
Synthesis of Distributed Systems

Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der
Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes

Sven Schewe

Saarbrücken, 2008

Tag des Kolloquiums 25.07.2008
Dekan Prof. Dr. Joachim Weickert

Prüfungsausschuss

Vorsitzender Prof. Dr. Jörg Siekmann

Berichterstattende Prof. Dr. Bernd Finkbeiner
Prof. Dr. Amir Pnueli
Prof. Dr. Andreas Podelski
Prof. Dr. Moshe Y. Vardi

Akademischer Mitarbeiter Dr. Andrey Rybalchenko

i

Abstract

This thesis offers a comprehensive solution of the distributed synthesis problem.
It starts with the problem of solving Parity games, which form an integral

part of the automata-theoretic synthesis algorithms we use. We improve the
known complexity bound for solving parity games with n positions and c colors
approximately from O(n

1
2 c) to O(n

1
3 c), and introduce an accelerated strategy

improvement technique that can consider all combinations of local improvements
in every update step, selecting the globally optimal combination.

We then demonstrate the decidability and finite model property of
alternating-time specification languages, and determine the complexity of the
satisfiability and synthesis problem for the alternating-time µ-calculus and the
temporal logic ATL*.

The impact of the architecture, that is, the set of system processes with
known (white-box) and unknown (black-box) implementation, and the com-
munication structure between them, is determined. We introduce information
forks, a simple but comprehensive criterion that characterizes all architectures
for which the synthesis problem is undecidable. The information fork crite-
rion takes the impact of nondeterminism, the communication topology, and the
specification language into account. For decidable architectures, we present an
automata-based synthesis algorithm.

We introduce bounded synthesis, which deviates from general synthesis by
considering only implementations up to a predefined size, and thus avoids the
expensive representation of all solutions. We develop a SAT based approach to
bounded synthesis, which is nondeterministic quasilinear in the minimal imple-
mentation instead of nonelementary in the system specification.

We determine the complexity of open synthesis under the assumption of
probabilistic or reactive environments. Our automata based approach allows for
a seamless integration of the new environment models into the uniform synthesis
algorithm.

Finally, we study the synthesis problem for asynchronous systems. We show
that distributed synthesis remains only decidable for architectures with a single
black-box process, and determine the complexity of the synthesis problem for
different scheduler types. Furthermore, we combine the undecidability results
and synthesis procedures for synchronous and asynchronous systems; systems
that are globally asynchronous and locally synchronous are decidable if all black-
box components are contained in a single fork-free synchronized component.

ii

Zusammenfassung

Diese Dissertation löst das Syntheseproblem für verteilte Systeme.
Sie beginnt mit verbesserten Algorithmen zum Lösen von Parity Spielen,

die einen integralen Bestandteil der Automaten basierten Synthese bilden. Die
bekannte Komplexitätsschranke für das Lösen von Parity Spielen mit n Knoten
und c Farben wird von ca. O(n

1
2 c) auf ca. O(n

1
3 c) verbessert, und es wird eine

beschleunigte Strategie Verbesserungsmethode entwickelt, die, in jedem Schritt,
die optimale Kombination aller lokalen Verbesserungen findet.

Die Entscheidbarkeit alternierender Logiken wird gezeigt, und die Kom-
plexität des Erfüllbarkeits- und Syntheseproblems für das Alternierende
µ-Kalkül (EXPTIME-vollständig) und die Temporallogik ATL* (2EXPTIME-
vollständig) bestimmt.

Der Einfluss der Systemarchitektur, der Spezifikationssprache und, damit
verbunden, des Implementierungsmodells (deterministisch vs. nichtdeterminis-
tisch) auf die Entscheidbarkeit und Komplexität des Syntheseproblems wird
herausgearbeitet. Es wird gezeigt, dass die Klasse der entscheidbaren Ar-
chitekturen durch die Abwesenheit von Information Forks, einem einfachen
und leicht prüfbaren Kriterium auf der Kommunikationsarchitektur, vollständig
beschrieben werden kann. Für entscheidbare Architekturen wird ein einheitliches
Automaten basiertes Syntheseverfahren entwickelt.

Darüber hinaus wird ein SAT basiertes Verfahren entwickelt, dass die
Repräsentation aller Lösungen in einem Automaten umgeht. Die Komplexität
des SAT basierten Verfahrens ist nichtdeterministisch quasilinear in der Größe
des minimalen Modells, statt nicht-elementar in der Größe der Spezifikation.

Für probabilistische und reaktive Umgebungen wird die Komplexität des of-
fenen Syntheseproblems bestimmt, und jeweils ein Automaten basiertes Synthe-
severfahren entwickelt, dass sich nahtlos in das Syntheseverfahren für verteilte
Systeme integrieren lässt.

Ferner wird gezeigt, dass verteilte Synthese für asynchrone Systeme nur dann
entscheidbar bleibt, wenn lediglich die Implementierung einer Komponente kon-
struiert werden soll. Schließlich werden die Entscheidbarkeitsresultate und Syn-
these Algorithmen für synchrone und asynchrone Modelle zusammengeführt:
Global asynchrone lokal synchrone Systeme sind entscheidbar, wenn alle zu syn-
thetisierenden Prozesse in der gleichen synchronisierten Komponente liegen, und
diese Komponente keine Information Forks enthält.

iii

Acknowledgments

There is no way to express my gratitude towards my adviser Bernd Finkbeiner.
Bernd has always been the role model of a supervisor. He gave me the most
valuable gift an adviser can give to his advisee: A well thought-out thesis topic
that lasted for years of intensive and challenging research. The intensity of
Bernd’s supervision can maybe best described by our ten joint publications,
eight of which form the backbone of this thesis; I will draw from our close
cooperation for years. Besides this invaluable support, Bernd also gave me trust
and independence, and provided me with challenges to grow on. He always
believed in me, even when I did not, and I still wonder what made him accept
me as a PhD student at a time where I had not even heard of ω-automata or
temporal logics. It will be hard to live up to the standards he set – Bernd will
always remain the archetype of an adviser that I will try to reach.

It is an honor for me to have Amir Pnueli and Moshe Vardi on my thesis com-
mittee. Both are not only leading researchers in the field, they also had a strong
influence on this thesis. The paper “Synthesizing Distributed Systems [KV01]”
by Orna Kupferman and Moshe Vardi has been the first work I came in con-
tact with when starting my PhD, and their work on automata-theoretic synthe-
sis [Var95, KV97b, Var98, KV99, KV00, KV05] has had a strong influence on my
research. When Moshe’s work has given me guidance, Amir’s work has initial-
ized the area of research I focused on: The paper “Distributed Reactive Systems
are Hard to Synthesize [PR90]” of Amir Pnueli and Roni Rosner has been the
starting point for distributed synthesis, and prior work of theirs [PR89a, PR89b]
has triggered open synthesis for temporal logic.

I am also grateful to Andreas Podelski for many inspiring discussions, and
for joining my thesis committee.

I want to thank Rayna Dimitrova, Klaus Dräger, Rüdiger Ehlers, Holger
Hermanns, Lars Kuhtz, Anne Proetzsch, Hans-Jörg Peter, Andrey Rybalchenko,
Christa Schäfer, Jonathan Türpe, and many others for several fruitful discus-
sions and productive coffee brakes.

I am grateful to the German Research Foundation (DFG) for supporting
this work as part of the Transregional Collaborative Research Center “Auto-
matic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS),
and through the Research School “Quality Guarantees for Computer Systems”.

My last thanks go to those who are closest to me. I thank my family – Kasia
and Alina – for uncomplainingly allowing much too long working hours, and for
the love and support they gave me.

Contents

1 Introduction 1

1.1 History of Synthesis . 2
1.2 Contribution . 3
1.3 Organization of the thesis . 5

1.3.1 Part I – Parity Games . 6
1.3.2 Part II – Logic & Automata 7
1.3.3 Part III – Distributed Architectures 8

I Parity Games 13

2 Solving Parity Games in Big Steps 15

2.1 Introduction . 15
2.2 Parity Games . 17
2.3 Established Algorithms . 19

2.3.1 McNaughton’s Algorithm 19
2.3.2 Progress Measures . 23

2.4 The Algorithm . 25
2.4.1 Three Color Games . 28
2.4.2 The Approximation . 31
2.4.3 Correctness . 32
2.4.4 Complexity . 33

2.5 Discussion . 35

3 Optimal Strategy Improvement 36

3.1 Introduction . 37
3.2 Escape Games . 41

v

vi CONTENTS

3.3 Solving Escape Games . 44

3.3.1 Optimal Improvement . 44

3.3.2 Basic Update Step . 45

3.3.3 Illustrating Example . 46

3.3.4 Correctness . 48

3.3.5 Complexity . 49

3.3.6 Extended Update Step . 51

3.4 Benchmarks and Results . 52

3.4.1 Performance on Random Graphs 52

3.4.2 Benchmarks . 53

3.5 Discussion . 56

II Logics & Automata 59

4 Satisfiability of ATµC 62

4.1 Introduction . 62

4.2 Preliminaries . 64

4.2.1 Concurrent Game Structures 64

4.2.2 Alternating-Time µ-calculus 65

4.2.3 Automata over Finitely Branching Structures 68

4.3 Automata over Concurrent Game Structures 70

4.3.1 From ATµC Formulas to Automata over Concurrent
Game Structures . 72

4.3.2 Eliminating ε-Transitions 73

4.4 Bounded Models . 75

4.5 Satisfiability and Complexity . 80

5 ATL* Satisfiability is 2EXPTIME-complete 85

5.1 Introduction . 85

5.2 ATL* . 87

5.3 From General to Explicit Models 89

5.4 ATL* Satisfiability is 2EXPTIME-Complete 94

5.5 Conclusions . 96

CONTENTS vii

III Open & Distributed Synthesis 99

6 Uniform Distributed Synthesis 104

6.1 Introduction . 105
6.2 The Synthesis Problem . 110

6.2.1 Architectures . 110
6.2.2 Implementations . 111
6.2.3 Compositions . 111
6.2.4 Computations . 112
6.2.5 Specification Languages 115
6.2.6 Realizability and Synthesis 115

6.3 Information Forks . 116
6.4 Synthesis for Fork-Free Architectures 117

6.4.1 Architecture Transformations 118
6.5 The Synthesis Algorithm . 119

6.5.1 Realizability in 1-Black-Box Architectures 119
6.5.2 Realizability in Hierarchical Architectures 123
6.5.3 Synthesis . 124

6.6 Completeness . 127
6.6.1 Environment Undecidable Architectures 128
6.6.2 Undecidable Architectures 131

6.7 Conclusions . 133

7 Bounded Synthesis 135

7.1 Introduction . 135
7.2 Preliminaries . 138

7.2.1 Environment Architectures 139
7.2.2 Implementations as Labeled Transition Systems 139
7.2.3 Synthesis . 140
7.2.4 Bounded Synthesis . 140

7.3 Annotated Transition Systems 140
7.3.1 Recap: Universal Co-Büchi Automata 141
7.3.2 Bounded Annotations . 141
7.3.3 Estimating the Bound . 142

7.4 Automata-Theoretic Bounded Synthesis 143
7.5 Constraint-Based Bounded Synthesis 145
7.6 Distributed Synthesis . 150
7.7 Experimental Results . 152

7.7.1 Arbiter . 154

viii CONTENTS

7.7.2 Dining Philosophers . 156
7.8 General Architectures & ATµC 158
7.9 Conclusions . 159

8 Excursion: Probabilistic Environments 161

8.1 Introduction . 162
8.2 Preliminaries . 163

8.2.1 Probabilistic Environments 163
8.2.2 The Synthesis Problem 164

8.3 Synthesis for Trace Languages . 164
8.3.1 Structural Acceptance Criteria 164
8.3.2 Game Construction . 165

8.4 Temporal Logics . 172
8.5 0-Environments . 176
8.6 Conclusions . 177

9 Semi-Automatic Synthesis 178

9.1 Introduction . 179
9.2 Resilient Realizability . 180
9.3 The Compositional Synthesis Rule 180
9.4 Example . 182
9.5 Completeness . 184
9.6 Synthesis of Resilient Implementations 185

9.6.1 Overview . 186
9.6.2 Quantification . 187
9.6.3 Upper Bounds . 189
9.6.4 Lower Bounds . 189
9.6.5 Universal Specifications 190
9.6.6 Premise (S) . 191

9.7 Conclusions . 192

10 Asynchronous Systems 194

10.1 Introduction . 194
10.2 The Synthesis Problem . 197

10.2.1 The Scheduler . 197
10.2.2 Computations . 197
10.2.3 The Synthesis Problem 198

10.3 Single-Process Synthesis under Full Scheduling 199
10.3.1 Overview . 199

CONTENTS ix

10.3.2 Adjusting for white-box processes 200
10.3.3 From Relaxed Implementations to Implementations . . . 201
10.3.4 Complexity . 202

10.4 Scheduler-Independent Implementations 203
10.4.1 Overview . 203
10.4.2 Complexity . 204
10.4.3 Synthesis with Explicit Assumptions on the Scheduler . . 206

10.5 Multi-Process Synthesis . 207
10.6 GALS Systems . 210
10.7 Conclusions . 211

IV Summary & Conclusions 213

11 Summary 214

11.1 Results . 214
11.2 Automata-Theoretic Perspective 216

12 Conclusions 218

Chapter 1

Introduction

The influence of computer systems on our life has been constantly growing for
several decades, and they seem to gain more and more importance every day.
Mal-functional systems often endanger life, both in civil systems – for example,
in automotive and air traffic control systems – and in military systems – for
example, in command and control systems or missile controllers. Errors may also
cause severe financial damage or violation of privacy – for example in transaction
systems and security protocols. Consequently, one of the main challenges in
computer science is the design of provably correct systems.

Most of these safety critical computer systems and protocols are reactive
in nature: Systems of non-terminating processes that interact with each other
over an infinite run. Parallelism, nondeterminism, and an incomplete view of
the processes on the global system state make it difficult to analyze and design
such systems correctly. There are two basic approaches to obtain a provably
correct system: Methods which prove that an implementation satisfies a log-
ical property (verification) and algorithms that derive correct-by-construction
implementations from logical specifications (synthesis).

While verification has been the subject of intensive research for over 40 years
and has become a standard tool in the design of safety critical systems, research
on the synthesis problem is still in its infancy.

The topic of this thesis is the automated construction of distributed reactive
systems – systems consisting of several independent processes that cooperate
based on local information to accomplish a global goal – from their specifications.
While verification can only be applied once the design of a system is complete,
synthesis algorithms can automatically construct prototypes (which are helpful

1

2 CHAPTER 1. INTRODUCTION

to validate the system requirements), analyze partial designs (to determine if
it is still possible to complete the implementation to a correct system), and
automatically fill in auxiliary components (such as protocol adapters) to systems
built from component libraries.

The results of this thesis promote the understanding of the concepts behind
the distributed synthesis problem and are a step forward in the process of bring-
ing synthesis to the same level of maturity and industrial acceptance that has
currently been reached by verification.

1.1 History of Synthesis

Synthesis algorithms decide whether a given specification has an implementa-
tion. For distributed systems, the specification is usually given as an ω-regular
set of system behaviors, and an implementation is a collection of finite-state
programs that satisfy the formula when composed into a complete system.

The synthesis problem for reactive systems was originally introduced by
Church [Chu63] in 1962: Given a relation R ⊆ (2I)ω × (2O)ω in the monadic
second order theory of one successor (S1S), we want to find a function
p : (2I)ω → (2O)ω such that (π, p(π)) ∈ R satisfies the relation for all infi-
nite sequences π ∈ (2I)ω. In synthesis, we additionally require that the function
p is realizable, that is, p shall not depend on the future: The initial sequence
of any length n ∈ ω of p(π) depends only on the initial sequence of the same
length of the input sequence π.

Church’s problem was solved independently by Rabin [Rab69], and Büchi
and Landweber [Büc62, BL69b, BL69a] in 1969. Since their seminal works, the
close relation between finite automata over infinite structures [Rab69] and finite
games of infinite duration [BL69b, BL69a] became apparent, and both areas
have often inspired each other.

More recently, synthesis focused on systems with easy-to-grasp languages
like temporal and fixed point logics. The synthesis algorithms in the litera-
ture solve various instances of the synthesis problem that differ in the choice
of the system architecture and the specification logic. Closed synthesis, the
case of a single-process implementation without any interaction with the en-
vironment, was solved in the early 80’s for CTL [CE82], LTL [Wol82] and
the modal µ-calculus [Koz83]. More recently, the closed synthesis problem has
been solved for the weakest alternating-time logic ATL [vD03, WLWW06].
Open synthesis concerns systems consisting of a single process that interacts
with its environment, and has been solved for asynchronous systems with

1.2. CONTRIBUTION 3

linear specifications [PR89b, Var95] as well as for synchronous systems with
branching-time [KV97b] and µ-calculus [KV00] specifications. In distributed syn-
thesis [PR90, MT01, KV01], the system is decomposed into different processes
that cooperate based on a limited local knowledge about the global system state.
An automata-based synthesis algorithm for pipeline and ring architectures and
CTL* specifications is due to Kupferman and Vardi [KV01], and Walukiewicz
and Mohalik provided an alternative game-based construction [WM03]. There
is also a negative result: Pnueli and Rosner [PR90] showed that the synthesis
problem is undecidable for LTL specifications and a simple architecture, con-
sisting of two processes that receive incomparable information from an external
environment.

1.2 Contribution

This thesis solves the synthesis problem for distributed systems. A distributed
system consists of several programs that each implement an independent pro-
cess. These programs must be constructed in such a way that, even though they
each only have partial information about the system state, their joint behavior
satisfies the specification. The introduced methods cover all design phases:

• At the beginning of system design, we usually have only a high-level parti-
tion of the system into independent processes, but not yet an architecture
that reflects the inter-process communication. Alternating-time logics are
a natural specification language for this design stage; ATL* or alternating-
time µ-calculus (ATµC) specifications reflect the coalition power of the
participating processes in a closed system. On this level, we are only in-
terested in what the processes can achieve, but not yet in the question
how their cooperation or competition is organized.

ATL* and ATµC are shown to be decidable, and the complexity of their
satisfiability problem and its constructive extension to synthesis are de-
termined.

• In the next design stage, interfaces between the processes are established.
The synthesis problem in this design phase is the traditional distributed
synthesis problem [PR90, KV01]: The input consists of a temporal specifi-
cation and an architecture. The system architecture is given as a directed
graph, whose nodes represent the processes, and whose edges reflect the
communication topology (or static interfaces). The edges are labeled with

4 CHAPTER 1. INTRODUCTION

Boolean variables that serve at the same time for inter-process communi-
cation, and as atomic propositions for the specification.

While it is well known that distributed synthesis is undecidable in gen-
eral [PR90], some architectures, such as pipelines [PR90], chains, and
rings [KV01] have been known to be decidable. The borderline between
decidable and undecidable architectures, however, remained an open chal-
lenge.

This thesis provides a concise description of the class of decidable archi-
tectures, and the influence of the actor model (deterministic vs. nondeter-
ministic) and process cooperation (synchronous vs. asynchronous) on the
class of decidable architectures.

• In later design stages, we are faced with partial designs, where a subset of
the system processes has a known implementation. To cover this design
phase, the description of the class of decidable architectures is rendered
more precisely by distinguishing processes with a known implementation
(which are called white-box processes in this thesis) from those with an
unknown implementation (black-box processes).

The effect of turning processes white-box on the decidability of an archi-
tecture is analyzed.

Covering these different levels, the suggested methods can be used for find-
ing design errors as soon as they occur. Unrealizable specifications can be dis-
tinguished from erroneously constructed interfaces, and errors in the interface
design can be distinguished from implementation errors.

Additionally, the introduced techniques can be used for error localization:
By replacing a process (or a small set of processes) by black-boxes, we can check
if this process can be blamed for the error in the sense that the error can be
avoided by changing its implementation.

The core results of the thesis are

• the finite model theorem for alternating-time specification languages and
the complexity of their satisfiability problem – the satisfiability and syn-
thesis problem is EXPTIME-complete for the alternating-time µ-calculus
and 2EXPTIME-complete for ATL* (Part II); and

• the identification of the fundamental parameters of the distributed syn-
thesis problem and their influence on its decidability and complexity
(Part III).

1.3. ORGANIZATION OF THE THESIS 5

Based on this classification, a general synthesis algorithm that provides a
uniform solution for all decidable cases, and for different environment models
(maximal, probabilistic, and reactive environments) is suggested in Part III.

