2017.44.

[136] Julien Reichert. On the complexity of counter reachability games. In Proceedings of

RP 2013, volume 8169 of LNCS, pages 196–208. Springer, 2013. doi: 10.1007/978-3-

642-41036-9 18.

[137] Julien Reichert. Reachability games with counters: Decidability and algorithms.

Doctoral thesis, Laboratoire Spécification et Vérification, ENS Cachan, France, 2015.

[138] Julien Reichert. On the complexity of counter reachability games. Fundamenta

Informaticae, 143(3-4):415–436, 2016. doi: 10.3233/FI-2016-1320.

[139] Emmanuel Roche and Yves Schabes. Speech recognition by composition of weighted

finite automata. In Finite-state language processing, A Bradford book, pages 431–454.

MIT press, 1997.

[140] Jean-François Romeuf. A polynomial algorithm for solving systems of two linear

Diophantine equations. Theoretical Computer Science, 74(3):329–340, 1990. doi:

10.1016/0304-3975(90)90082-s.

http://dx.doi.org/10.1007/978-3-540-30550-7_29
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.175
http://dx.doi.org/10.1137/1.9781611974782.12
http://dx.doi.org/10.1137/1.9781611974782.12
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.44
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.44
http://dx.doi.org/10.1007/978-3-642-41036-9_18
http://dx.doi.org/10.1007/978-3-642-41036-9_18
http://dx.doi.org/10.3233/FI-2016-1320
http://dx.doi.org/10.1016/0304-3975(90)90082-s
http://dx.doi.org/10.1016/0304-3975(90)90082-s

168 Reino Niskanen

[141] Keijo Ruohonen. Reversible machines and Post’s correspondence problem for biprefix

morphisms. Elektronische Informationsverarbeitung und Kybernetik, 21(12):579–595,

1985.

[142] Sven Schewe. From parity and payoff games to linear programming. In Proceedings of

MFCS 2009, volume 5734 of LNCS, pages 675–686. Springer, 2009. doi: 10.1007/978-

3-642-03816-7 57.

[143] Sven Schewe. Solving parity games in big steps. Journal of Computer and System

Sciences, 84:243–262, 2017. doi: 10.1016/j.jcss.2016.10.002.

[144] Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza. Efficient algorithms

for alternating pushdown systems with an application to the computation of certificate

chains. In Proceedings of ATVA 2006, volume 4218 of LNCS, pages 141–153. Springer,

2006. doi: 10.1007/11901914 13.

[145] Yaron Velner. Robust multidimensional mean-payoff games are undecidable. In

Proceedings of FoSSaCS 2015, volume 9034 of LNCS, pages 312–327. Springer, 2015.

doi: 10.1007/978-3-662-46678-0 20.

[146] Igor Walukiewicz. Pushdown processes: Games and model-checking. Information and

Computation, 164(2):234–263, 2001. doi: 10.1006/inco.2000.2894.

[147] Thomas Wilke. Alternating tree automata, parity games, and modal µ-calculus.

Bulletin of the Belgian Mathematical Society, 8(2):359–391, 2001.

[148] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to

automata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

doi: 10.1016/S0304-3975(98)00009-7.

[149] Uri Zwick and Michael S. Paterson. The complexity of mean payoff games on

graphs. Theoretical Computer Science, 158(1&2):343–359, 1996. doi: 10.1016/0304-

3975(95)00188-3.

http://dx.doi.org/10.1007/978-3-642-03816-7_57
http://dx.doi.org/10.1007/978-3-642-03816-7_57
http://dx.doi.org/10.1016/j.jcss.2016.10.002
http://dx.doi.org/10.1007/11901914_13
http://dx.doi.org/10.1007/978-3-662-46678-0_20
http://dx.doi.org/10.1006/inco.2000.2894
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/0304-3975(95)00188-3
http://dx.doi.org/10.1016/0304-3975(95)00188-3

Index

2CM, see Minsky machine

alternating pushdown system, 24

Attacker-Defender game, 24

braid game, 61

braid group, 62

counter reachability game, 25

CRG, see counter reachability game

flat Z-VASS game, 27

game on integer vector addition system with

states, see Z-VASS game

group alphabet, 15

Heisenberg group, 16

ICP, see identity correspondence problem

identity correspondence problem, 18

infinite Post correspondence problem, 18

morphisms, 31

integer vector addition system game, see Z-

VAS

integer weighted automaton, 20

acceptance, 20

loopless, 46

universality problem, 21

k-control Z-VASS game, 27

LBA, see linear-bounded automaton

linear-bounded automaton, 23

matrix game, see matrix game on vectors

matrix game on vectors, 56

block diagonal matrix game, 60

Minsky machine, 22

ωPCP, see infinite Post correspondence prob-

lem

PCP, see Post correspondence problem

polynomial register machine, 23

Post correspondence problem, 17

PRM, see polynomial register machine

robot game, see Z-VAS game

robot game with states, see Z-VASS game

special linear group, 16

weighted word game, 46

word game on binary alphabet, 54

word game on pairs of group words, 51

Z-VAS game, 26

Z-VASS game, 26

169

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Thesis outline
	Overview of related research
	Author's publications

	Preliminaries
	Words, matrices and the PCP
	Models of computation
	Attacker-Defender games
	Z-VAS games, where each player has two moves
	Properties of the particular subclass of the wPCP

	Attacker-Defender games
	The universality problem for weighted automata on infinite words
	Applications to Attacker-Defender games
	Weighted word games
	Word games on pairs of group words
	Word games over binary group alphabets
	Matrix games on vectors
	Braid games

	Concluding remarks and open problems

	One-dimensional Z-VASS games
	Z-VASS games in dimension one
	Flat Z-VASS games in dimension one
	VAS games in dimension one
	Concluding remarks and open problems

	Two-dimensional Z-VAS games
	Z-VASS games in two dimensions
	Z-VAS games in two dimensions
	VAS games in two dimensions
	Concluding remarks and open problems

	Controllability in Z-VASS games
	Safety of k-control Z-VASS games
	Safety of k-control Z-VASS games with the target defined by a hyperplane
	Reachability of k-control Z-VASS games
	Concluding remarks and open problems

	Single-player reachability games
	Iterating polynomials
	Non-existence of embedding from pairs of words into 3x3 matrices
	Decidability of the identity problem in the Heisenberg group
	The identity problem in matrix semigroups in dimension four
	Concluding remarks and open problems

	Summary
	References