Additionally, this thesis covers algorithmic aspects of the synthesis problem.
The discussed algorithms are automaton-based, and the most expensive steps
in these algorithms are constructive non-emptiness tests of nondeterministic
parity automata. Testing their non-emptiness reduces to solving parity games.
Performant algorithms for solving parity games are therefore an important step
on the way towards applicable synthesis procedures. In Chapter 2, the known
complexity bound for solving parity games with c colors and n positions is im-
proved from approximately O(n

1
2 c) to approximately O(n

1
3 c), and a performant

strategy improvement method is introduced in Chapter 3.

The complexity of distributed synthesis is nonelementary even for the de-
cidable fragment. In particular, the size of the smallest distributed imple-
mentation may be nonelementary in the length of the specification. From a
more applied point of view, such solutions are of limited interest, because
they cannot be implemented. Inspired by the success of bounded model check-
ing [CFG+01, BCC+03], bounded synthesis – the problem of finding a distributed
implementation with bounded size – is introduced in Chapter 7. Bounded syn-
thesis has two advantages over traditional synthesis techniques: It can be used to
construct minimal solutions, and as a semi decision procedure for undecidable
architectures.

Finally, a compositional synthesis rule is introduced, which establishes the
realizability of a specification by showing that the specification can be strength-
ened into a conjunction of local specifications for the individual processes, such
that each local specification is resiliently realized by its process (Chapter 9).
A process implementation satisfies its specification resiliently if it satisfies its
specification no matter how the remainder of the system is implemented. While
the specification must be strengthened manually, checking the correctness of the
strengthening and constructing resilient implementations can be automated.

1.3 Organization of the thesis

The organization of the thesis follows the technical dependencies. The first part
introduces improved algorithms for parity games. The second part refers to the
realizability problem for alternating-time logics. Part II also contains several
automata transformations that are used in the synthesis procedures of Part III.

6 CHAPTER 1. INTRODUCTION

In the third part, the synthesis problem for distributed architectures is solved
along the four dimensions of the synthesis problem – system architecture, process
cooperation, process composition, and environment model.

1.3.1 Part I – Parity Games

The cost of automata-theoretic algorithms for satisfiability checking and syn-
thesis is dominated by the non-emptiness test of nondeterministic parity tree
automata, that is, by the cost of solving large parity games. In Part I, two al-
gorithms for solving parity games are discussed, a forward-backward algorithm
that combines McNaughton’s [McN93] backward technique for solving parity
games with an incomplete version of Jurdziński’s forward analysis [Jur00]. By
balancing the time invested into both parts, the complexity bound for solving
parity games with n positions and m edges is improved from O(mn⌊0.5 c⌋) for
the qualitative analysis and O(mn⌈0.5 c⌉) for a constructive solution of parity
games with c colors [Jur00] to O(mnγ(c)) with γ(c) = 1

3c + 1
2 − 1

⌊0.5 c⌋⌈0.5 c⌉ for

even numbers of colors, and γ(c) = 1
3c+ 1

2 − 1
3c

− 1
⌊0.5 c⌋⌈0.5 c⌉ for odd numbers of

colors, respectively. Prior to this result, there have only been two improvements
of the complexity bounds since McNaughton introduced his iterated fixed-point
approach, and only one of them – the algorithm of Browne, Clarke, Jha, Long,
and Marrero [BCJ+97] – restricted the growth of the exponent in the number of
colors (from c−1 to ⌈0.5 c⌉+1). The following table illustrates the improvement
of the complexity for parity games with n positions and m edges obtained by the
big step approach introduced in Chapter 2, compared to previous algorithms:

colors 3 4 5 6 7 8 9

McNaughton O(mn2) O(mn3) O(mn4) O(mn5) O(mn6) O(mn7) O(mn8)

Browne & al. O(mn3) O(mn3) O(mn4) O(mn4) O(mn5) O(mn5) O(mn6)

Jurdziński O(mn2) O(mn2) O(mn3) O(mn3) O(mn4) O(mn4) O(mn5)

Big Steps O(mn) O(mn1.5) O(mn2) O(mn2.3) O(mn2.75) O(mn3.0625) O(mn3.45)

Additionally, a performant strategy improvement algorithm is introduced
that, in every improvement step, considers all combinations of strategy im-
provements. While our experimental data suggests that the proposed strategy
improvement algorithm performs extremely well in practice, its complexity is
wide open (between quasi trilinear in m, n and c, and O(mnc)).

1.3. ORGANIZATION OF THE THESIS 7

The content of Part I is partially based on the following publications:

[Sch07] Sven Schewe. Solving parity games in big steps. In Proceedings of the
27th Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2007), 12–14 December, New Delhi,
India, volume 4805 of Lecture Notes in Computer Science, pages 449–
460. Springer-Verlag, 2007.

[Sch08b] Sven Schewe. An optimal strategy improvement algorithm for solving
parity and payoff games. In Proceedings of the 17th Annual Conference
of the European Association for Computer Science Logic (CSL 2008),
15–19 September, Bertinoro, Italy, volume 5213 of Lecture Notes in
Computer Science, pages 368–383. Springer-Verlag, 2008.

1.3.2 Part II – Logic & Automata

Alternating-time logics extend the scope of distributed systems to systems of
independent agents that cooperate on some objectives while competing on oth-
ers. This thesis studies the alternating-time µ-calculus and the alternating-time
temporal logic ATL*, which extend classic µ-calculus and CTL*, respectively,
with modalities and path quantifiers that quantify over the strategic choices of
a group of agents.

A dedicated type of automata – automata over concurrent game structures –
is introduced for the analysis of alternating-time properties. Based on this repre-
sentation, automata theoretic techniques are exploited to demonstrate the finite
model property for ATµC and its semantic sublogic ATL*, and to show that
the satisfiability and synthesis problem for ATµC and ATL* are EXPTIME-
complete and 2EXPTIME-complete, respectively.

The content of Part II is partially based on the following publications:

[SF06a] Sven Schewe and Bernd Finkbeiner. The alternating-time µ-calculus
and automata over concurrent game structures. In Proceedings of the
15th Annual Conference of the European Association for Computer
Science Logic (CSL 2006), 25–29 September, Szeged, Hungary, volume
4207 of Lecture Notes in Computer Science, pages 591–605. Springer-
Verlag, 2006.

[Sch08a] Sven Schewe. Sven Schewe. ATL* satisfiability is 2ExpTime-complete.
In Proceedings of the 35th International Colloquium on Automata, Lan-
guages and Programming, Part II (ICALP 2008), 6–13 July, Reykjavik,
Iceland, volume 5126 of Lecture Notes in Computer Science, pages 373–
385. Springer-Verlag, 2008.

8 CHAPTER 1. INTRODUCTION

1.3.3 Part III – Distributed Architectures

We study system architectures in a generic setting, where an architecture is
given as a directed graph. The nodes represent processes and may include the
external environment as a special process. The edges of the graph are labeled
with variables, indicating that data may be transmitted between two processes.

The basic concept that distinguishes architectures with a decidable synthesis
problem from those, for which the synthesis problem is undecidable, turns out
to be the possibility to order the processes that are subject to synthesis with
respect to their informedness. This distinction applies to all settings, no matter
if the processes are composed synchronously or asynchronously, and independent
of the actor model (deterministic vs. nondeterministic processes).

Synchronous Systems. For synchronous systems, we introduce information
forks, a simple but comprehensive criterion that characterizes all architectures
for which the synthesis problem is undecidable. For all fork-free architectures,
we provide a uniform synthesis algorithm (Chapter 6). The question if an archi-
tecture contains an information fork depends on the set of nondeterministic pro-
cesses. (Nondeterminism is, for example, necessary to model the leeway needed
by different agents to fulfill an alternating-time specification.) For nondetermin-
istic systems, the class of decidable architectures is slightly reduced compared
to systems where all processes but an external environment are deterministic:
Presuming implicit forwarding of knowledge, which is possible in a deterministic
setting, cannot be justified for nondeterministic processes, and the hierarchy of
informedness must be directly implied by a subset relation on the information
available to the single processes.

A frequent critic to synthesis is that the complexity of synthesis in general,
and the seemingly high complexity of distributed synthesis in particular (nonele-
mentary for the decidable fragment, and CoRE in general) makes synthesis in-
feasible in practice. This high complexity is, however, due to the fact that the
smallest implementation may be of nonelementary and unbounded size, respec-
tively, which renders any comparison with model checking – where a particular
model is part of the input – unfair. We level the playing field between model
checking and synthesis by a twist in the synthesis question: Inspired by the suc-
cess of bounded model-checking, bounded synthesis is introduces in Chapter 7.
In bounded synthesis, we are only interested in small implementations, whose
size does not exceed predefined bounds. Bounded synthesis comes with various
advantages over standard synthesis: It allows us to take additional design con-
straints like the available memory into account (solutions of nonelementary size

1.3. ORGANIZATION OF THE THESIS 9

cannot be implemented), and to look for minimal solutions. Also, bounded syn-
thesis is decidable for all architectures, even if they contain an information fork,
and – by stepwise increasing the bound – provides a semi-decision procedure for
the traditional synthesis question. For fork-free architectures, we can even com-
pute a sufficiently large bound for which traditional and bounded realizability
coincides, which turns this approach into a decision procedure.

Historically, the synthesis problem has been studied in the setting of closed
systems, where the system has no interaction with its environment, and in the
setting of open systems where the system interacts with a maximal environment,
that is, an environment that shows every possible behavior. In this thesis, we
investigate two additional settings:

Probabilistic environments (Chapter 8) choose their actions randomly rather
than nondeterministically. For such environments we study the problems of
satisfying a specification almost-surely (that is, with probability 1) and ob-
servably, that is, with non-zero probability. We show that the problem of
synthesizing a process implementation from CTL and LTL specifications is
EXPTIME-complete and 2EXPTIME-complete, respectively, for probabilistic
environments.

Reactive environments (Chapter 9), introduced by Kupferman and
Vardi [KV97a], have the power to disable some of their own actions. Synthesis
for reactive environments has so far only been studied in the setting of complete
information [KMTV00]. We show that the incomplete information available to
an individual process does not affect the complexity of the synthesis prob-
lem in reactive environments: For CTL, CTL*, and µ-calculus specifications,
single-process synthesis remains 2EXPTIME-complete, 3EXPTIME-complete,
and 2EXPTIME-complete, respectively.

In Chapter 9, reactive environments are also used in a compositional synthe-
sis rule for the construction of distributed systems. The proposed compositional
synthesis rule requires a manual strengthening of the specification into local
specifications, which have to be satisfied resiliently by the individual processes.
This step can be viewed as a formalization of the construction of a dynamic in-
terface. It is shown to be complete in the sense that every distributed realizable
specification can be strengthened accordingly.

Asynchronous Systems. Most synthesis algorithms assume the processes
to run synchronously. The synthesis of asynchronous systems (Chapter 10) is
more difficult: While synchronous processes are aware of each change to their
input, asynchronous processes may fail to see certain changes (when the writing

10 CHAPTER 1. INTRODUCTION

process is scheduled more often than the reading process) and may see duplicate
input values (when the reading process is scheduled multiple times between two
writes).

It turns out that the synthesis problem is decidable for asynchronous dis-
tributed systems if and only if at most one process implementation is un-
known. The cost of synthesizing a single-process implementation is the same for
synchronous and asynchronous systems (2EXPTIME-complete for CTL*, and
EXPTIME-complete for CTL and the µ-calculus) if we assume a full scheduler
(that is, a scheduler that allows every possible scheduling). Lifting this assump-
tion by requiring that the distributed implementation shall satisfy the speci-
fication for all schedulers renders the synthesis problem for asynchronous sys-
tems exponentially harder (3EXPTIME-complete for CTL*, and 2EXPTIME-
complete for CTL and the µ-calculus).

The decision procedure for asynchronous systems of Chapter 10 can be com-
bined with the decision procedure for synchronous systems of Chapter 6 to a
decision procedure for systems that are globally composed asynchronously, but
contain islands of synchronized processes (GALS systems [Gup03]). This thesis
closes with a proof that GALS systems are decidable if and only if all black-box
processes are contained in a single fork-free quotient of synchronized processes.

The content of Part III is partially based on the following publications:

[FS05b] Bernd Finkbeiner and Sven Schewe. Uniform distributed synthesis. In
Proceedings of the 20th Annual IEEE Symposium on Logic in Computer
Science (LICS 2005), 26–29 June, Chicago, Illinois, USA, pages 321–
330. IEEE Computer Society Press, 2005.

[FS05a] Bernd Finkbeiner and Sven Schewe. Semi-automatic distributed syn-
thesis. In Proceedings of the 3rd International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA 2005), 4–7
October, Taipei, Taiwan, volume 3707 of Lecture Notes in Computer
Science, pages 263–277. Springer-Verlag, 2005.

[Sch06] Sven Schewe. Synthesis for probabilistic environments. In Proceedings
of the 4th International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA 2006), 23–26 October, Beijing, China,
volume 4218 of Lecture Notes in Computer Science, pages 245–259.
Springer-Verlag, 2006.

1.3. ORGANIZATION OF THE THESIS 11

[SF06b] Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous systems.
In Proceedings of the 16th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR 2006), 12–14 July,
Venice, Italy, volume 4407 of Lecture Notes in Computer Science, pages
127–142. Springer-Verlag, 2006.

[SF07a] Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In Proceedings
of the 5th International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA 2007), 22–25 October, Tokyo, Japan,
volume 4762 of Lecture Notes in Computer Science, pages 474–488.
Springer-Verlag, 2007.

[SF07b] Sven Schewe and Bernd Finkbeiner. Distributed synthesis for
alternating-time logics. In Proceedings of the 5th International Sympo-
sium on Automated Technology for Verification and Analysis (ATVA
2007), 22–25 October, Tokyo, Japan, volume 4762 of Lecture Notes in
Computer Science, pages 268–283. Springer-Verlag, 2007.

[SF07c] Sven Schewe and Bernd Finkbeiner. Semi-automatic distributed syn-
thesis. International Journal of Foundations of Computer Science,
18(1):113–138, 2007.

[FS07] Bernd Finkbeiner and Sven Schewe. SMT-based synthesis of dis-
tributed systems. In Proceedings of the 2nd Workshop for Automated
Formal Methods (AFM 2007), 6 November, Atlanta, Georgia, USA,
pages 69–76. ACM Press, 2007.

Part I

Parity Games

13

Overview

The final and most expensive step in the synthesis algorithms proposed in
Parts II and III consists of a constructive non-emptiness test for nondetermin-
istic parity tree automata, and thus reduces to solving parity games. The first
part of this thesis is therefore dedicated to algorithms for solving parity games.
The two chapters in this part have a different focus: While Chapter 2 provides
an improved complexity bound for solving parity games, Chapter 3 contains a
performant algorithm with unknown complexity.

The algorithm proposed in Chapter 2 joins the strengths of traditional for-
ward and backward techniques. While it follows the structure of McNaughton’s
iterated fixed point algorithm [McN93], it guarantees big update steps by preced-
ing every recursive call with an alternative paradise construction based on Jur-
dziński’s algorithm [Jur00]. By leveling the cost of this paradise construction and
the recursive call we can improve the known complexity bound for solving parity

games from O
(
cm (2n

c
)⌈0.5 c⌉) to O

(
m

(
κ n
c

)γ(c))
for γ(c) = c

3 + 1
2 − 1

3c
− 1

⌈ c
2 ⌉⌊ c

2 ⌋
if c is even, and γ(c) = c

3 + 1
2 − 1

⌈ c
2 ⌉⌊ c

2 ⌋
if c is odd (where κ is a small constant).

Chapter 3 suggests an efficient strategy improvement algorithm that over-
comes a critical weakness of prior strategy improvement algorithms: While cur-
rent strategy improvement algorithms have two distinct phases in which strategy
updates are selected and evaluated, respectively, the strategy improvement al-
gorithm proposed in Chapter 3 concurrently evaluates all combinations of (not
necessarily strict) local improvements to the strategy, and selects their globally
optimal combination. The algorithm has a non-trivial upper bound which is
exponential only in the number of colors (O(mnc)), but its complexity is wide
open: The algorithm is only known to be quasi trilinear in the number of colors,
edges, and positions of the game.

14

Chapter 2

Solving Parity Games in
Big Steps

Abstract

In this chapter, a new algorithm with an improved complexity bound for solv-
ing parity games is proposed. This algorithm combines McNaughton’s iterated
fixed point algorithm with a preprocessing step, which is called prior to every
recursive call. The preprocessing uses ranking functions similar to Jurdziński’s,
but with a restricted codomain, to determine all winning regions smaller than
a predefined parameter. The combination of the preprocessing step with the
recursive call guarantees that McNaughton’s algorithm proceeds in big steps,
whose size is bounded from below by the chosen parameter. High parameters
guarantee small call trees, but to the cost of an expensive preprocessing step. An
optimal parameter balances the cost of the recursive call and the preprocessing
step, resulting in an O(mnγ(c)) complexity bound for solving parity games with
c colors, n positions and m edges, where γ(c)= c

3+ 1
2− 1

3c
− 1

⌈ c
2 ⌉⌊ c

2 ⌋
if c is even, and

γ(c)= c
3+ 1

2− 1
⌈ c

2 ⌉⌊ c
2 ⌋

if c is odd.

2.1 Introduction

Parity games have many applications in model checking [Koz83, EJS93, KV97a,
dAHM01, Wil01, AHK02] and synthesis [Koz83, Var98, Wil01, Pit06]. In par-

15

16 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

ticular, modal and alternating-time µ-calculus model checking [Wil01, AHK02],
synthesis [WM03, Pit06] and satisfiability checking [Wil01, Koz83, Var98]
for reactive systems, module checking [KV97a], and ATL* model check-
ing [dAHM01, AHK02] can be reduced to solving parity games. In the context of
this thesis, solving the non-emptiness test for deterministic and nondeterminis-
tic parity tree automata (Chapter 4) – and its applications in the synthesis and
satisfiability checking algorithms of Parts II and III – reduce to solving parity
games. This relevance of parity games led to a serial of different approaches to
solving them [McN93, EL86, Lud95, Pur95, ZP96, BCJ+97, Zie98, Jur98, Jur00,
VJ00, Obd03, Lan05, BDHK06, JPZ06, BV07].

The complexity of solving parity games is still an open problem. The
known complexity bounds of current deterministic or randomized algorithms
are at least exponential in the number of colors [McN93, EL86, ZP96, BCJ+97,
Zie98, Jur00, BV07] (nO(c)), or in the squareroot of the number of game po-
sitions [Lud95, JPZ06, BV07] (nO(

√
n)). Practical considerations suggest to as-

sume that the number of colors is small compared to the number of positions.
Indeed, all listed applications but µ-calculus model checking result in parity
games where the number of states is exponential in the number of colors. In
µ-calculus model checking, the size of the game is determined by the product
of the transition system under consideration (which is usually large), and the
size of the formula (which is usually small). The number of colors is determined
by the alternation depth of the specification, which, in turn, is usually small
compared to the specification itself.

Algorithms that are exponential only in the number of colors are thus consid-
ered the most attractive. The first representatives of algorithms in this complex-
ity class follow the iterated fixed point structure induced by the parity condi-
tion [McN93, EL86, Zie98]. The iterated fixed point construction leads to a time
complexity of O(mnc−1) for parity games with m edges, c colors, and n game
positions. This complexity could be reduced first by Browne et al. [BCJ+97] to
O

(
mn⌈0.5c⌉+1

)
, and slightly further by Jurdziński [Jur00] to O

(
cm (2n

c
)⌊0.5 c⌋)

for constructing the winning regions, and O
(
cm (2n

c
)⌈0.5 c⌉) for the constructive

extension that also provides winning strategies for both players.

The weakness of recursive algorithms that follow the iterated fixed point
structure [McN93, EL86, Zie98] is the potentially incremental update achieved
by each recursive call. Recently, a big-step approach [JPZ06] has been proposed
to reduce the complexity of McNaughton’s algorithm for games with a high
number of colors (c ∈ ω(

√
n)) to the bound nO(

√
n) known from randomized

algorithms [Lud95, BV07].

2.2. PARITY GAMES 17

In this chapter a novel big-step approach is introduced that improves the
complexity for the relevant lower end of the spectrum of colors, resulting in the

complexity O
(
m

(
κ n
c

)γ(c))
for solving parity games, where κ is a small constant

and γ(c) = c
3 + 1

2 − 1
3c

− 1
⌈ c

2 ⌉⌊ c
2 ⌋

if c is even, and γ(c) = c
3 + 1

2 − 1
⌈ c

2 ⌉⌊ c
2 ⌋

if c is

odd. At the same time, the deterministic nO(
√

n) complexity bound is preserved.

To guarantee big update steps, we use an algorithm which is inspired by Ju-
rdziński’s [Jur00] approach for solving parity games. His approach is adapted by
restricting the codomain of the used ranking function. The resulting algorithm
is exploited for finding winning regions up to the size of a parameter π. Com-
pared to [JPZ06], this results in a significant cut in the complexity for finding
all paradises (winning regions, for which a player can win while staying in the
paradise), since the running time of our algorithm is polynomial in the param-

eter, and exponential only in the number of colors (O
(
(π + ⌈0.5c⌉

π)
)
). As a side

effect, the proposed approximation algorithm often returns winning regions of
greater size. The claimed complexity bound is obtained by using a parameter
of approximately

3
√

c n2.

2.2 Parity Games

A parity game is composed of a finite arena and an evaluation function. We will
first discuss arenas, and then turn to the evaluation functions for parity games.

Arena. Parity games are played on finite arenas. An arena is a triple A =
(V0, V1, E), where V0 and V1 are disjoint finite sets of positions, called the posi-
tions of player 0 and 1, respectively, and E ⊆ V × V for the set V = V0 ⊎ V1 of
game positions is a set of edges; that is, (V,E) is a directed graph. The arena
is also required not to contain sinks; that is, every position p ∈ V has at least
one outgoing edge (p, p′) ∈ E.

Plays. Intuitively, a game is played by placing a pebble on the arena. If the
pebble is on a position p ∈ V0, player 0 chooses an edge e = (p, p′) ∈ E from p
to a successor p′ and moves the pebble to p′. Symmetrically, if the pebble is on
a position q ∈ V1, player 1 chooses an edge e′ = (q, q′) ∈ E from q to a successor
q′ and moves the pebble to q′. This way, they successively construct an infinite
play π = p0p1p2p3 . . . ∈ V ω.

18 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

Strategies. For a finite arena A = (V0, V1, E), a strategy for player 0 is a
function f : V ∗V0 → V which maps each finite history of a play that ends in
a position p ∈ V0 to a successor p′ of p. (That is, there is an edge (p, p′) ∈ E
from p to p′.) A play is f-conform if every decision of player 0 in the play is
in accordance with f . A strategy is called memoryless if it only depends on the
current position. A memoryless strategy for player 0 can be viewed as a function
f : V0 → V such that (p, f(p)) ∈ E for all p ∈ V0. For a memoryless strategy
f , we denote with Af = (V0, V1, Ef) the arena obtained from A by deleting the
transitions from positions of player 0 that are not in accordance with f . (Af

defines a directed graph where all positions of player 0 have outdegree 1.) The
analogous definitions are made for player 1.

Parity Games. A parity game is a game P = (V0, V1, E, α) with arena A =
(V0, V1, E) and a surjective coloring function α : V → C ⊂ N that maps each
position of P to a natural number. C denotes the finite set of colors. For technical
reasons we assume that the minimal color of a parity game is 0 = min{C}, and
that C is an initial sequence of the integers.

Each play is evaluated by the highest color that occurs infinitely often. Player
0 wins a play π = p0p1p2p3 . . . if the highest color occurring infinitely often in
the sequence α(π) = α(p0)α(p1)α(p2)α(p3) . . . is even, while player 1 wins if the
highest color occurring infinitely often in α(π) is odd.

A strategy f of player 0 (player 1) is called p-winning if all f -conform plays
starting in p are winning for player 0 (player 1). A position p in P is p-winning
for player 0 (player 1) if player 0 (player 1) has a p-winning strategy. We call
the p-winning positions for player 0 (player 1) the winning region of player 0
(player 1). Parity games are memoryless determined:

Theorem 2.1 [McN93] For every parity game P, the game positions are parti-
tioned into a winning region W0 of player 0 and a winning region W1 of player 1.
Moreover, player 0 and 1 have memoryless strategies that are p-winning for ev-
ery position p in their respective winning region. ¤

In the remainder of this chapter, all strategies are memoryless.
The common intersection and subtraction operations on digraphs are ex-

tended to parity games. (P∩F and PrF thus denote the parity games resulting
by restricting the arena A of P to A ∩ F and A r F , respectively.)

Remark. The restriction that the minimal color is 0 is only technical. If no
position with color 0 exists, then we can reduce all colors by 1 and change the

2.3. ESTABLISHED ALGORITHMS 19

Procedure McNaughton(P):

1. set c to the highest color occurring in P

2. if c = 0 or V = ∅ then return (V, ∅)

3. set σ to c mod 2

4. set W1−σ to ∅

5. repeat

(a) set P ′ to Pr σ-Attractor(α−1(c),P)

(b) set (W ′

0, W
′

1) to McNaughton(P ′)

(c) if (W ′

1−σ = ∅ then

i. set Wσ to V r W1−σ

ii. return (W0, W1)

(d) set W1−σ to W1−σ∪ (1 − σ)-Attractor(W ′

1−σ,P)

(e) set P to Pr (1 − σ)-Attractor(W ′

1−σ,P)

Figure 2.1: The algorithm McNaughton(P) returns the ordered pair (W0,W1) of
winning regions of the players 0 and 1, respectively. V and α denote the states
and the coloring function of the parity game P.

roles of player 0 and 1. Winning regions and strategies for player 0 (player 1)
in the resulting game are the winning regions and strategies for player 1 (player
0) in the original game.

2.3 Established Algorithms

This section shortly recapitulates the two established algorithms of Mc-
Naughton [McN93, EL86, Zie98] and Jurdziński [Jur00] for solving parity games,
from which the algorithm discussed in Section 2.4 draws.

2.3.1 McNaughton’s Algorithm

As a base case, parity games that contain only positions with color 0 are easy
to solve: Player 0 wins with every strategy from every position.

For general parity games P with highest color c, McNaughton’s algorithm
(Figure 2.1) first determines the set α−1(c) of positions with maximal color.

20 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

α−1(c)
arena

For the player σ = c mod 2 that wins if c occurs infinitely often, his al-
gorithm then constructs the σ-attractor A of α−1(c). The σ-attractor of a set
F of game positions is, for σ ∈ {0, 1}, the set of those game positions, from
which player σ has a memoryless strategy to force the pebble to a position in
F . The σ-attractor A of a set F can be defined as the least fixed point of sets
that contain F , and that contain a game position p of player σ (1 − σ) in A if
it contains some successor (all successors) of p.

σ-Attractor(F,P)=
⋂{S ⊃ F | ∀p ∈ Vσ∀p′ ∈ S. (p, p′) ∈ E ⇒ p ∈ S and

∀p ∈ V1−σ. (¬∃p′ /∈ S. (p, p′) ∈ E) ⇒ p ∈ S}.

Constructing this least fixed point is obviously linear in the number of edges
of the parity game, and we can fix a memoryless strategy (the attractor strategy)
for player σ to reach F in finitely many steps during this construction.

Lemma 2.2 For a given parity game P = (V0, V1, E, α), and a set F of game
positions, we can compute the σ-attractor A of F and a memoryless strategy for
σ on A r F to reach F in finitely many steps in time O(m). ¤

A

arena

In the next step, the co-game P ′ = P r A of P is solved. The co-game P ′ is
simpler than P: Compared to P, it contains less positions, and less colors. By
induction over the size of the game, P ′ can therefore be solved by a recursive
call of the algorithm.

2.3. ESTABLISHED ALGORITHMS 21

A
W ′

1−σ

W ′
σ

arena

We call a subset Pσ ⊆ Wσ of a winning region a σ-paradise if player σ ∈
{0, 1} has a memoryless strategy f that is p-winning for all p ∈ Pσ, such that
Pσ cannot be left in any f -conform play (Ef ∩ Pσ × V r Pσ = ∅).

In particular, the winning region W ′
1−σ of P ′ is a (1 − σ)-paradise in P by

construction – every winning strategy for player 1− σ on her winning region in
P ′ is a winning strategy for W ′

1−σ in P that is guaranteed to stay in W ′
1−σ.

For a given σ-paradise Pσ for player σ ∈ {0, 1} in a parity game P, we can
reduce solving P to computing the σ-attractor A of Pσ, and solving P r A.

Lemma 2.3 Let P be a parity game, Pσ a σ-paradise with σ-attractor A, fσ a
winning strategy of σ on Pσ in P ∩Pσ, f ′

σ the attractor strategy of σ, and let f ′′
σ

and f1−σ be winning strategies for σ and her opponent 1 − σ, respectively, for
their respective winning region in PrA. Then gσ with gσ(p) = fσ(p), f ′

σ(p), and
f ′′

σ (p) for game positions of player σ in Pσ, A r Pσ, and not in A, respectively,
and g1−σ with g1−σ(p) = f1−σ(p) for all game positions of player 1−σ not in A,
are winning strategies for σ and 1 − σ on their complete winning regions in P.

Proof: First player 1−σ wins with her strategy on her complete winning region
W1−σ of P r A, since player σ has no additional choices in W1−σ in P. That is,
the set of g1−σ-conform plays in P starting in W1−σ coincides with the set of
f1−σ-conform plays in P r A starting in W1−σ.

For the same reason, player σ wins with his strategy from every position
in Pσ.

Every gσ-conform play in P starting in a position in A r Pσ consists of a
finite prefix in ArPσ, followed by a gσ-conform play in P starting in Pσ, which
we showed to be winning for player σ.

Every gσ-conform play in P starting in a position not in A either eventually
reaches A, and then is followed by a gσ-conform play in P starting in A, which
we showed to be winning for σ, or stays for ever in the subgame P r A. If the
game started on a position which is winning for σ in P r A, a game that stays
in P r A coincides with an f ′′

σ -conform play in P r A, which is winning for
player σ. ¤

22 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

We now distinguish two cases: Firstly, if W ′
1−σ is nonempty, we can reduce

solving P to constructing the (1 − σ)-attractor U1−σ of W ′
1−σ, and solving the

co-game P ′′ = P r U1−σ by Lemma 2.3.

U1−σ

arena

The co-game P ′′ is simpler than P: Compared to P, it contains less positions
(but not necessarily less colors). By induction over the size of the game, P ′′ can
therefore be solved by a recursive call of the algorithm.

Secondly, if W ′
1−σ is empty, we can compose the winning strategy for player

σ on P ′ with his attractor strategy for α−1(c) to a winning strategy on P.

Lemma 2.4 Let P be a parity game with maximal color c, σ = c mod 2 the
player that wins if c occurs infinitely often, let A be the σ-attractor of α−1(c)
and let f be an attractor strategy for player σ on her positions on Arα−1(c). If
player σ has a winning strategy f ′ for every position in P ′ = P r A then f and
f ′ can be composed to a winning strategy for player σ for every position in P.

Proof: Let g be a strategy for player σ that agrees with f and f ′ on their respec-
tive codomain. We distinguish two types of g-conform plays: Those that eventu-
ally stay in P ′, and those that visit A infinitely often. The latter plays contain
infinitely many c-colored positions and are therefore winning for player σ. Games
that eventually stay in P ′ consist of a finite prefix, followed by an f ′-conform
play in P ′. The highest color occurring infinitely often is therefore even for σ = 0
and odd for σ = 1, respectively. ¤

The worst case running time of McNaughton’s algorithm [McN93, EL86,
Zie98] (cf. Procedure McNaughton of Figure 2.1) occurs if U1−σ is always small
and contains exactly one position with maximal color c. For parity games with
d colors, McNaughton’s algorithm requires O(mnd−1) steps for games with
n states and m edges. It can be extended to also return the winning strate-
gies for both players on their complete winning region.

2.3. ESTABLISHED ALGORITHMS 23

2.3.2 Progress Measures

The approximation technique introduced in Subsection 2.4.2 builds on Jur-
dziński’s algorithm [Jur00] for solving parity game. His techniques are adapted
by restricting the codomain of the ranking function. Some of the theorems stated
in this subsection are thus slightly more general than the theorems in [Jur00],
but they are arranged such that the proofs provided in [Jur00] can be applied
without changes.

For a parity game P = (V0, V1, E, α) with maximal color d, a σ progress
measure is, for σ ∈ {0 , 1}, a function ρ : V0 ⊎ V1 → Mσ whose codomain

Mσ ⊆ {f : {0, . . . , d} → N | f(c) = 0 if c mod 2 = σ, and
f(c) ≤ |α−1(c)| otherwise}∪{⊤}

contains a maximal element ⊤ and a set of functions from {0, . . . , d} to the
integers. The codomain Mσ satisfies the requirement that every integer i ≤ d
is mapped to 0 if i mod 2 = σ, while all other integers i are mapped to a value
bounded by the number |α−1(i)| of i-colored game positions. (Jurdziński uses the
maximal codomain Mσ

∞ defined by replacing containment with equality.) For
simplicity, we require downward closedness: If Mσ contains a function f ∈ Mσ,
then every function f ′ that is pointwise smaller than f (f ′(i) ≤ f(i) ∀i ≤ d) is
also contained in Mσ.

For each color c ≤ d, we define a relation ⊲c ⊆ Mσ ×Mσ. ⊲c is the smallest
relation that contains {⊤} ×Mσ and a pair of functions (f, f ′) ∈ ⊲c if

• there is a color c′ ≥ c such that f(c′) > f ′(c′), and f(c′′) = f ′(c′′) holds
true for all colors c′′ > c′, or

• c mod 2 = σ, and f(c′) = f ′(c′) holds true for all c′ ≥ c.

That is, ⊲c is defined by using the lexicographic order, ignoring all colors
smaller than c. f needs to be greater than f ′ by this order, and strictly greater
if c mod 2 6= σ.

⊲0 defines an order ¹ on Mσ (the lexicographic order). From this order,
we infer the linear preorder ⊑ on progress measures, which requires that ¹ is
satisfied pointwise (ρ ⊑ ρ′ ⇔ ∀p ∈ V. ρ(p) ¹ ρ′(p)).

We call a σ-progress measure ρ valid if

• every position p ∈ Vσ has some successor p′ ∈ V with ρ(p)⊲α(p) ρ(p′), and

• for every position p ∈ V1−σ and every successors p′ ∈ V of p, ρ(p) ⊲α(p)

ρ(p′) holds true.

24 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

Progress measures are ranking functions, which are intuitively used to esti-
mate the worst-case future occurrence of ‘bad’ states prior to states with higher
color. A valid σ progress measure that is not constantly ⊤ can be used to partly
evaluate a parity game. Let, for a σ progress measure ρ, ‖ρ‖ = V rρ−1(⊤) denote
the game positions that are not mapped to the maximal element ⊤ of Mσ.

Theorem 2.5 [Jur00] Let P = (V0, V1, E, α) be a parity game with valid
σ progress measure ρ. Then player σ wins on ‖ρ‖ with any memoryless winning
strategy that maps a position p ∈ ‖ρ‖ ∩ Vσ to a position p′ with ρ(p) ⊲α(p) ρ(p′).

Such a successor must exist, since the progress measure is valid. The ⊑-least
valid σ progress measure is well defined and can be computed efficiently.

Theorem 2.6 [Jur00] The ⊑-least valid σ progress measure ρµ exists and can,
for a parity game with m edges and c colors, be computed in time O(cm |Mσ|)1.

When using the maximal codomain Mσ
∞, which contains the function ρ

that assigns each color c with c mod 2 6= σ to ρ(c) = |α−1(c)|, for the progress
measures, the ⊑-least valid σ progress measure ρµ determines the complete
winning region of player σ.

Theorem 2.7 [Jur00] For a parity game P = (V0, V1, E, α), and for the
codomain Mσ

∞ for the progress measures, ‖ρµ‖ coincides with the winning region
Wσ of player σ for the ⊑-least valid σ progress measure ρµ.

For parity games with c colors, the size |Mσ
∞| of the maximal codomain can

be estimated by (n
⌊0.5c⌋)

⌊0.5c⌋ +1 if c is even, and by (n
⌈0.5c⌉)

⌈0.5c⌉ +1 if c is odd.

Corollary 2.8 [Jur00] Parity games with maximal color 2 can be solved and a
winning winning strategy for player 0 can be constructed in time O(mn).

While a partition into the respective winning regions of both players and a
winning strategy for σ on her winning region can easily be inferred from the
⊑-least valid σ progress measure ρµ, we cannot infer the winning strategy of
her opponent on his winning region from this least fixed point.

1More precisely, the complexity is O(c m |Mσ | log m), where the logarithmic factor stems
from the comparison of integers ≤ m. However, this logarithmic factor does not change the
complexity, because address calculation causes the same computational overhead. For this
reason, all complexity estimations in this part are sloppy with respect to this logarithmic
factor.

2.4. THE ALGORITHM 25

Procedure Winning-Regions(P):

1. set d to the highest color occurring in P

2. if d ≤ 2 then return ThreeColor(P)

3. set σ to d mod 2

4. set n to the size |V | of P

5. set W1−σ to ∅

6. repeat

(a) set W ′

1−σ to (1 − σ)-Attractor(Approximate(P, π(n, d), 1 − σ),P)

(b) set W1−σ to W1−σ ∪ W ′

1−σ

(c) set P to P r W ′

1−σ

(d) set P ′ to Pr σ-Attractor(α−1(d),P)

(e) set (W ′

0, W
′

1) to Winning-Regions(P ′)

(f) if W ′

1−σ = ∅ then

i. set Wσ to V r W1−σ

ii. return (W0, W1)

(g) set W1−σ to W1−σ∪ (1 − σ)-Attractor(W ′

1−σ,P)

(h) set P to Pr (1 − σ)-Attractor(W ′

1−σ,P)

Figure 2.2: The Procedure Winning-Regions(P) returns the ordered pair
(W0,W1) of winning regions for player 0 and player 1, respectively. V and α
denote the game positions and the coloring function of the parity game P. Three-
Color(P) solves a three color game P (c.f. Theorem 2.9), Approximate(P, π, σ)
computes a σ/(π+1)-paradise (c.f. Corollary 2.11), and σ-Attractor(F,P) com-
putes the σ-attractor of a set F of game positions in a game P (c.f. Lemma 2.2).

2.4 The Algorithm

The algorithm proposed in this chapter combines McNaughton’s iterated fixed
point approach for solving parity games [McN93, EL86, Zie98] with an alterna-
tive paradise construction of a special kind of paradises. We call a σ-paradise
Pπ

σ a σ/π-paradise if it contains all σ-paradises of size ≤ π.

Figure 2.2 provides an overview on the proposed algorithm. The input to
the algorithm is a parity game P, and the output is the ordered pair consisting
of the winning regions for the players.

26 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

The algorithm first determines the highest color d of P (line 1). In line 2,
three color games are covered, that is, games with highest color ≤ 2. Such games
are solved using a constructive extension of Jurdziński’s algorithm (c.f. Theo-
rem 2.9 of Subsection 2.4.1). For games with more than 2 colors, the algorithm
proceeds with determining the player σ = d mod 2 that wins if the highest
color d occurs infinitely often (line 3).

In every iteration of the repeat loop, the proposed big step algorithm (Fig-
ure 2.2) first constructs a (1 − σ)/π-paradise (cf. Subsection 2.4.2) for an ap-
propriate parameter π.

Pπ
1−σ

arena

By Lemma 2.3, we can now reduce solving P to constructing the (1 − σ)-
attractor Pπ

1−σ of Pπ
1−σ (line 6a), and to solving P ′ = P r Pπ

1−σ.

Pπ
1−σ

arena

The algorithm then continues with the steps known from McNaughton’s
algorithm. That is, it next determines the set α−1(d) of positions with maximal
color in P ′,

Pπ
1−σ

α−1(d)arena

and then constructs the σ-attractor A of α−1(d) in P ′ (line 6d).

2.4. THE ALGORITHM 27

Pπ
1−σ

A
arena

In the next step, the co-game P ′′ = P ′ rA of P ′ is solved by a recursive call
of Procedure Winning-Regions (line 6e).

Pπ
1−σ

AW ′
1−σ

W ′
σ

arena

If W ′
1−σ is empty, we can again evaluate the game immediately by Lemma 2.4

(line 7f). If W ′
1−σ is nonempty, we can reduce solving P ′ to constructing the

(1 − σ)-attractor U1−σ of W ′
1−σ, and to solving P ′′ = P ′ r W ′

1−σ (line 6h) by
Lemma 2.3.

Pπ
1−σ

U1−σ

W ′
1−σ 6= ∅ ⇒ |U1−σ ∪ Pπ

1−σ| > π

arena

While we know little about the size of Pπ
1−σ (which may be empty) and

W ′
1−σ (which may be singleton), we know that their union is greater than π,

because their union is a (1−σ)-paradise (as the union of two (1−σ)-paradises),
and would otherwise be contained in Pπ

1−σ.
We can therefore impose an upper bound on the number of iterations, which

depends on the size of the parameter. While bigger parameters slow down the
approximation procedure (c.f. Corollary 2.11), they restrict the size of the call
tree.

For reasonable numbers of colors (that is, if the number of colors is in
O(

√
n)), the best results are obtained if the parameter is chosen such that

28 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

the cost of calling the approximation procedure (line 6a) and the cost of the
recursive call (line 6e) are approximately equivalent. This is the case if we set

the parameter approximately to
3
√

c n2. (The function β defined for the proof of
the complexity quickly converges to 2

3 .)
For a high number of colors (that is, if the number of colors is in ω(

√
n)),

the best results are obtained if the cost of calling the approximation procedure
(line 6a) approximately coincides with the size of the call tree.

In the remainder of this section, we discuss

1. a constructive algorithm for solving three color games,

2. an algorithm for the efficient construction of σ/π-paradises,

3. a correctness proof for the overall algorithm, and

4. a complexity analysis for suitable parameters for a reasonable and high
number of colors, respectively.

2.4.1 Three Color Games

We call parity games with maximal color 2 three color games. Corollary 2.8
shows that a qualitative solution for three color games as well as a winning
strategy for player 0 can be obtained in time O(mn). To see why Jurdziński’s
algorithm [Jur00] does not provide a strategy for player 1, let us recapitulate
his algorithm for the simple case of a three color games P = (V0, V1, E, α).

For three color games, the 0 progress measures can be viewed as mappings
ρ : V → {0, . . . , n1}∪{⊤}, where n1 = |α−1(1)| denotes the number of 1-colored
positions. For a given progress measure ρ, we call an edge (p, p′) a lift-edge if
ρ(p) ⋫α(p) ρ(p′). We call a position p ∈ V0 of player 0 liftable if all outgoing
edges are lift edges, and we call a position p ∈ V1 of player 1 liftable if some
outgoing edge is a lift edge.

Starting point of the algorithm is the trivial progress measure ρ0 that maps
all positions of P to 0. Starting from ρ0, we lift the progress measure stepwise
at a liftable position p ∈ V until a fixed point is reached. For liftable positions
p ∈ V0 of player 0, lifting ρi at p results in a progress measure ρi+1 with ρi(p

′) =
ρi+1(p

′) for all p′ 6= p, and

ρi+1(p) = min{j ∈ {0, . . . , n1} ∪ {⊤} | ∀(p, p′) ∈ E. j ⊲α(p) ρ(p′)},
while for liftable positions p ∈ V1 of player 1, lifting ρi at p results in a progress
measure ρi+1 with ρi(p

′) = ρi+1(p
′) for all p′ 6= p, and

ρi+1(p) = min{j ∈ {0, . . . , n1} ∪ {⊤} | ∃(p, p′) ∈ E. j ⊲α(p) ρ(p′)}.

2.4. THE ALGORITHM 29

a b

cd

Figure 2.3: The example shows a singleton Büchi game, where all positions
belong to player 1 (V0 = ∅). The positions a, b, and c are colored by 1, while
position d is colored by 2 (indicated by the double line).

For the trivial progress measure ρ0, an edge is a lift-edge if and only if it
originates from a 1-colored position, and a position is liftable if and only if it is
1-colored. For an efficient implementation, it suffices to attach a flag to every
edge that indicates whether this edge is a lift-edge, to keep track of the number
of outgoing lift-edges for every game position, and to keep the liftable positions
in a doubly linked list.

In order to lift ρi, any liftable position p can be taken from the list of liftable
positions. (If no liftable position remains, the least fixed point is reached.) After
lifting ρi, at position p, it suffices to check for each incoming and outgoing
edge of p if the flag that indicates liftability needs to be adjusted, and, if so,
to increase the number of outgoing lift-edges for the respective predecessor of
p (for incoming edges), or to decrease the number of outgoing lift-edges for p
(for outgoing edges), respectively. If a position becomes liftable (non-liftable),
it is added to (removed from) the list of liftable positions.

While this algorithm provides good complexity bounds for the qualitative
analysis of three color games, it does not provide a winning strategy for player 1
on her winning region. Note that the naive extension – fixing an edge used for
the last update as strategy for player one – is not sound: Figure 2.3 shows a
small example of a singleton Büchi game, where all positions are positions of
player 1 (V0 = ∅). The positions a, b, and c are colored by 1, while position d
is colored by 2. Player 1 can choose a self-loop at position a (in which case she
wins), or move in a Hamiltonian circle (in which case she loses). If we start with
twice lifting at position a (ρ1(a) = 1, ρ2(a) = 2) followed by lifting at position
b (ρ3(b) = 3), c (ρ4(c) = ⊤), d (ρ5(d) = ⊤), and again at a (ρ6(a) = ⊤) and
b (ρ7(b) = ⊤), all positions are correctly marked as winning for player 1; but
the last update of position a relies on ρ5(d) = ⊤, and the naive approach would
result in a losing strategy.

30 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

We show that a variance of the algorithm can be used to also construct a
winning strategy of player 1 on her complete winning region. It suffices to store
intermediate strategies for player 1, and to keep two sets of liftable positions
instead of one – one set for positions that are liftable without changing the
intermediate strategy of player 1, and one set of positions that are liftable,
but only if the strategy of player 1 is changed. The adapted algorithm always
gives preference to liftable positions from the first set. If only liftable positions
from the latter set remain, one of these positions is lifted and the intermediate
strategy is updated accordingly.

In the singleton game from the example of Figure 2.3, we can either start
with the self-loop at position a and thus with a winning strategy, or with the
loosing strategy to move from a to d. In the first case, we never have to adjust
the strategy. (One possible sequence of progress measure updates is (ρ1(a) = 1,
ρ2(a) = 2, ρ3(a) = 3, ρ4(a) = ⊤, ρ5(b) = ⊤, ρ6(c) = ⊤, ρ7(d) = ⊤.) In the latter
case, we first compute the fixed point for the singleton game, where the moves
of player 1 are restricted by her strategy. (One possible sequence of progress
measure updates is (ρ1(a) = 1, ρ2(b) = 2, ρ3(c) = 3.) Once the fixed point
for this strategy is reached, the strategy is adjusted by choosing the self-loop
at position a. (One possible sequence of further progress measure updates is
(ρ4(a) = 2, ρ5(a) = 3, ρ6(a) = ⊤, ρ7(b) = ⊤, ρ8(c) = ⊤, ρ9(d) = ⊤.)

Theorem 2.9 For parity games with maximal color 2, the proposed algorithm
can be used to solve the parity game and to construct winning strategies for both
players in time O(mn).

Proof: The proposed changes to Jurdziński’s algorithm only impose a par-
ticular order on the lifting operations, which could coincidentally occur in his
algorithm, too. This implies the correctness of the least fixed point and thus
the correctness of the resulting winning regions and strategy of player 0 (cf.
Corollary 2.8).

For the correctness of the winning strategy of player 1 on her winning region,
we show by induction that every time the intermediate strategy needs to be
changed, say from f to f ′, the intermediate progress measure ρf

µ is the ⊑-least

valid 0 progress measure ρf
µ for Pf .

Induction Basis: For any initial strategy f the claim holds trivially – up to
the first adjustment of the intermediate strategy the algorithm resembles the
original algorithm for Pf .
Induction Step: Consider the situation after changing the intermediate strategy
from f to f ′ by choosing a lift-edge (p, p′). Let us compare the ⊑-least valid

2.4. THE ALGORITHM 31

0 progress measure ρf
µ for Pf with the ⊑-least valid 0 progress measure ρf ′

µ for
Pf ′ .

First, we have ρf
µ(p) 6= ρf ′

µ (p) (because ρf
µ(p) = ρf ′

µ (p) implies ρf
µ = ρf ′

µ),

and ρf
µ(p) 6= ⊥. Let us assume ρf

µ(p) > ρf ′

µ (p), and choose δ = ρf
µ(p) − ρf ′

µ (p).

This implies ρf
µ(q) ≥ ρf ′

µ (q) and ρf
µ(q) − ρf ′

µ (q) ≤ δ for all positions q ∈ V . In

particular, this implies ρf
µ(p′) − ρf ′

µ (p′) ≤ δ, which contradicts the assumption
that (p, p′) is a lift-edge. Ã

Hence, ρf ′

µ (p) > ρf
µ(p) holds true, which implies ρf

µ(q) ≥ ρf ′

µ (q) for all posi-
tions q ∈ V . ¤

2.4.2 The Approximation

An essential step in the proposed algorithm is the construction of σ/π-paradises.
For their construction, we draw from the efficient computation of the ⊑-least
valid σ progress measure (Theorem 2.6).

Instead of using the maximal codomain Mσ
∞, the smaller codomain Mσ

π

is used for the progress measures, which contains only those functions f that
satisfy

∑d
c=0 f(c) ≤ π for some parameter π ∈ N. (d denotes the highest color

of the parity game). The size of Mσ
π can be estimated by

|Mσ
π| ≤ (π + ⌈0.5(d + 1)⌉

π) + 1.

Using Mσ
π instead of Mσ

∞, ‖ρµ‖ contains all σ-paradises of size ≤ π + 1
(where ρµ denotes the ⊑-least valid σ progress measures).

Theorem 2.10 Let P = (V0, V1, E, α) be a parity game, and let Pσ ⊆ V be
a σ-paradise of size |Pσ| ≤ π + 1. Then there is a valid σ progress measure
ρ : V → Mσ

π with P = ‖ρ‖.

Proof: Since Pσ is a σ-paradise, E and V1−σ ∩ Pσ × V r Pσ are disjoint, and
player σ has a memoryless strategy f that is winning on every game position in
Pσ such that f(p) ∈ Pσ for all p ∈ Vσ ∩ Pσ. If we restrict P to P ′ = Pf ∩ Pσ,
then the winning region of player σ covers the whole set Pσ of game positions
of P ′. To solve P ′, we can use the maximal codomain Mσ

∞
′. By Theorem 2.7,

the ⊑′-least progress measure ρ′µ for this codomain satisfies ‖ρ′µ‖ = Pσ. Since

Mσ
∞

′ ⊆ Mσ
π is contained in Mσ

π (Pσ must contain at least one position with
even color if σ = 0, or one position with odd color if σ = 1, respectively), we
can extend ρ′µ to a valid σ progress measure ρ on P by setting ρ(p) = ρ′µ(p) for
all p ∈ Pσ, and ρ(p) = ⊤ otherwise. ¤

32 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

By Theorem 2.6, we can compute the ⊑-least valid σ progress measure ρµ in
time O(cm |Mσ

π|), and, by Theorem 2.5, we can construct a winning strategy
for player σ on ‖ρµ‖ within the same complexity bound.

Corollary 2.11 For a given parity game P with c colors and m edges, we can

construct a σ/(π + 1)-paradise Pπ+1
σ for player σ in time O

(
cm (π + ⌈0.5c⌉

π)
)
.

A winning strategy for player σ on Pπ+1
σ can be constructed within the same

complexity bound. ¤

2.4.3 Correctness

In this subsection, we show that Procedure Winning-Regions computes the win-
ning regions correctly.

Theorem 2.12 For a given parity game P, Procedure Winning-Regions com-
putes the complete winning regions of both players.

Proof: We prove the claim by induction. Let d denote the highest color of P.
Induction Basis (d ≤ 2): For d ≤ 2, the algorithm follows the approach intro-
duced in Subsection 2.4.1 (c.f. Theorem 2.9).
Induction Step: By induction hypothesis, the procedure works correctly for all
parity games with highest color less than or equal to d − 1. Let P be a parity
game with highest color d, and let σ = d mod 2.

The call of the Procedure Approximate in line 6a provides a (possibly empty)
(1−σ)/π-paradise (Theorem 2.10). The (1−σ)-attractor of this set is then added
to the winning region of 1− σ (line 6b), and subtracted from P (line 6c), which
is safe by Lemma 2.3.

In line 6d, the σ-attractor A of the set of states with color d is subtracted
from P, and the resulting parity game P ′ = PrA is solved by recursively calling
the Procedure Winning-Regions (line 6e). Since the highest color of P ′ is strictly
smaller than d, the resulting winning regions are correct. The winning region
W ′

1−σ of player 1 − σ is a (1 − σ)-paradise in P ′, and, due to the σ-attractor
construction, also in P. If W ′

1−σ is non-empty, then the (1−σ)-attractor of this
set is added to the winning region of player 1−σ (line 6g), and subtracted from
P (line 6h), which is safe by Lemma 2.3.

Since the size of P is strictly reduced in every iteration of the loop, the set
W ′

1−σ returned after the recursive call in line 6e is eventually empty, and the
procedure terminates. When W ′

1−σ is empty, player σ wins from all positions in
(the remaining) parity game P by following a memoryless strategy that agrees

2.4. THE ALGORITHM 33

on every position in P ′ with a memoryless winning strategy f on P ′, makes
an arbitrary (but fixed) choice for positions with color d, and follows an at-
tractor strategy (from the σ-attractor construction of line 6d) on the remaining
positions.

An f -conform play is winning for player σ by Lemma 2.4. ¤

Note that the all operations can be extended to also return the winning
strategies for both players without extra cost.

2.4.4 Complexity

While the correctness of the algorithm is independent of the chosen parameter,
its complexity crucially depends on this choice. This subparagraph covers two
cases: Parity games with a reasonable number of colors, and parity games with
a high number of colors.

Parameter for c ∈ O(
√

n). For the important class of parity games with a
reasonable number of colors – c ∈ O(

√
n) – we choose the parameter such that

the cost for the recursive call (line 6e) coincides with the complexity of comput-
ing the approximation (line 6a). First, we show that the Procedure Winning-
Regions indeed proceeds in big steps.

Lemma 2.13 For a parameter π(n, c), the repeat loop of the algorithm is iter-
ated at most

⌊
n

π(n,c)+2

⌋
+ 1 times.

Proof: As discussed in the proof of Theorem 2.12, the (1 − σ)-attractor A of
the computed approximation Pπ

1−σ (line 6a) and the winning region W ′
1−σ of

player 1 − σ are (1 − σ)-paradises on P and P r A, respectively. Thus, their
union U is a (1 − σ)-paradise on P. If the size of U does not exceed π + 1, U
is contained in Pπ

1−σ by Corollary 2.11. In this case, W ′
1−σ is empty, and the

loop terminates. Otherwise, a superset of U is subtracted from P during the
iteration (lines 6c and 7h), which can happen at most

⌊
n

π(n,c)+2

⌋
times. ¤

Building on this lemma, it is simple to define the parameter π such that the
requirement of equal complexities is satisfied. We fix the function γ such that
γ(c)= c

3+ 1
2− 1

⌈0.5c⌉⌊0.5c⌋ if c is odd, and γ(c)= c
3+ 1

2− 1
3c
− 1

⌈0.5c⌉⌊0.5c⌋ if c is even,

and choose β(c) = γ(c)
⌊0.5c⌋+1 . These definitions imply γ(c + 1) = γ(c) + 1 − β(c).

Theorem 2.14 Solving a parity game P with c > 2 colors, m edges, and n game

positions can be performed in time O
(
m

(
κ n
c

)γ(c))
. (κ is a small constant.)

34 CHAPTER 2. SOLVING PARITY GAMES IN BIG STEPS

Proof: We prove, equivalently2, that solving a parity game with highest color
d takes at most κ1

m
3√

d!
(κ2n)γ(d+1) + κ3 m steps.

We choose the parameter π(n, d) = ⌈2 3
√

d nβ(d)⌉, and first determine
the complexity of running the approximation procedure. By Corollary 2.11,
the running time of the approximation procedure can be estimated by

κ4 cm (π(n, d) + ⌈0.5c⌉
π(n, d))

)
steps.

With the chosen parameter, (π(n, d) + ⌈0.5c⌉)⌈0.5c⌉ can be estimated by

κ5

(
κ6 π(n, d)

)⌈0.5c⌉
, and (

3√
d)⌈0.5c⌉

⌈0.5c⌉! can be estimated by κ7
κ8

c

3
√

(d−1)!
.

With γ(d) = ⌈0.5c⌉β(d), this results in an estimation of κ1
m

3
√

(d−1)!
(κ2n)γ(d)

steps for the running time of the approximation procedure.

Induction Basis (d ≤ 2): The complexity O(mn) = O(mnγ(3)) (cf. Theo-
rem 2.9) of solving a three color game does not depend on the parameter.

Induction Step: By induction hypothesis, the claim holds true for parity games
with highest color smaller than d. The time complexity of each iteration of the
loop is dominated by the time complexity of the approximation in line 6a, and
the complexity of the recursive call in line 6e.

By induction hypothesis, the recursive call takes at most
κ1

m
3
√

(d−1)!
(κ2n)γ(d) + κ3 m steps. We showed that the approximation can

be computed in κ1
m

3
√

(d−1)!
(κ2n)γ(d) steps, and, finally, the joint running time

for all other operations in (and prior to) the loop can be estimated by κ3 m.

By Lemma 2.13, we can estimate the number of iterations of the loop by⌈
n1−β(d+1)

2
3√

d

⌉
iterations, and with γ(d+1) = γ(d)+1−β(d) we obtain the claimed

complexity bound. ¤

This coarse estimation already shows that we can choose any value higher
than 1, 6

√
e, 2

√
2e, and (2e)1.5 for κ6, κ8, κ2, and κ, respectively.

Parameter for c ∈ ω(
√

n). For this class of parity games, we choose the
parameter π such that the size of the call tree equals the time complexity of
computing the (1 − σ)/π-paradise (line 6e). The results of Jurdziński, Zwick
and Paterson [JPZ06] imply that choosing the parameter π =

√
n results in a

call tree of size nO(
√

n). The cost between two calls is dominated by the cost for

2The occurring κi are suitable small constants. The proof makes use of (e−1d)d ≤ d! and
d! in O((κ′d)d) for all κ′ > e−1, and subsumes polynomial occurrences of d in the respective
constant κi. Note that d = c − 1 and ⌈0.5c⌉ = ⌊0.5d⌋ + 1.

2.5. DISCUSSION 35

computing the (1 − σ)/π-paradise, which is approximately (π + n
π), and thus

in nO(
√

n).

Corollary 2.15 Solving a parity game P with n game positions can be per-
formed in time nO(

√
n).

2.5 Discussion

In this chapter, a novel approach to solving parity games has been proposed that
reduces the complexity bound for solving parity games from O

(
cm (2n

c
)⌊0.5 c⌋)

for the qualitative analysis of parity games – and O
(
cm (2n

c
)⌈0.5 c⌉) for the

construction of winning strategies for both players [Jur00] – to O
(
m

(
κ n
c

)γ(c))

for γ(c) = c
3 + 1

2 − 1
3c

− 1
⌈ c

2 ⌉⌊ c
2 ⌋

if c is even, and γ(c) = c
3 + 1

2 − 1
⌈ c

2 ⌉⌊ c
2 ⌋

if c is odd

(where κ is a small constant).
This reduces the exponential factor from ⌊ c

2⌋ and ⌈ c
2⌉, respectively, to less

than c
3 + 1

2 . After the reduction from c− 1 [McN93, EL86, Zie98] to ⌈ c
2⌉+ 1 by

Browne et al. [BCJ+97], this is the second reduction that reduces the exponential
growth with the number of colors in the long history of algorithms for solving
parity games.

The improved complexity bound also raises a new question. While solving
parity games with a fixed number of colors is known to be in P, the degree of
the polynomial increases with the number of colors. For McNaughton’s algo-
rithm, for example, the degree increases by 1 with every additional color, and
in Jurdziński’s algorithm the degree increases by 1 for every even color if we are
only interested in the winning regions, and by 1 for every odd color if we also
require the winning strategies as witnesses. Different to both approaches, there
is no increase in the complexity when moving from 2 to 3 colors in the proposed
big step algorithm. This anomaly suggests that either the complexity of solving
Büchi games can be improved, or that there is still some leeway for improving the
complexity of solving parity games. This is particularly interesting in the light of
the wide open complexity of the optimal strategy improvement algorithm pro-
posed in the following chapter: The best lower bound for the complexity of that
algorithm with an arbitrary number of colors is close to the known complexity
bounds for solving 2 and 3 color games.

Chapter 3

An Optimal Strategy
Improvement Method for
Solving Parity Games

Abstract

This chapter proposes a strategy improvement algorithm for parity games, which
is guaranteed to select, in each improvement step, an optimal combination of
local strategy modifications. Current strategy improvement methods stepwise
improve the strategy of one player with respect to some ranking function, us-
ing an algorithm with two distinct phases: They first choose a modification to
the strategy of one player from a list of locally profitable changes, and subse-
quently evaluate the modified strategy. This separation is unfortunate, because
current algorithms have no effective means to predict the global effect of the
individual local modifications beyond classifying them as profitable, adversar-
ial, or stale. Furthermore, they are completely blind towards the cross effect
of different modifications: Applying one profitable modification may render all
other profitable modifications adversarial. Our new construction overcomes the
traditional separation between choosing and evaluating the modification to the
strategy. It thus improves over current strategy improvement algorithms by pro-
viding the optimal improvement in every step, selecting the best combination
of local updates from a superset of all profitable and stale changes.

36

3.1. INTRODUCTION 37

3.1 Introduction

The traditional forward techniques [Jur00] for solving parity games (≈ O(mn
1
2 c)

for games with n positions, m edges and c colors), backward techniques [McN93,

EL86, Zie98] (≈ O(mnc)), and their combination (≈ O(mn
1
3 c), cf. Chapter 2)

aim at good complexity bounds. However, these bounds are sharp. Moreover,
forward techniques [Jur00] are likely to display their worst case complexity on
most practical examples, and the combined forward-backward algorithm dis-
cussed in Chapter 2 inherits this disadvantage.

While this line of research seems to be exhausted, strategy improvement
algorithms [Lud95, Pur95, VJ00, BV07] for parity and payoff games are still
in their infancy. In this chapter, an efficient strategy improvement algorithm is
introduced, shifting the aim from provably good complexity bounds to efficient
algorithms for solving parity games that perform well in practice.

State of the Art. Strategy improvement algorithms are simplex style al-
gorithms that are closely related to the simplex algorithm for solving linear
programming problems. Strategy improvement methods assign a value to each
infinite play of a parity or payoff game, and the objective of the two partici-
pating players (called player 0 and player 1) is to minimize and maximize this
value, respectively.

In strategy improvement algorithms for parity and payoff games [Lud95,
Pur95, VJ00, BV07], the memoryless strategies of player 0 define the corners
of a simplex. For each memoryless strategies of player 0, her opponent has an
optimal memoryless counter strategy. This pair of strategies defines a pointwise
ranking function that assigns to each game position p the value (or rank) of the
play that starts in p.

The two distinguishing differences between strategy improvement techniques
compared to the simplex algorithm are a weak pivot rule and the option of
multiple modifications in every step.

Weak Pivot Rule. Different to simplex techniques for linear programming prob-
lems, current strategy improvement methods do not take the global effect of a
step to an adjacent corner of the simplex into account. When estimating the
improvement obtained by a local modification to a strategy, they presume that
changing the strategy for one game position has no influence on the rank of
any other game positions. For example, in the situation depicted in Figure 3.1a,
player 0 can choose between two improvements of her strategy from her posi-
tion colored by 1; she can either move to the position with color 2, or to the

38 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

(a)

5 1

4

2 3

(b)

0 9 7 5 3 1

Figure 3.1: The examples show situations where ignoring global effects (a) and
cross effects between different updates (b) perturb the pivot rule of current
strategy improvement methods. States of player 0 and player 1 are depicted as
boxes and circles, respectively. The current strategy of player 0 (and all options
of player 1) are depicted as full arrows, the alternative moves of player 0 are
represented by dashed arrows.

position with color 4. While the latter choice is obviously better (because player
0 asserts the parity condition), the local analysis considers only the value of the
positions for the old strategy [Lud95, Pur95, VJ00, BV07]. A valuation function
based on the old strategy, however, will favor the change to the position with
color 2, because the dominating color in the infinity set for this position (for the
old strategy) is 3, while the dominating color in the infinity set of the position
colored by 4 is 5. In the whole, the local analysis alone does not provide much
more information than a classification into locally profitable, adversarial, and
stale modifications.

Multiple Modifications. An advantage of strategy improvement methods over
the simplex method for linear programming is the option to consider several
locally profitable modifications at the same time [Pur95, VJ00]. This advantage,
however, must be considered with care, because current strategy improvement
methods are blind towards the cross effect between different local updates. (The
cross effect of different modifications is harder to predict than the global effect
of a single modification.)

While any combination of profitable changes remains profitable, it may hap-
pen that applying one modification turns all remaining modifications adversar-
ial. In the small singleton parity game depicted in Figure 3.1b, player 0 is only
one step away from her optimal strategy. (It suffices to update the strategy in
the position with color 9.) All local changes lead to an improvement, but after
updating the strategy at the position with color 9, all remaining changes be-
come harmful. Given this shortcoming, it is unclear whether or not simultaneous
updates are a step forward for current strategy improvement algorithms.

3.1. INTRODUCTION 39

Current Strategy Improvement Algs Optimal Strategy Improvement Algorithm

1. pick initial strategy 1. pick and evaluate initial strategy
2. evaluate current strategy 2. adjust evaluation, increasing #profitable/stale mods
3. chose from profitable modifications 3. find and evaluate optimal combination of p/s mods
4. goto 2 4. goto 2

Figure 3.2: Comparison between traditional strategy improvement methods and
the proposed optimal improvement algorithm. While current techniques first
choose a particular update from profitable modifications and subsequently eval-
uate it, our novel technique concurrently considers all combinations of profitable
and stale modifications.

Contribution. We introduce a strategy improvement algorithm that is based
on a reduction to simple update games, which can be solved in a single sweep. It
provides substantial advantages over current strategy improvement algorithms:

1. The reduction is more natural. It reduces solving parity (or mean payoff)
games to solving a series of simplified games, where the options of player 0
are restricted, but not to the extreme of a singleton game. It thus preserves
the game character of the problem rather than treating it as a purely graph
theoretic problem.

2. The improvements are greater. The game-theoretic approach allows us to
take the global and cross effects of different local modifications to the
strategy into account. We thus overcome the critical blind spot of current
strategy improvement algorithms and can, for the first time, make full use
of the strength attached to simultaneous modifications.

3. The game theoretic analysis is cheaper. Reductions to graph theoretic al-
gorithms need to exclude stale cycles. Both, for parity and payoff games,
the codomain of the pointwise ranking function needs to be increased by
a factor linear in the size n of the game, which raises the estimation for
the amount of iterations by a factor of n and slows down the arithmetic
operation.

From Graph-based to Game-based Updates. The suggested optimal
strategy improvement algorithm reduces solving parity games to solving a se-
ries of simpler two player games. Turning to a game theoretic (rather than to a
graph theoretic) approach allows for considering all combinations of profitable
and stale modifications in every update step, taking all global and cross effects
into account.

40 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

This advancement is achieved by a novel technique that resolves the sepa-
ration between choosing and evaluating the modifications to a strategy. Where
current strategy improvement algorithms first update the strategy and then
evaluate the resulting singleton game, our approach exploits a natural preorder
for the evaluation of game positions that allows for simultaneously constructing
optimal strategies for both players, such that every game position is only con-
sidered once. Following this preorder, the evaluation of each individual position
can be reduced to a cheap local analysis.

The intuition for the preorder is that, in most cases, the game-theoretic
approach allows for fixing an optimal decision for every position after all of its
successors have been reevaluated. If all positions do have unevaluated successors,
we can immediately determine the optimal choice for some position of player 1.

A side-effect of the game theoretic approach is that staling becomes our
confederate. All current strategy improvement methods, on the other hand,
build on some guarantee that stale modifications can safely be ignored (there,
only profitable changes can be processed). This is often bought by blowing up
the statespace [VJ00, BV07]. In the game-based approach, stale changes increase
the number of updates taken into account and thus strengthen our global pivot
rule.

The Ranking Function. We change the rules of parity games by allowing one
player, say player 0, to terminate the game in her positions. This is related to the
finite unraveling of mean payoff games suggested by Zwick and Paterson [ZP96]
and the controlled single source shortest path problem from the reduction of
Björklund and Vorobyov [BV07].

The objective of player 0 remains to assert an infinite path with even maxi-
mal priority in the infinity set. However, we add the natural secondary objective
for the case that she has not yet found (or there is no) such strategy. If player
0 cannot assert such a path, she eventually stops the unraveling of the game,
optimizing the finite occurrences of the different priorities, but disregarding the
number of positions with priority 0. (Disregarding this number leads to a coarser
ranking function and to an improved estimation of the number of improvement
steps. It also leads to greater improvements by increasing the number of prof-
itable or stale modifications.) Second, if the highest occurring priority is odd,
there is no need to keep track of the number of occurrences of this priority. It
suffices to store the information that this maximal number occurs on a finite
path, resulting again in a coarser ranking function.

3.2. ESCAPE GAMES 41

For parity games with n positions, m edges, and c colors, the coarser rank-
ing function leads to an improved estimation of the number of updates from
the currently best bound O

(
n (n+c

c
)c+1

)
[BV07] for the number of arithmetic

operations needed by strategy improvement algorithms to O
(
n (n+c

c
)c−1

)
for

parity games with an even number of colors, and to O
(
n (n+c

c
)c

)
if the numbers

of colors is odd, reducing the bound by a factor quadratic and linear in the
number of states, respectively.

The complexity of the strategy improvement algorithm proposed in this
chapter is therefore good enough for the complexity results for the constructive
non-emptiness test for deterministic and nondeterministic parity tree automata
in Chapter 4 and its applications to satisfiability and synthesis problems in
Parts II and III).

3.2 Escape Games

Escape games are total reward games that are tailored for the optimal improve-
ment method. They generalize parity games by allowing player 0 to terminate
every play immediately on each of her positions. Technically this is done by
extending the arena with a fresh escape position, which forms a sink of the ex-
tended arena, and can be reached from every position of player 0. Every play
of an escape game either eventually reaches the escape position and then termi-
nates, or it is an infinite play in the non-extended arena.

Bipartite Arena. In this chapter, we assume the arenas to be bipartite for
technical convenience. The position in the construction where this assumption
is used is marked explicitly, and the extension to games with general arenas is
described.

Extended Arena. In an escape game, the finite arena A = (V0, V1, E) is
extended to the directed graph A′ = (V0, V

′
1 , E′), which extends the arena A

by a fresh position ⊥ of player 1 (V ′
1 = V1 ⊎ {⊥}) that is reachable from every

position of player 0 (E′ = E ∪ V0 × {⊥}). The escape position is a sink in A′.

Finite Plays. Since the escape position is a sink, every play terminates
when reaching ⊥. The set of plays is therefore extended by the finite plays
π = p0p1p2p3 . . .⊥ ∈ (V0 ⊎ V1)

∗{⊥}.

42 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

Escape Games. An escape game is a game E = (V0, V1, E, α), where A =
(V0, V1, E) is a finite arena, and α : V0 ∪ V1 → C ⊂ N is a coloring function. An
escape game is played on the extended arena A′ = (V0, V

′
1 , E′).

An infinite play π = p0p1p2 . . . ∈ V ω of an escape game is evaluated to ∞
if the highest color occurring infinitely often is even, and to −∞ otherwise. A
finite play π = p0p1p2 . . . pn⊥ is evaluated to a function ρ(π) : C0 → Z (where
C0 = C r {0} is the codomain of the coloring function without 0) that maps
an element c′ of C0 to the number of positions pi in π with i > 0 that are
colored by c′ = α(pi). (Disregarding the color of the first position is technically
convenient.)

The potential values of a path are ordered by the obvious alphabetic order
> that sets ρ > ρ′ if

• the highest color c′ with ρ(c) 6= ρ′(c) is even and ρ(c′) > ρ′(c′), or

• the highest color c′ with ρ(c) 6= ρ′(c) is odd and ρ′(c′) > ρ(c′).

Additionally, we define ∞ > ρ > −∞. The objective of player 0 is to maximize
this value, while it is the objective of player 1 to minimize it.

We introduce an operator ⊕ for the evaluation of finite paths. For R = (C0 →
Z) ∪ {∞}, ⊕ : R× C → R maps a function ρ and a color c′ to the function ρ′

that deviates from ρ only by assigning the respective successor ρ′(c′) = ρ(c′)+1
to c′ (and leaves ρ′(d) = ρ(d) for d 6= c′). We fix ∞⊕ c′ = ∞ and ρ ⊕ 0 = ρ.

Estimations. We introduce estimations v : V0 ∪ V ′
1 → R for an escape game

E = (V0, V1, E, α) as witnesses for the existence of a memoryless strategy f
of player 1, which guarantees that every f -conform play π starting in some
position p is evaluated to ρ(π) ≥ v(p). Formally, an estimation v has to satisfy
the following side conditions:

• v(⊥) = 0 (0 denotes the constant function that maps all colors in C0 to 0),

• for every position p ∈ V0 of player 0 there is an edge e = (p, p′) ∈ E′ such
that v(p) ≤ v(p′) ⊕ α(p′) holds true,

• for every position q ∈ V1 of player 1 and every edge e = (q, q′) ∈ E,
v(q) ≤ v(q′) ⊕ α(q′) holds true, and

• player 0 has a strategy f∞ that maps every position p ∈ V0 of player 0 with
v(p) = ∞ to a position p′ = f∞(p) with v(p′) = ∞, and which guarantees
that every f∞-conform play π starting in p is evaluated to ρ(π) = ∞.

3.2. ESCAPE GAMES 43

A trivial estimation is simple to construct: We denote with v0 the estimation
that maps the escape position to v0(⊥) = 0, every position p ∈ V0 of player 0
to v0(p) = 0, and every position q ∈ V1 to v0(q) = min{0⊕ α(q′) | (q, q′) ∈ E}.

Remark. The simple construction of the trivial estimation is the only position
in this chapter where the restriction to bipartite games is used. For arbitrary
parity games, we would first test if player 1 can win from some position without
visiting any position of player 0; such positions can (and need to) be removed
recursively. Additionally, we had to construct the ‘best’ path of player 1 to some
position of player 0. These constructions are cheap and simple, and would only
blur the outline of the algorithm.

Lemma 3.1 For every estimation v of an escape game E = (V0, V1, E, α) there
is a memoryless strategy f for player 0 such that every f-conform play π starting
in any position p satisfies ρ(π) ≥ v(p).

Proof: We fix an arbitrary strategy f for player 0 that agrees with f∞ on every
position p ∈ V0 of player 0 with infinite estimation (v(p) = ∞ ⇒ f(p) = f∞(p)),
and chooses some successor that satisfies v(p) ≤ v

(
f(p)

)
⊕ α

(
f(p)

)
otherwise.

Every cycle reachable in an f -conform play has non-negative weight (that is,
weight 0⊕α(p0)⊕ . . .⊕α(pn) of every cycle p0 . . . pnp0 is ≥ 0) by construction
of f ; every infinite f -conform play π is therefore evaluated to ρ(π) = ∞ ≥ v(p).

By induction over the length of finite f -conform plays π that start in some
position p, we can show that ρ(π) ≥ v(p). ¤

For a given an estimation v, the question arises whether this estimation can
be improved. We call an estimation v′ an improvement of an estimation v if
v′(p) ≥ v(p) holds for all positions p ∈ V0 ∪ V1, and we call an improvement
strict if v′ 6= v.

For every estimation v, we define the improvement arena Av = (V0, V1, Ev)
that contains an edge e = (p, p′) if it satisfies v(p) ≤ v(p′) ⊕ α(p′) (that is,
Ev = {(p, p′) ∈ E′ | v(p) ≤ v(p′) ⊕ α(p′)}; Ev thus contains every edge that
originates from a position of player 1), and the 0-arena A0

v = (V0, V1, E
0
v) which

contains an edge e = (p, p′) ∈ Ev of the improvement arena if it satisfies

• v(p) = v(p′) ⊕ α(p′), and

• if e originates from a position p ∈ V0 of player 0, if additionally no edge
e′ = (p, q) with v(p) < v(q) ⊕ α(q) originates from p

44 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

(E0
v = {(p, p′) ∈ Ev | v(p) = v(p′) ⊕ α(p′) and p ∈ V0 ⇒ ∀(p, q) ∈ Ev. v(p) =

v(q) ⊕ α(q)}).
We call an estimation improvable if the 1-attractor of the escape position in

the 0-arena A0
v does not cover all positions that are not estimated to ∞.

Theorem 3.2 For every non-improvable estimation v of an escape game E =
(V0, V1, E, α) player 1 has a memoryless strategy f ′ such that every f ′-conform
play π starting in any position p satisfies ρ(π) ≤ v(p).

Proof: We fix a strategy f ′ for player 1 that agrees on all positions V1rv−1(∞)
with some 1-attractor strategy to reach the escape position in the 0-arena A0

v.
For plays starting in some position p that is evaluated to ∞, ρ(π) ≤ v(p) = ∞

holds trivially. For plays starting in some position p that is not evaluated to ∞,
we can show by induction over the length of f ′-conform plays starting in p that
no f ′-conform play can reach a position p′ that is evaluated to v(p′) = ∞. By
construction of f ′, every reachable cycle in an f ′-conform play that does not
reach a position in v−1(∞) has negative weight (that is, a weight < 0), and
every infinite f ′-conform play which starts in a position p that is not evaluated
to ∞ thus satisfies −∞ = ρ(π) < v(p).

For every finite f ′-conform play π starting in some position p, we can show
by induction over the length of π that ρ(π) ≤ v(p) holds true. ¤

The non-improvable estimation of an escape game can be used to defer the
winning regions (v−1(∞) for player 0) and the winning strategy for player 1
on his winning region in the underlying parity game. f∞ defines the winning
strategy of player 0 on her winning region.

3.3 Solving Escape Games

In this section we introduce an optimal strategy improvement algorithm for the
fast improvement of estimations for escape games. Every estimation (for exam-
ple, the trivial estimation v0) can be used as a starting point for the algorithm.

3.3.1 Optimal Improvement

The estimations that we construct intuitively refer to strategies of player 0 for
the extended arena. (Although estimations are a more general concept; not all
estimations refer to a strategy.) The edges of the improvement arena Av of an
escape game E = (V0, V1, E, α) and an estimation v that originate in positions of

3.3. SOLVING ESCAPE GAMES 45

player 0 refer to all promising strategy updates, that is, all strategy modifications
that locally lead to a – not necessarily strict – improvement (profitable and stale
modifications). We call an improvement v′ of v optimal if it dominates all other
estimations v̂ that refer to (memoryless) strategies of player 0 that contain only
improvement edges. Finding this optimal improvement thus relates to solving
an update game, which deviates from the full escape game E only by restricting
the choices of player 0 to her improvement edges.

3.3.2 Basic Update Step

Instead of computing the optimal improvement v′ of an estimation v directly,
we compute the optimal update u = v′−v. (The operator + : R×R → R maps
a pair ρ, ρ′ of functions to the function ρ′′ that satisfies ρ′′(c′) = ρ(c′) + ρ′(c′)
for all c′ ∈ C0. − is defined accordingly.)

For a given escape game E = (V0, V1, E, α) with estimation v, we define the
improvement potential of an edge e = (p, p′) ∈ Ev in the improvement arena
Av as the value P (e) = v(p′)⊕ α(p′)− v(p) ≥ 0 by which the estimation would
locally be improved when the respective player chose to turn to p′ (disregarding
the positive global effect that this improvement may have). To construct the
optimal update, we construct the improvement arena, and evaluate the optimal
update of the escape position to u(⊥) = 0. We then evaluate the improvement of
the remaining positions successively by applying the following evaluation rule:

1. if there is a position p ∈ V1 of player 1 that has only evaluated successors,
we evaluate the improvement of p to u(p) = min{u(p′) + P

(
(p, p′)

)
|

(p, p′) ∈ E},

2. else if there is a position p ∈ V1 of player 1 that has an evaluated successor
p′ with u(p′) = P

(
(p, p′)

)
= 0, we evaluate the improvement of p to

u(p) = 0,

3. else if there is a position p ∈ V0 of player 0 that has only evaluated suc-
cessors, we evaluate its improvement to u(p) = max{u(p′) + P

(
(p, p′)

)
|

(p, p′) ∈ Ev}1,

4. else we choose a position p ∈ V1 of player 1 with minimal intermediate im-
provement u′(p) = min{u(p′) + P

(
(p, p′)

)
| p′ is evaluated and (p, p′) ∈

E} and evaluate the improvement of p to u(p) = u′(p). (Note that
min{∅} = ∞.)

1We could also choose u(p) = max{u(p′) + P
`

(p, p′)
´

| p′ is evaluated and (p, p′) ∈ E}.

46 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

3.3.3 Illustrating Example

The basic update step is illustrated by the following example.

2

1

1

0

3

4

0

0

1

1

The positions of player 0 are denoted as boxes, and the positions of player 1
are denoted as circles. The positions are decorated with their color. Solving
this parity game reduces to solving the following escape game; in order to keep
the representation simple, the escape position is not depicted. The full edges
are improvement edges in Av0

(where v0 is the trivial estimation), they are
decorated with their improvement potential. The positions are marked with an
identifier.

a

b

c

d

e

f

g

h

i

j

0

0

(0, 0, 1, 1)

(1, 0, 0, 0)

00

0

The following table shows the development of the estimations, starting with
the trivial estimation v0. v1 and v2 are the estimations computed after the first
and second application of the basic update step, respectively.

position player v0 v1 v2

a 0 0 0 ∞
b 1 (0, 0, 1, 0) (0, 0, 1, 0) ∞
c 1 0 (0, 0, 1, 1) ∞
d 0 0 (0, 0, 1, 1) ∞
e 1 0 0 0

f 0 0 0 ∞
g 0 0 0 0

h 1 (0, 0, 0, 1) (0, 0, 0, 1) (0, 0, 0, 1)
i 1 0 0 0

j 0 0 0 0

3.3. SOLVING ESCAPE GAMES 47

v2 turns out to be non-improvable, and the algorithm terminates after the
next basic update step.

First Basic Upsdate Step. After having determined the improvement po-
tential of the edges and the set of improvement edges, we construct the improve-
ment arena, and run the algorithm. One possible run would be:

1. u(⊥) is set to 0

2. rule 3 is applied to position a — u(a) = 0

3. rule 1 is applied to positions b — u(b) = 0

4. rule 3 is applied to position d — u(d) = (0, 0, 1, 1)

5. rule 1 is applied to position c — u(c) = (0, 0, 1, 1)

6. rule 3 is applied to position f — u(f) = 0

7. rule 3 is applied to position j — u(j) = 0

8. rule 1 is applied to position h — u(h) = 0

9. rule 3 is applied to position g — u(g) = 0

10. rule 1 is applied to position e — u(e) = 0

11. rule 1 is applied to position i — u(i) = 0

v1 is then set to v1 = v0 + u.

Second Basic Update Step. Again, we first determine the improvement
potential of the edges, and the set of improvement edges.

a

b

c

d

e

f

g

h

i

j

(0, 0, 1, 2)

0

0

0

(1, 0, 0, 0)

0

(0, 0, 1, 2)

0

0

We then construct the improvement arena, and run the algorithm. One possible
run would be:

48 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

1. u(⊥) is set to 0

2. rule 3 is applied to position j — u(j) = 0

3. rule 1 is applied to position h — u(h) = 0

4. rule 3 is applied to position g — u(g) = 0

5. rule 1 is applied to position i — u(i) = 0

6. rule 2 is applied to position e — u(e) = 0

7. rule 4 is applied to position b — u(b) = ∞

8. rule 3 is applied to position d — u(d) = ∞

9. rule 1 is applied to position c — u(c) = ∞

10. rule 3 is applied to position a — u(a) = ∞

11. rule 3 is applied to position f — u(f) = ∞

v2 is then set to v2 = v1 + u. Performing a third basic update step would
show that the fixed point is reached.

3.3.4 Correctness

The basic intuition for the optimal improvement algorithm is to re-estimate the
value of a position only after all its successors have been re-estimated. In this
situation, it is easy to determine the optimal decision for the respective player.
In a situation where all unevaluated positions do have a successor, we exploit
that every cycle in Av has non-negative weight (weight ≥ 0), and every infinite
play in Av is evaluated to ∞. An optimal strategy of player 1 will thus turn,
for some position of player 1, to an evaluated successor. It is safe to chose a
transition such that the minimality criterion on the potential improvement u′

is satisfied, because, independent of the choice of player 1, no better potential
improvement can arise at any later time during this update step. Following these
evaluation rules therefore provides an optimal improvement.

Theorem 3.3 For every estimation v of an escape game E = (V0, V1, E, α), the
algorithm computes the optimal improvement v′ = v+u. If v is improvable, then
the optimal improvement v′ 6= v is strictly better than v.

3.3. SOLVING ESCAPE GAMES 49

Proof: During the reevaluation, we can fix optimal strategies f and f ′ for player
0 and 1, respectively, by fixing f(p) or f ′(p), respectively, to be some successor
of p that satisfies the respective maximality or minimality requirement. (In rule
2, we implicitly apply the same minimality requirement as in rule 4.)

Every infinite f -conform play is evaluated to ∞, and for every finite
f -conform play π that starts in some position p, we can show by induction
over the length of π that ρ(π) ≥ v′(p) holds true.

No f ′-conform play π = p0p1p2 . . . in Av (that is, under the restriction that
player 0 can chose only transitions in Ev), which does not start in a position
p0 that is evaluated to ∞, can contain a cycle, because pi+1 has been evaluated
prior to pi by construction. Thus, every such f ′-conform play in Av is finite.
For every finite f ′-conform play π in Av that starts in some position p, we can
show by induction over the length of π that ρ(π) ≤ v′(p) holds true.

It remains to show that the algorithm guarantees progress for improvable
estimations. If at least one improvement edge e that originates from a position of
player 0 has a positive improvement potential P (e) > 0, the claim holds trivially.
Let us consider the case that the improvement potential is P (e) = 0 for every
improvement edge e that originates from a position of player 0. According to the
update rules, the algorithm will successively assign u′(p) = 0 to all positions in
the 1-attractor of ⊥ in the 0-arena A0

v. If the attractor covers all positions of E ,
v is non-improvable by Theorem 3.2. Otherwise, u′(p) > 0 holds by definition
for every remaining position p ∈ V1 of player 1 that is not in the 1-attractor of
the escape position ⊥. This implies u > 0 and thus v′ = v + u > v. ¤

3.3.5 Complexity

In spite of the wide variety of strategies that are considered simultaneously,
the update complexity is surprisingly low. The optimal improvement algorithm
generalizes Dijkstra’s single source shortest path algorithm to two player games.
The critical part of the algorithm is to keep track of the intermediate update
u′, and the complexity of the algorithm depends on the used data structure.
The default choice is to use binary trees, resulting in an update complexity of
O(m log n). However, using advanced data structures like 2-3 heaps (cf. [Tak99])
reduces this complexity slightly to O(m + n log n).

Theorem 3.4 For an escape game with n positions and m edges, the optimal
improvement can be computed using O(m+δ log δ) arithmetic operations, where
δ ≤ n denotes the number of positions of player 1 for which the improvement is
strict.

50 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

Proof: Let us consider a run of our algorithm that, when applying rule 3, gives
preference to updates of positions with improvement 0. Keeping track of these
updates is cheap, and giving them preference guarantees that all positions with
0-update are removed before the remainder of the graph is treated.

Let us partition the operations occurring after these 0-updates into

1. operations needed for keeping track of the number of unevaluated succes-
sors for positions of player 1 and for finding the direction with maximal
improvement for positions of player 0, and

2. all remaining operations.

Obviously, (1) contains only O(m) operations, while the restriction to (2) co-
incides with a run of Dijkstra’s algorithm on a subgraph of the improvement
arena. (On the subgraph defined by the strategy f of player 0 referred to in
Theorem 3.3.) Dijkstra’s algorithm can be implemented to run in O(m+δ log δ)
arithmetic operations [Tak99]. ¤

Theorem 3.5 The algorithm can be implemented to solve a parity game with

n positions, m edges, and c colors in time O
(
m

(
n+c

c

)c′)
, where c′ = c − 1 if c

is even, and c′ = c if c is odd.

Proof: If both players follow the strategies f and f ′ from the proof of Theo-
rem 3.3 starting in a position p0 that is not evaluated to ∞ 6= v′(p0), they reach
the escape position ⊥ on a finite acyclic path p0p1 . . . pi⊥. By induction over
the length of this path we can show that v(p0) = 0 ⊕ α(pi) ⊕ . . . ⊕ α(p0). Note
that, for odd highest color c − 1 (and thus for even c), only pi may be colored

by c − 1. Thus, the number of updates is, for each position, in O
((

n+c
c

)c′−1)
.

Let us, for the estimation of the running time, assume that only one small
update occurs in every step. ‘Only one’ leads to a small δ (removing the δ log δ
part from the estimation), while ‘small update’ can be used to reduce the dis-
counted cost for the arithmetic operations on R to O(1): Before computing the
improvement potential P , the update u, and the intermediate update u′, we first
compute an abstraction a : R → Z of these values that maps a function ρ ∈ R
to 0 if ρ = 0, and to ± the highest integer h with ρ(h) 6= 0 otherwise (+ if and
only if r > 0). Computing the concrete value is then linear in the absolute value
of the abstraction (rather than in c). For every edge e = (p, p′), updating the im-
provement potential a◦P (e) to its new value requires O(max{a◦u(p), a◦u(p′)})
steps (using the old u). All other operations on abstract values are in O(1).

3.3. SOLVING ESCAPE GAMES 51

To compute u′, we proceed in two steps. In a first step, we maintain a 2-3
heap that stores only the abstraction of u′, and that contains all positions where
u′ is above a threshold t that is initialized to t = 0. For positions with abstract
value t, we keep a 2-3 heap with concrete values for u′. Every time we use rule
4 and find an empty concrete 2-3 heap, we increase t to the minimal value of
the abstract 2-3 heap, remove all positions with this abstract value from the
abstract heap, and add them (with concrete value) to the concrete heap. The
required concrete arithmetic operations are linear in the value of the abstraction
a ◦ u(r) of the concrete update (rather than in c). In the worst case scenario,
‘small updates’ implies that the discounted cost of the operations is in O(1). ¤

3.3.6 Extended Update Step

The basic update step can be improved to an extended update step by three
simple and cheap additional computation steps:

1. Recursively remove all positions from E that have no predecessors, and
push them on a solve-me-later stack.

2. Adapt the valuation function v to v′ such that the values of positions of
player 1 are left unchanged (v′(p) = v(p)∀p ∈ V1), and the values of all
positions of player 0 are maximally decreased (v′(p) = max{v′(p′)⊖α(p) |
(p′, p) ∈ E} ∀p ∈ V0). This step again exploits that the game is bipartite.

3. Apply a basic update step.

4. Remove the 0-attractor of all positions that are evaluated to ∞ from E .

The intention of the first step is twofold. The first intention is to simplify the
game. Positions without predecessors have no impact on the value of other game
positions, and their evaluation can safely be postponed until after the remainder
of the game has been evaluated. The second intention is to strengthen the second
step. In the second step, we exploit the fact that the basic improvement step
benefits from a high number of improvement edges that originate from positions
of player 0. This number is increased by changing the estimation v such that
the estimation of positions of player 1 remain unchanged, while the estimation
of positions of player 0 is decreased. The last step is again used to simplify the
game.

An interesting side effect of step 4 is that our game-based improvement
algorithm behaves like standard fixed point algorithms [McN93, EL86, Zie98]

52 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

on Büchi and Co-Büchi games (parity games with only two colors, without
loss of generality 0 and 1). Like in these standard algorithms, we iteratively
compute the set of states from which player 0 can stay forever in positions
with color 0, and then remove their 0-attractor from the game. The game-based
approach described in this section can therefore also be viewed as an alternative
generalization of the well accepted algorithms for Büchi and Co-Büchi games to
general parity games, which preserves different properties than McNaughton’s
generalization [McN93, EL86, Zie98].

3.4 Benchmarks and Results

To evaluate the applicability of the optimal strategy improvement algorithm, a
prototype of the algorithm was implemented and evaluated on different bench-
marks, including random games with and without structure as well as other
benchmarks for parity games.

3.4.1 Performance on Random Graphs

A first estimation of the performance of our algorithm on random games showed
that the expected number of update games depends mainly on the number of
colors and the outdegree, but it seems to be constant in the number of positions.
Each figure in the tables refer to the highest number of iterations observed in
100 samples. (They are therefore incomparable to the average values used in
the following subsection.) The first table shows the number of iterations used
by the optimal strategy improvement algorithm on parity games with uniformly
distributed colors and outdegree six.

colors
positions 3 4 5 6 7 8 9 10 12 15 20

1.000 2 4 3 4 4 7 5 7 13 13 17
3.000 2 4 3 4 3 6 4 7 8 7 20

10.000 2 4 3 5 3 7 4 7 9 7 11
30.000 2 4 3 5 3 8 4 8 10 6 14

100.000 2 5 3 7 3 8 4 8 10 7 13
300.000 2 5 3 6 3 8 4 9 10 7 14

1.000.000 2 5 3 7 3 8 4 11 11 7 16
3.000.000 2 5 3 7 3 9 4 10 13 7 20

10.000.000 2 5 3 7 3 10 4 11 12 7 18
30.000.000 19

3.4. BENCHMARKS AND RESULTS 53

To evaluate the effect of different parameters on the performance of the
optimal strategy improvement algorithm, the experiments have been repeated
with different outdegrees and numbers of colors. The figures in each field of the
following table refer to random games with constant outdegree 3 / 12 / 40.

positions 10 colors 30 colors 100 colors 300 colors 1000 colors

1000 14 / 4 / 1 18 / 8 / 3 22 / 14 / 9 18 / 15 / 10 19 / 18 / 11

3000 19 / 3 / 1 25 / 16 / 2 30 / 28 / 10 31 / 28 / 16 32 / 25 / 14

10000 13 / 3 / 2 28 / 8 / 2 45 / 30 / 14 54 / 49 / 37 60 / 52 / 32

30000 14 / 4 / 1 32 / 9 / 2 81 / 27 / 6 110 / 83 / 62 125 / 106 / 63

100000 16 / 4 / 2 56 / 9 / 2 125 / 20 / 4 232 / 175 / 34 293 / 269 / 127

300000 19 / 4 / 2 50 / 9 / 2 102 / 21 / 4 401 / 333 / 12 648 / 536 / 290

For random graphs, the number of update games seems to depend mainly
on the number of colors and the outdegree. The figures indicate that, for a
given number of colors and a given outdegree, the number of iterations first
increases with the number of positions, but, after a threshold that increases
with the number of colors and decreases with increasing outdegree, decreases
again, and swings in at a low value that increases with the number of colors
and decreases with the outdegree. The complete figures, however, indicate that
the variance (rather than the average number of iterations) decreases with an
increasing number of positions.

Running Time. The longest running time for the optimal strategy improve-
ment method in all benchmarks, 9 hours and 25 minutes, was observed on
samples with 30 million positions, outdegree six, and 20 colors. However, the
used implementation is a plain Java implementation that offers much leeway for
optimizations.

3.4.2 Benchmarks

The low expected number of updates (which is confirmed by all following bench-
marks) restricts the potential competitors: The randomized subexponential al-
gorithms of Ludwig [Lud95], and Björklund and Vorobyov [BV07] perform ex-
actly one update in every improvement step. It is therefore almost sure that the
required number of update steps is at least linear in the size of the game. In
case of Ludwig’s algorithm, the update complexity is also much higher.

For the first benchmark, we restricted the focus on the algorithm of Vöge
and Jurdziński [VJ00], and a (not subexponential) variant of the algorithm of

54 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

Björklund and Vorobyov [BV07], which, in every step, chooses a locally prof-
itable modification uniformly at random for every position, for which a profitable
modification exists.

The following table compares the expected number of iterations of our algo-
rithm (opt) with the variant of Björklund and Vorobyov (rand) and Vöge and
Jurdziński’s algorithm (VJ) for random games with 3 colors and outdegree 6.

positions 30 100 300 1000 3000 10000 30000 100000 300000
opt 1.1 1.4 1.7 1.7 1.9 2.0 2.0 2.0 2.0

rand 2.5 2.9 3.1 3.0 3.0 3.1 3.2 3.7 4.0

VJ 5.3 12.2 26.1 66.1 182.0 573.1 1665.32 —– —–

The algorithm of Vöge and Jurdziński was not considered in the following
benchmarks, because it took several days even for small random games with only
30000 positions and outdegree 6. This is partly due to the fact that the observed
number of iterations grows linearly in the size of the game, and partly due to
the much higher update complexity of O(mn). (The predicted running time for
every instance of the following benchmark is, for example, several decades.)

Different to the algorithm of Vöge and Jurdziński, the performance of the
variant of Björklund and Vorobyov’s algorithm (rand) on random games is close
to the performance of the optimal improvement algorithm. The cost of the indi-
vidual updates for rand is slightly higher, because 0 cycles need to be excluded
in their approach, which results in higher numbers (by a factor linear in the
size of the game). Together with the slightly smaller number of iterations, the
running time of our algorithm improves over theirs by a factor of approximately
2 on the considered random games.

The following benchmarks investigates the effect of the number of colors,
using random games with 300000 positions and branching degree 40. As in the
previous benchmark, opt clearly improves over rand, but the factor remains
small (2–3).

colors 3 5 10 17 30 55 100 175 300 550 1000
opt 1.0 1.0 1.4 2.0 2.0 4.0 2.9 23.7 6.7 9.9 24.6

rand 2.0 3.0 3.2 5.0 6.7 11.0 9.8 30.0 11.8 24.8 50.7

The difference between opt and rand becomes apparent once structure is
added to the game. The following benchmark consists of random games with
index colors, index 2 positions, and index 3 edges. The edges are not distributed
uniformly; preference is given to close successors. The square of the observed

2For 30000 positions, each sample took approximately four days on a 2.6 GHz Dual Core
AMD Opteron machine (as compared to 1.5 seconds for the optimal strategy improvement
algorithm). The experiment was therefore terminated after ten samples.

3.4. BENCHMARKS AND RESULTS 55

number of updates of rand growth faster than the cube of the observed number
of updates of opt.

index 10 20 30 40 50 60 70 80 90 100 110
opt 2.0 3.4 3.5 7.1 4.8 4.2 5.6 7.4 7.2 8.1 7.6

rand 4.2 8.5 11.0 17.5 23.4 21.9 25.0 29.1 27.9 30.6 38.5

The following table compares the performance of opt and rand on a bench-
mark that consists of random chains of sparsely linked subgames. While ran-
domized, it provides much structure. On this benchmark, the number of updates
needed by rand is quadratic in the number of updates needed by opt.

positions 74 299 1199 2699 4799 7499 10799 16874 27074
opt 3.3 6.5 11.2 26.3 25.4 35.8 34.8 59.8 63.5

rand 11.2 69.5 240.3 615.9 1354.4 1190.1 2118.2 3192.0 5876.4

The following table provides the figures for the analysis of a bipartite version
of the Hindex ,index games used in [Jur00] to estimate the worst case complexity
of Jurdziński’s algorithm. While this benchmark turns out not to be particu-
larly hard for strategy improvement techniques, it still reveals some differences.
(Constant vs. logarithmic number of iterations in the index or size of the game.)

index 2 4 8 16 32 64 128 256 512 1024 2048
opt 2 2 2 2 2 2 2 2 2 2 2

rand 2.7 3.9 5.3 6.9 8.6 10.3 12.1 14.0 15.8 17.5 19.4

For (Co-)Büchi games, the difference between the algorithms is particularly
interesting, because opt coincides with standard fixed point algorithms [McN93,
EL86, Zie98] in this case. For this reason, a dedicated benchmark for (Co-)Büchi
games is included. On this benchmark, the number of updates needed by rand
is approximately quadratic in the number of updates needed by opt.

positions 506 2027 4562 7499 10799 14699 19199 24299
opt 13 26 39 50 60 70 80 90

rand 170.8 677.6 1522.5 2501.6 3601.3 4901.6 6401.5 8101.5

The last benchmark for parity games tests the sensitivity of strategy im-
provement algorithms to ‘traps’ that lure them to a wrong direction. While not
representative, it is a nice demonstration for the difference that choosing the best
of 2n combinations may make compared to choosing a random combination.

positions 11 35 101 335 1001 3335 10001 33335
opt 1 1 1 1 1 1 1 1

rand 5.1 13.7 35.7 113.4 335.4 1113.6 3335.6 11113.5

56 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

Finally, we turn back to random games, and compare the performance of
both algorithms for the analysis of mean payoff games with outdegree six and
small payoffs. (The extension of the game-based approach to mean payoff games
is trivial.) The number of iterations needed by rand for finding the 0 mean
partition is more than cubic in the number of iterations needed by opt.

positions 30 100 300 1000 3000 10000 30000 100000 300000
opt 1.2 1.5 1.7 2.1 2.3 2.8 3.5 3.2 3.4

rand 1.6 3.4 5.0 8.8 19.6 36.8 43.0 44.9 57.0

The benchmarks show that, with or without structure, the expected number
of iterations needed by the optimal improvement algorithm is very small. For
simple instances, the advantage of opt over rand is limited to a small constant.
However, in all benchmarks with structure the average number of iterations
needed by rand growth much faster than the average number of iterations needed
by opt, for example, quadratic in the fourth and sixth benchmark, and cubic in
the last.

3.5 Discussion

The applicability of strategy improvement algorithms crucially depends on the
quality of the individual improvement step, or, likewise, on the expected amount
of improvement steps. Current strategy improvement techniques suffer from de-
ficiencies in estimating the effect of strategy modifications: They cannot predict
their global effect, let alone the cross effect between different modifications. The
suggested game-based optimal strategy improvement algorithm overcomes this
deficiency, and allows us, for the first time, to make full use of the advantages
attached to concurrent strategy modifications.

Besides the better results on different benchmarks, the game-based approach
provides additional advantages over current strategy improvement algorithms.
While current strategy improvement algorithms behave unintuitively on Büchi
and Co-Büchi games (which may well undermine the trust in their performance),
the game-based approach coincides with traditional fixed point algorithms on
this class of parity games. It can therefore be viewed as an alternative gener-
alization from single to nested fixed points. A further advantage is the strong
improvement guarantee provided by the game-based approach. The estimation
vi that results from the i-th improvement step is better than all estimations that
refer to any restriction of the moves of player 0 to some previous improvement
arena Avj

(j < i). This is in contrast to current strategy improvement tech-
niques, which only guarantee to construct a sequence of improving estimations.

3.5. DISCUSSION 57

From a practical point of view, the amount of improvement steps used by
simplex style algorithms tends to be linear in the amount of constraints that
define the simplex [Sma83]. In our algorithm, the edges that originate from posi-
tions of player 0 define these constraints. In several benchmarks, approximately
30% (at the end) to 50% (at the beginning) of the edges that originate from
positions of player 0 are improvement edges, and the expected number of im-
provements in every step is linear in the size of the improvement graph, which
leads, for example, to the constant number of updates in random games. Inter-
estingly, the discussed optimal improvement algorithm works particularly well
in situations that are most critical for traditional simplex style algorithms: Situ-
ations where a wide variety of choices perturb the pivot rule, in particular in the
case where only stale modifications exist (being on a large plateau with equiva-
lently valuated corners). Taking into account that elliptic methods [Kha79] have
never been earnestly considered to replace the simplex algorithm, and even Kar-
markar’s interior point method [Kar84] could not supersede the simplex method,
polynomial time algorithms would need to satisfy high demands to become prac-
tically important even if the optimal strategy improvement should turn out to
be exponential.

While the update complexity of the algorithms is low (O(m + n log n) arith-
metic operations), finding a non-trivial bound for the overall complexity, that
is, finding a bound on the number of updates, remains an intriguing future
challenge. Intuitively, it seems that the worst case scenario for the optimal im-
provement algorithm occurs when the algorithm can never play to its strengths,
that is, if there is never a variety of improvements to select from. Interestingly,
it is this seemingly worst case scenario, for which a non-trivial upper bound can
easily be provided: For every optimal strategy of player 0, at least one edge is a
new improvement edge. No variety therefore implies that this improvement edge
is selected, while all previously selected edges of the strategy remain. Thus, the
algorithm needs less than n strategy updates in this scenario. This O(n) bound
for the number of updates is currently the best estimation from below for the
improvement complexity.

This leads to the intriguing open complexity problem of infinite games over
finite structures: Solving parity games (and thus the µ-calculus model checking
problem [Wil01]), as well as the analysis of more general infinite games over
finite structures like mean payoff games, are among the few problems that are
known to be in NP∩coNP [McN93] (and even in UP∩coUP [ZP96, Jur98]),
but whose membership in P is still an open problem. While the membership
of randomized strategy improvement algorithms [Lud95, BV07] to the class
ZPP is open (while they are known not to be in P), the proposed algorithm

58 CHAPTER 3. OPTIMAL STRATEGY IMPROVEMENT

may turn out to be polynomial. Understanding the complexity of the game-
based strategy improvement algorithm would either lead to a proof that parity
/ mean payoff games can be solved in polynomial time, or would greatly help
to understand the hardness of these problems. Hardness proofs for game-base
strategy improvement, however, will not be simple. It took a quarter of a century
to find a family of examples, for which the complexity of the simplex algorithm is
exponential [KM72]. These classical examples from linear programming do not
extend to game-based improvement methods; the Klee Minty polytope [KM72],
for example, requires only a single update step from the origin (and at most
linearly many steps from any arbitrary corner of the polytope) if we can consider
all combinations of profitable and stale base changes in every improvement step.

Part II

Logics & Automata

59

Overview

A main challenge in system design is the construction of correct implementa-
tions from their temporal specifications. Traditionally, system design consists
of three separated phases, the specification phase, the implementation phase,
and the validation phase. From a scientific point of view it seems inviting to
overcome the separation between the implementation and validation phase, and
to replace the manual implementation of a system and its subsequent validation
by a push-button approach, which automatically synthesizes an implementation
that is correct by construction. Automating the system construction also pro-
vides valuable additional information: We can distinguish unsatisfiable system
specifications, which otherwise would go unnoticed, leading to a waste of effort
in the fruitless attempt of finding a correct implementation.

One important choice on the way towards the ideal of fully automated sys-
tem construction is the choice of the specification language. For temporal spec-
ifications, three different types of logics have been considered: Linear-time log-
ics [Wol82], branching-time logics [CE82], and alternating-time logics [AHK02].
The different paradigms are suited for different types of systems and different
design phases. Linear-time logic can only reason about properties of all possible
runs of a system. Consequently, it cannot express the existence of different runs.
A constructive non-emptiness test of an LTL specification is therefore bound to
create a system that has exactly one possible run. Branching-time logics [CE82],
on the other hand, can reason about possible futures, but they refer to closed
systems [AHK02] that do not distinguish between different participating agents.
Finally, alternating-time logics [AHK02] can reason about the strategic capabil-
ities of groups of agents to cooperate to obtain a temporal goal.

As an example that illustrates the differences, let us consider a vending ma-
chine that offers coffee and tea. Ultimately, we want the machine to react on the
requests of a customer, who shall be provided with coffee or tea upon request. In
the alternating-time temporal logic ATL*, we have a natural correspondence to

60

61

this requirement: We simply specify that the customer has the strategic capabil-
ity to get coffee or tea from the vending machine, without the need of coopera-
tion, written 〈〈customer〉〉 © getcoffee or 〈〈customer〉〉 © gettea , respectively.

In branching-time logic, there is no natural correspondence to the property.
The typical approximation is to specify the possibility that coffee or tea is pro-
vided, written E © getcoffee or E © gettea , respectively. However, this does no
longer guarantee that the customer can choose; the specification is also fulfilled if
her health insurance company can override her decision for coffee. A workaround
may be to introduce a dedicated communication interface between the vending
machine and the customer, and represent the desire for coffee by a desirecoffee

bit controlled by the customer. The property may then be approximated by
E © desirecoffee and desirecoffee → A © getcoffee . In LTL, the possibility of dif-
ferent system behaviors cannot be expressed within the logic. Here, in addition
to specifying an interface, we would have to distinguish between parts of the
system under our control (the vending machine) and parts outside of our control
(the customer). A possible approximation would be desirecoffee → ©getcoffee ,
with the addition that there is not only the need to design an interface to the
customer beforehand, but also to make assumptions about her behavior.

The usage of linear or branching-time logics thus requires to first establish
the static interfaces between the system components. This restriction allows
for the application of synthesis techniques only after the central design prob-
lem of establishing the interfaces between the individual components has been
completed, instead of starting in an earlier specification phase with a more ab-
stract view on the system. If synthesis fails, we cannot distinguish unrealizable
specifications from interface design errors.

Alternating-time logics, on the other hand, are exceptionally well suited for
the specification of distributed systems on such an abstract level. At this level
of the design process, checking the satisfiability of a formula in alternating-time
logic means testing the consistency of the system specification. Satisfiability
checking can, for example, be used to demonstrate that it is impossible to im-
plement fair contract-signing without a trusted third party [EY80].

This part of the thesis provides an automata-theoretic decision procedures
and tight complexity bounds for the realizability problem of ATµC (Chapter 4)
and its semantic sublogic ATL* (Chapter 5). We show that the satisfiability
problem for ATµC and ATL* is not harder than the satisfiability problem for
the classic µ-calculus and CTL*, respectively. This low complexity is partic-
ularly interesting for ATL*: Here, the satisfiability problem and its construc-
tive extension to model construction is no more expensive than model check-
ing [AHK02, dAHM01] – both problems are 2EXPTIME-complete.

Chapter 4

Satisfiability and Finite
Model Property of the
Alternating-Time µ-Calculus

Abstract

In this chapter, a decision procedure for the alternating-time µ-calculus is pro-
posed. The decision procedure is based on a representation of alternating-time
formulas as a novel type of alternating automata, automata over concurrent
game structures. We show that language emptiness of these automata can be
checked in exponential time. The complexity of our construction meets the
known lower bounds for deciding the satisfiability of the classic µ-calculus. It
follows that the satisfiability problem is EXPTIME-complete for the alternating-
time µ-calculus.

4.1 Introduction

In the design of distributed protocols, we are often interested in the strategic
abilities of certain agents. For example, in a contract-signing protocol, it is im-
portant to ensure that, while Alice and Bob can cooperate to sign a contract,
Bob never has a strategy to obtain Alice’s signature unless, at the same time,
Alice has a strategy to obtain Bob’s signature as well (cf. [KR03]). Such proper-

62

4.1. INTRODUCTION 63

ties can be expressed in the alternating-time µ-calculus (ATµC) [AHK02], which
extends the classic µ-calculus with modalities that quantify over the strategic
choices of a group of agents. The models of ATµC are a special type of labeled
transition systems, called concurrent game structures, where each transition re-
sults from a set of decisions, one for each agent.

In this chapter, the first decision procedure for the satisfiability of ATµC for-
mulas is presented. The satisfiability problem asks for a given ATµC formula ϕ
whether there exists a concurrent game structure that satisfies ϕ. Previous re-
search has focused on the model checking problem [AHK02, AHM+98], which
asks whether a given concurrent game structure satisfies its specification. By
contrast, the suggested algorithm checks whether a specification can be imple-
mented at all. It can, for example, be used to automatically prove the classic
result that it is impossible to implement fair contract-signing without a trusted
third party [EY80].

We introduce an automata-theoretic framework for alternating-time logics.
Automata over concurrent game structures (ACGs) are a variant of alternating
tree automata, where the atoms in the transition function do not refer to in-
dividual successors in the input structure, but instead quantify universally or
existentially over all successors that result from the agents’ decisions. Specifi-
cally, a universal atom (¤, A′) refers to all successor states for some decision of
the agents in a set A′, and an existential atom (♦, A′) refers to some successor
state for each decision of the agents not in A′. In this way, the automaton can
run on game structures with arbitrary, even infinite, branching degree. Every
ATµC formula can be translated into an automaton that accepts exactly the
models of the formula. Satisfiability of ATµC formulas thus corresponds to lan-
guage non-emptiness of ACGs.

The core result of this chapter is the finite model property for ACGs. We
first prove that, given any game structure accepted by an ACG G, we can find
a bounded game structure that is also accepted by G. In the bounded game
structure, the number of possible decisions of each agent is limited by some
constant m, determined by the size of G.

The emptiness problem of ACGs thus reduces to the emptiness problem of
standard alternating tree automata and, since non-empty automata over finitely-
branching structures always accept some finite structure [Rab72, MS95], there
must exist a finite game structure in the language of a non-empty ACG G. The
drawback of this reduction is that the trees accepted by the alternating tree
automaton branch over the decisions of all agents: The number of directions is
therefore exponential in the number of agents. Since the emptiness problem of

64 CHAPTER 4. SATISFIABILITY OF ATµC

alternating tree automata is exponential in the number of directions, this results
in a double-exponential decision procedure.

We show that it is possible to decide emptiness in single-exponential time.
Instead of constructing an alternating automaton that accepts exactly the
m-bounded game structures in the language of the ACG, we construct a uni-
versal automaton that only preserves emptiness. Unlike alternating automata,
universal automata can be reduced to deterministic automata with just a single
exponential increase in the number of states. For deterministic automata, the
size of the emptiness game is only linear in the number of directions.

Our approach is constructive and yields a tight complexity bound: The sat-
isfiability problem for ATµC is EXPTIME-complete. If the ATµC formula is
satisfiable, we can synthesize a finite model within the same complexity bound.

Since ATµC subsumes the alternating-time temporal logic ATL* [dAHM01,
AHK02], we obtain a decision procedure for this logic as well.

Related work. The automata-theoretic approach to the satisfiability prob-
lem was initiated in the classic work by Büchi, McNaughton, and Rabin on
monadic second-order logic [Büc62, McN66, Rab72]. For linear-time tempo-
ral logic, satisfiability can be decided by a translation to automata over infi-
nite words [VW94]; for branching-time logics, such as CTL* and the modal
µ-calculus, by a translation to automata over infinite trees that branch ac-
cording to inputs and nondeterministic choices [EJ91, KVW00, KV00, Wil01].
For alternating-time temporal logics, previous decidability results have been
restricted to ATL [vD03, WLWW06], a sublogic of ATL*.

Automata over concurrent game structures, introduced in this thesis, provide
an automata-theoretic framework for alternating-time logics. Automata over
concurrent game structures extend symmetric alternating automata [Wil01],
which have been proposed as the automata-theoretic framework for the clas-
sic µ-calculus. Symmetric automata branch universally into all successors or
existentially into some successor.

4.2 Preliminaries

4.2.1 Concurrent Game Structures

Concurrent game structures [AHK02] generalize labeled transition systems to
a setting with multiple agents. A concurrent game structure (CGS) is a tuple
C = (Π, A, S, s0, l,∆, τ), where

4.2. PRELIMINARIES 65

• Π is a finite set of atomic propositions,

• A is a finite set of agents,

• S is a set of states, with a designated initial state s0 ∈ S,

• l : S → 2Π is a labeling function that decorates each state with a subset
of the atomic propositions,

• ∆ is a set of possible decisions for every agent1, and

• τ : S×∆A → S is a transition function that maps a state and the decisions
of the agents to a new state.

A concurrent game structure is called bounded if the set ∆ of decisions is finite,
m-bounded if ∆ = Nm = {1, . . . ,m}, and finite if S and ∆ are finite.

Example. As a running example, we introduce a simple CGS C0 with an
uncountable number of states and an uncountable number of possible decisions
(cf. Figure 4.1). In every step, two agents each pick a real number and move to
the state d2

2 − d1
2, where d1 is the decision of agent a1 and d2 is the decision

of agent a2. We use two propositions, p1 and p2, where p1 identifies the non-
negative numbers and p2 the rational numbers. Let C0 = (Π, A, S, s0, l,∆, τ)
denote the CGS with Π = {p1, p2}, A = {a1, a2}, S = R, s0 = 0, p1 ∈ l(s) if
and only if s ≥ 0, p2 ∈ l(s) if and only if s ∈ Q, ∆ = R, and τ : (s, (d1, d2)) 7→
d2

2 − d1
2. It is easy to see that, in all states of this CGS, agent a1 can enforce

that p1 eventually always holds true. Additionally, if agent a1 decides before
agent a2, agent a2 can always respond with a decision such that p2 holds in the
following state.

4.2.2 Alternating-Time µ-calculus

The alternating-time µ-calculus (ATµC) extends the classic µ-calculus with
modal operators which express that an agent or a coalition of agents has a
strategy to accomplish a goal. ATµC formulas are interpreted over concurrent
game structures.

1The restriction that the set of decisions is independent of the position and the agent is
only applied to simplify the argumentation in this part. The computation trees considered in
the following part are concurrent game structures where the set of decisions depend on both,
the agent and the position.

66 CHAPTER 4. SATISFIABILITY OF ATµC

p1,p2

p2

p1

(π, π)

(1.3, 1.3)

(5, 3)

(4, 0) (12π, 13π)

(0, 5π)

Figure 4.1: The running example is the concurrent game structure C0 with two
agents, whose states and decisions consist of the real numbers R, with initial
state s0 = 0. In every step, the two agents a1 and a2 pick a real number (d1 and
d2, respectively) and move to the state d2

2−d1
2. (That is, the transition function

does not depend on the current state.) C0 has two propositions (Π = {p1, p2})
that mark the non-negative (p1) and rational (p2) numbers, respectively. This
figure shows a fragment of C0, which includes the initial state and the states 25π
and −16, and a fragment of the transitions between these states.

ATµC Syntax. ATµC contains the modality ¤A′ϕ, expressing that a set
A′ ⊆ A of agents can enforce that a property ϕ holds in the successor state, and
the modality ♦A′ϕ, expressing that it cannot be enforced against the agents A′

that ϕ is violated in the successor state. Let Π and B denote disjoint finite sets
of atomic propositions and bound variables, respectively. Then

• true and false are ATµC formulas.

• p, ¬p and x are ATµC formulas for all p ∈ Π and x ∈ B.

• If ϕ and ψ are ATµC formulas then ϕ∧ ψ and ϕ∨ ψ are ATµC formulas.

• If ϕ is an ATµC formula and A′ ⊆ A then ¤A′ϕ and ♦A′ϕ are ATµC
formulas.

• If x ∈ B and ϕ is an ATµC formula where x occurs only free, then µx.ϕ
and νx.ϕ are ATµC formulas.

4.2. PRELIMINARIES 67

The set of subformulas of a formula ϕ is denoted by sub(ϕ) and its alternation
depth [Bra96] by alt(ϕ). For simplicity, we use the syntactic alternation depth
for our constructions.

ATµC Semantics. An ATµC formula ϕ with atomic propositions Π is inter-
preted over a CGS C = (Π, A, S, s0, l,∆, τ). ‖ϕ‖C ⊆ S denotes the set of states
where ϕ holds. A CGS C = (Π, A, S, s0, l,∆, τ) is a model of a specification ϕ
with atomic propositions Π if and only if s0 ∈ ‖ϕ‖C .

• Atomic propositions are interpreted as follows: ‖false‖C = ∅ and
‖true‖C = S, ‖p‖C = {s ∈ S | p ∈ l(s)} and ‖¬p‖C = {s ∈ S | p /∈ l(s)}.

• Conjunction and disjunction are interpreted as intersection and union,
respectively: ‖ϕ ∧ ψ‖C = ‖ϕ‖C ∩ ‖ψ‖C and ‖ϕ ∨ ψ‖C = ‖ϕ‖C ∪ ‖ψ‖C .

• A state s ∈ S is in ‖¤A′ϕ‖C if and only if the agents A′ can make a
decision υ ∈ ∆A′

such that, for all decisions υ′ ∈ ∆ArA′

, ϕ holds in the
successor state:
‖¤A′ϕ‖C = {s ∈ S | ∃υ ∈ ∆A′

. ∀υ′ ∈ ∆ArA′

. τ(s, (υ, υ′)) ∈ ‖ϕ‖C}.

• A state s ∈ S is in ‖♦A′ϕ‖C if and only if for all decisions υ ∈ ∆ArA′

of
the agents not in A′, the agents in A′ have a counter decision υ′ ∈ ∆A′

which ensures that ϕ holds in the successor state:
‖♦A′ϕ‖C = {s ∈ S | ∀υ′ ∈ ∆ArA′

. ∃υ ∈ ∆A′

. τ(s, (υ, υ′)) ∈ ‖ϕ‖C}.

• The least and greatest fixed points are interpreted as follows:

– ‖µx.ϕ‖C =
⋂{Sx ⊆ S | ‖ϕ‖CSx

x
⊆ Sx}, and

– ‖νx.ϕ‖C =
⋃{Sx ⊆ S | ‖ϕ‖CSx

x
⊇ Sx},

where CSx
x = (Π ∪ {x}, A, S, s0, l

Sx
x ,∆, τ) denotes the modified CGS with

the labeling function lSx
x : S → 2Π∪{x} with lSx

x (s) ∩ Π = l(s) and x ∈
lSx
x (s) ⇔ s ∈ Sx ⊆ S. Since the bound variable x occurs only positive
in ϕ, ‖ϕ‖CSx

x
is monotone in Sx and the fixed points are well-defined.

ATµC contains the classic µ-calculus with the modal operators ¤ and ♦,
which abbreviate ¤∅ and ♦A, respectively. ATµC also subsumes the temporal
logic ATL* [AHK02], which is the alternating-time extension of the branching-
time temporal logic CTL*. ATL* contains the path quantifier 〈〈A′〉〉, which
ranges over all paths the players in A′ can enforce. There is a canonical trans-
lation from ATL* to ATµC [dAHM01].

68 CHAPTER 4. SATISFIABILITY OF ATµC

Example. As discussed in Section 4.2.1, the example CGS C0 has the property
that, in all states, agent a1 can enforce that p1 eventually always holds true, and
agent a2 can respond to any decision of agent a1 with a counter decision such
that p2 holds in the following state. This property is expressed by the ATµC
formula ψ = νx.(µy.νz.¤{a1}(p1 ∧ z ∨ y)) ∧ ♦{a2}p2 ∧ ♦∅x.

4.2.3 Automata over Finitely Branching Structures

An alternating parity automaton with a finite set Υ of directions is a tuple
A = (Σ,Υ, Q, q0, δ, α), where Σ is a finite alphabet, Q is a finite set of states,
q0 ∈ Q is a designated initial state, δ is a transition function, and α : Q → C ⊂ N
is a coloring function. The transition function δ : Q × Σ → B+(Q × Υ) maps
a state and an input letter to a positive Boolean combination of states and
directions.

In particular, we consider alternating parity automata that run on bounded
CGSs with a fixed set Π of atomic propositions (Σ = 2Π), a fixed set A of agents
and a fixed finite set ∆ of decisions (Υ = ∆A). The acceptance mechanism is
defined in terms of run trees. As usual, an Υ-tree is a prefix-closed subset Y ⊆ Υ∗

of the finite words over the set Υ of directions. For given sets Σ and Υ, a Σ-
labeled Υ-tree is a pair C, consisting of a tree Y ⊆ Υ∗ and a labeling function
l : Y → Σ that maps every node of Y to a letter of Σ. If Υ and Σ are not
important or clear from the context, C is called a tree.

A run tree 〈R, r〉 on a given CGS C = (Π, A, S, s0, l,∆, τ) is a Q×S-labeled
tree whose root is decorated with r(ε) = (q0, s0), and for each node n ∈ R that
is decorated with a label r(n) = (q, s), there is a set An ⊆ Q × Υ that satisfies
δ(q, l(s)), such that (q′, υ) is in An if and only if some child of n is decorated
with a label (q′, τ(s, υ)).

A run tree is accepting if and only if all infinite paths fulfill the parity condi-
tion. An infinite path fulfills the parity condition if and only if the highest color
of the states appearing infinitely often on the path is even. A CGS is accepted
by the automaton if and only if it has an accepting run tree. The set of CGSs
accepted by an automaton A is called its language L(A). An automaton is called
empty if and only if its language is empty.

The acceptance of a given CGS C can also be viewed as the outcome of a
game played over Q×S, starting in (q0, s0). When the game reaches a position
(q, s), player accept first chooses a set A ⊆ Q×Υ of atoms that satisfies δ(q, l(s)).
Player reject then chooses one atom (q′, υ) from A and the game continues in
(q′, τ(s, υ)). An infinite sequence (q0, s0)(q1, s1)(q2, s2) . . . of game positions is
called a play. A play is winning for player accept if and only if it satisfies

4.2. PRELIMINARIES 69

the parity condition. A strategy for player accept (reject) maps each history
of decisions of both players to a decision of player accept (reject). A pair of
strategies determines a play. A strategy for player accept is winning if and only
if, for all strategies of player reject, the play determined by the strategies is
winning for player accept. The CGS C is accepted if and only if player accept
has a winning strategy.

An alternating automaton is called

• universal if the image of δ consists only of conjunctions,

• nondeterministic if the image of δ consists only of formulas that, when
rewritten into disjunctive minimal form, contain, in each disjunct, at most
one element of Q × {υ} for each υ ∈ Υ, and

• deterministic if it is universal and nondeterministic.

For nondeterministic automata, emptiness can be checked with an emptiness
game over Q where, instead of considering the letter l(s) on some state s of
a given CGS, the letter is chosen by player accept. The nondeterministic au-
tomaton is non-empty if and only if player accept has a winning strategy in the
emptiness game.

An alternating automaton is called

• a Büchi automaton if the image of α(Q) ⊆ {1, 2} is contained in {1, 2},

• a Co-Büchi automaton if the image of α(Q) ⊆ {0, 1} is contained in {0, 1},

• a safety automaton if the image of α(Q) = {0} is {0}, or, likewise, if all
run-trees are accepting (for safety automata, α is therefore omitted), and

• a weak automaton, if, for every path on every run tree, the color increases
monotonously, that is, if ∀(q, σ) ∈ Q × Σ∀(q′, υ) ∈ δ(q, σ). α(q′) ≥ α(q)
holds true.

For Büchi and Co-Büchi automata, α is often represented indirectly by the set F
of states with higher color (F = α−1(2) for Büchi, and F = α−1(1) for Co-Büchi
automata).

If Υ is singleton, it is omitted in the notation, and A = (Σ, Q, q0, δ : Q×Σ →
B+(Q), α) is called a word automaton.

70 CHAPTER 4. SATISFIABILITY OF ATµC

4.3 Automata over Concurrent Game Structures

In this section, we introduce automata over concurrent game structures (ACGs)
as an automata-theoretic framework for the alternating-time µ-calculus. The
automata over finitely branching structures described in Subsection 4.2.3 do not
suffice for this purpose, because they are limited to bounded CGSs. Generalizing
symmetric automata [Wil01], ACGs contain universal atoms (¤, A′), which refer
to all successor states for some decision of the agents in A′, and existential
atoms (♦, A′), which refer to some successor state for each decision of the agents
not in A′. In this way, ACGs can run on CGSs with an arbitrary, even infinite,
number of decisions.

An ACG is a tuple G = (Σ, Q, q0, δ, α), where Σ, Q, q0, and α are defined as
for alternating parity automata in the previous section. The transition function
δ : Q × Σ → B+(Q × (({¤,♦} × 2A) ∪ {ε})) now maps a state and an input
letter to a positive Boolean combination of three types of atoms: (¤, A′) is a
universal atom, (♦, A′) is an existential atom, and ε is an ε-transition, where
only the state of the automaton is changed and the state of the CGS remains
unchanged.

An ACG is called ε-free if it has no ε-transitions, and universal, if the map-
ping of δ is contained in B+(Q × {(¤, A)} ∪ {ε})2.

A run tree 〈R, r〉 on a given CGS C = (Π, A, S, s0, l,∆, τ) is a Q×S-labeled
tree where the root is labeled with (q0, s0) and where, for a node n with a label
(q, s) and a set L = {r(n · ρ) |n · ρ ∈ R} of labels of its successors, the following
property holds: There is a set A ⊆ Q × ({¤,♦} × 2A ∪ {ε}) of atoms satisfying
δ(q, l(s)) such that

• for all universal atoms (q′,¤, A′) in A, there exists a decision υ ∈ ∆A′

of the agents in A′ such that, for all counter decisions υ′ ∈ ∆ArA′

,
(q′, τ(s, (υ, υ′))) ∈ L,

• for all existential atoms (q′,♦, A′) in A and all decisions υ′ ∈ ∆ArA′

of
the agents not in A′, there exists a counter decision υ ∈ ∆A′

such that
(q′, τ(s, (υ, υ′))) ∈ L, and

• for all ε-transitions (q′, ε) in A, (q′, s) ∈ L.

2Note that universal ACGs do not correspond to universal alternating automata. While the
latter can only recognize trace languages, universal ACGs correspond to universal specification
languages.

4.3. AUTOMATA OVER CONCURRENT GAME STRUCTURES 71

As before, a run tree is accepting if and only if all paths satisfy the parity
condition, and a CGS is accepted if and only if there exists an accepting run
tree.

The acceptance of a CGS can again equivalently be defined as the outcome
of a game over Q× S, starting in (q0, s0). Each round of the game now consists
of two stages. In the first stage, player accept chooses a set A of atoms satisfying
δ(q, l(s)), and player reject picks one atom from A. If the result of the first stage
is an ε-transition (q′, ε), then the round is finished and the game continues in
(q′, s) with the new state of the automaton. If the result of the first stage is a
universal atom (q′, (¤, A′)), the second stage begins by player accept making
the decisions υ ∈ ∆A′

for the agents in A′, followed by player reject making the
decisions υ′ ∈ ∆ArA′

for the remaining agents. Finally, if the result of the first
stage is an existential atom (q, (♦, A′)), the order of the two choices is reversed:
First, player reject makes the decisions υ′ ∈ ∆ArA′

for the agents in ArA′;
then, player accept makes the decisions υ ∈ ∆A′

for the players in A′. After the
decisions are made, the game continues in (q′, τ(s, (υ, υ′))).

A winning strategy for player accept uniquely defines an accepting run tree,
and the existence of an accepting run tree implies the existence of a winning
strategy. The game-theoretic characterization of acceptance is often more con-
venient than the characterization through run trees, because parity games are
memoryless determined [EJ91]. A CGS is therefore accepted by an ACG if and
only if player accept has a memoryless winning strategy in the acceptance game,
that is, if and only if she has a strategy where her choices only depend on the
state of the game and the previous decisions in the current round.

As an additional complexity measure for an ACG G, we use the set
atom(G) ⊆ Q×({¤,♦}×2A∪{ε}) of atoms that actually occur in some Boolean
function δ(q, σ). The elements of atom(G) are called the atoms of G.

Example. The CGSs that satisfy the ATµC formula ψ =
νx.(µy.νz.¤{a1}(p1 ∧ z ∨ y)) ∧ ♦{a2}p2 ∧ ♦∅x from Section 4.2.2 are recognized

by the ACG Gψ = (Σ, Q, q0, δ, α), where Σ = 2{p1,p2} and Q = {q0, qµ, qν , qp2
}.

The transition function δ maps

• (qp2
, σ) to true if p2 ∈ σ, and to false otherwise,

• (qµ, σ) and (qν , σ) to (qν ,¤, {a1}) if p1 ∈ σ, and to (qµ,¤, {a1}) otherwise,
and

• (q0, σ) to δ(qµ, σ) ∧ (qp2
,♦, {a2}) ∧ (q0,♦, ∅).

72 CHAPTER 4. SATISFIABILITY OF ATµC

The coloring function α maps qµ to 1 and the remaining states to 0.
Consider again the example CGS C0 from Section 4.2.1, which satisfies ψ. In

the acceptance game of Gψ for C0, player accept has no choice during the first
stage of each move, and can win the game by making the following decisions
during the second stage:

• If one of the atoms (qµ,¤, {a1}) or (qν ,¤, {a1}) is the outcome of the first
stage, agent a1 makes the decision 0.

• If the atom (qp2
,♦, {a2}) is the outcome of the first stage and agent a1

has made the decision d1, agent a2 chooses d2 = d1.

• For all other atoms (q, ◦, A′), the decision for all agents in A′ is 0.

4.3.1 From ATµC Formulas to Automata over Concurrent
Game Structures

The following construction provides a translation of ATµC formulas to equiv-
alent ACGs. It generalizes the construction for the modal µ-calculus suggested
in [Wil01] and can be proved analogously.

Theorem 4.1 Given an ATµC formula ϕ, we can construct an ACG Gε
ϕ =

(2Π, sub(ϕ), ϕ, δ, α) with |sub(ϕ)| states and atoms and O(|alt(ϕ)|) colors that
accepts exactly the models of ϕ.

Construction: Without loss of generality, we assume that the bound variables
have been consistently renamed to ensure that for each pair of different subfor-
mulas λx.ψ and λ′x′.ψ′ (λ, λ′ ∈ {µ, ν}) of ϕ, the bound variables are different
(x 6= x′).

• The transition function δ is defined, for all free variables p and all bound
variables x, by

– δ(p, σ) = true, δ(¬p, σ) = false ∀p ∈ σ;

– δ(¬p, σ) = true, δ(p, σ) = false ∀p ∈ Π r σ;

– δ(ϕ ∧ ψ, σ) = (ϕ, ε) ∧ (ψ, ε) and δ(ϕ ∨ ψ, σ) = (ϕ, ε) ∨ (ψ, ε);

– δ(¤A′ϕ, σ) = (ϕ, (¤, A′)) and δ(♦A′ϕ, σ) = (ϕ, (♦, A′));

– δ(x, σ) = (λx.ϕ, ε) and δ(λx.ϕ, σ) = (ϕ, ε) λ ∈ {µ, ν}.

• The coloring function α maps every subformula that is not a fixed point
formula to 0. The colors of the fixed point formulas are defined inductively:

4.3. AUTOMATA OVER CONCURRENT GAME STRUCTURES 73

– Every least fixed point formula µp.ψ is colored by the smallest odd
color that is greater or equal to the highest color of each subformula
of ψ.

– Every greatest fixed point formula νp.ψ is colored by the smallest
even color that is greater or equal to the highest color of each sub-
formula of ψ. ¤

4.3.2 Eliminating ε-Transitions

Given an ACG Gε = (Σ, Q, q0, δ, α) with ε-transitions, we can find an ε-free ACG
that accepts the same language. The idea of our construction is to consider
the sequences of transitions from some position of the acceptance game that
exclusively consist of ε-transitions: If the sequence is infinite, we can declare the
winner of the game without considering the rest of the game; if the sequence is
finite, we skip forward to the next non-ε-atom.

For a state s ∈ S of an CGS C = (Π, A, S, s0, l,∆, τ), an s-local strategy is a

mapping Λs : Q → 2Q×({¤,♦}×2A)∪{ε} from states to sets of atoms. An s-local
strategy Λs is valid if and only if it agrees with the transition function δ, that
is, if and only if Λs(q) satisfies δ(q, s) for all q ∈ Q. From a position (q, s) in the
acceptance game, an s-local strategy defines the possible infinite sequences of
ε-transitions and the possible finite sequences of ε-transitions followed by some
non-ε-atom.

On infinite sequences, player accept loses the acceptance game if and only if
the highest color that occurs infinitely often is odd. We say that an s-local strat-
egy Λs is q-losing for player accept if and only if some ε-cycle with odd maximal
color is reachable from q; that is, if there is a sequence q1q2 . . . qmq′1 q′2 . . . q′nq′1
starting in q1 = q, with ∀i = 1 ≤ i < m.(qi+1, ε) ∈ Λs(qi), (q′1, ε) ∈ Λs(qm),
∀i = 1 ≤ i < n.(q′i+1, ε) ∈ Λs(q

′
i), and (q′1, ε) ∈ Λs(q

′
n) such that the highest

color of q′1, . . . , q
′
n is odd.

On finite sequences, we are interested in the next non-ε-atom and in the
highest color that was encountered during the sequence. We say that, for a
color c ∈ C, an atom (q, ◦, A′) ∈ Q × {¤,♦} × 2A is a c-successor of a state q1

in an s-local strategy Λs if there is a sequence q1q2 . . . qnq starting in q1 such
that ∀i = 1 ≤ i < n.(qi+1, ε) ∈ Λs(qi), (q, ◦, A′) ∈ Λs(qn) and the highest color
of q1, . . . , qn is c.

Both attributes of local strategies are easy to check, because the existence
of some sequence with the required property implies the existence of such a
sequence with length ≤ 2|Q|.

74 CHAPTER 4. SATISFIABILITY OF ATµC

Lemma 4.2 Given an ACG Gε = (Σ, Q, q0, δ, α) with α(Q) = C and n atoms,
we can construct an ε-free ACG G = (Σ, Q × C, q′0, δ

′, α′) and at most n · |C|
atoms that accepts the same language.

Construction: Let Lq
σ denote the set of valid s-local strategies for a state

s ∈ S labeled with σ (l(s) = σ) that are not q-losing for player accept. Let
AΛ = {((q′, c′), (◦, A′)) ∈ (Q×C)× ({¤,♦}× 2A) | (q′, ◦, A′) is a c′-successor of
q in Λ}, and let ϕΛ denote the conjunction over the atoms in AΛ. We construct
the ε-free ACG G = (Σ, Q × C, q′0, δ

′, α′), where

q′0 = (q0, α(q0)), δ′ : ((q, c), σ) 7→ ∨
Λ∈L

q
σ

ϕΛ, and α′ : (q, c) 7→ c.

Proof: L(Gε) ⊆ L(G): Suppose the CGS C = (Π, A, S, s0, l,∆, τ) is accepted by
Gε. The memoryless winning strategy of player accept defines an s-local strategy
Λs for each state s ∈ S of C.

In the acceptance game of G, player accept has the following winning strat-
egy:

• In a position (q, s), player accept chooses, in the first stage of the round,
the set AΛs

of atoms.

• If the outcome of the first stage is an atom ((q′, c′), (◦, A′)), player accept
proceeds in the second stage as in the acceptance game for Gε from the
atom (q′, ◦, A′).

L(G) ⊆ L(Gε): Suppose the CGS C = (Π, A, S, s0, l,∆, τ) is accepted by
G. The memoryless winning strategy of player accept defines, for each position
((q, c), s), a set AΛ(q,c,s) of successors for some Λ(q,c,s) ∈ Lq

l(s). We choose such

a Λ(q,c,s) for each position ((q, c), s) of the acceptance game.
In the acceptance game of Gε, player accept has the following memoryful

winning strategy:

• The memory contains a local strategy, which is to be executed up
to the next non-ε-transition, and the highest color that has occurred
since the last non-ε-transition. Initially, the memory contains the pair
(Λ(q0,c(q0),s0), c(q0)).

• Every time a non-ε-transition to a state (q′, s′) is executed, the memory
is updated from (Λ(q,c,s), c′) to (Λ(q′,c′,s′), c(q)).

• Every time an ε-transition (q′, ε) is executed, the memorized color is up-
dated from c′ to max{c′, c(q′)}.

4.4. BOUNDED MODELS 75

• In the first stage of each round, player accept follows the stored local
strategy.

• If the outcome of the first stage is an atom (q′, ◦, A′), player accept pro-
ceeds in the second stage as in the acceptance game for G from the atom
((q′, c′), (◦, A′)), where c′ denotes the memorized color. ¤

4.4 Bounded Models

We now show that, for every ACG G, there exists a bound m such that G is
empty if and only if G does not accept any m-bounded CGSs.

Given some CGS C in the language of G, we transform C into an m-bounded
CGS C′ that is also accepted by G. This bound m depends only on the size of
G (and not on the CGS C we started with).

The proof that G must furthermore accept some finite CGS relies on the
fact that non-empty automata over finitely branching structures always accept
some finite structure [Rab72, MS95]. Once the bound m is established, we can
construct an automaton over m-bounded CGSs that accepts the m-bounded
CGSs in the language of G; since its language is non-empty as well, there must
exist a finite CGS accepted by both automata.

Consider an ε-free ACG G and a CGS C = (Π, A, S, s0, l,∆, τ) accepted by
G. In the following, we define a finite set Γ of decisions and a transition function
τ ′ : S ×ΓA → S, such that the resulting bounded CGS C′ = (Π, A, S, s0, l,Γ, τ ′)
is also accepted by G. Before we formally define the construction in the proof of
Theorem 4.3 below, we first give an informal outline.

Let us begin with the special case where all atoms of G are of the form
(q,¤, {a}), that is, a universal atom with a single agent. We use the set of
atoms as the new set of decisions of each agent. The new transition function is
obtained by first mapping the decision of each agent in C′ to a decision in C,
and then applying the old transition function.

To map the decisions, we fix a memoryless winning strategy for player accept
in the acceptance game for C. After an atom (q,¤, {a}) has been chosen in the
first stage of the acceptance game, player accept begins the second stage by
selecting a decision da for agent a. We map each decision (q,¤, {a}) in C′ to
this decision da in C.

Player accept wins the acceptance game for C′ with the following strategy:
In the first stage of each move, we apply the winning strategy of player accept

76 CHAPTER 4. SATISFIABILITY OF ATµC

in the acceptance game for C. In the second stage, we simply select the atom
(q′,¤, {a′}) that was chosen in the first stage as the decision for agent a′. Since
the strategy for C wins for all possible decisions of the agents in A r {a′}, it
wins in particular for the decisions selected in the transition function.

Suppose next that we still have only universal atoms (q,¤, A′), but that the
set A′ of agents is not required to be singleton. There is no guarantee that the
decisions of the agents in A′ are consistent: An agent a may choose an atom
(q,¤, A′) where A′ does not contain a or contains some other agent a′ who made
a different decision. For the purpose of computing the transition function, we
therefore harmonize the decisions by replacing, in such cases, the decision of
agent a with a fixed decision (q0,¤, {a}).

To win the acceptance game for C′, player accept selects, after an atom
(q,¤, A′) has been chosen in the first stage, this atom (q,¤, A′) for all agents in
A′. The selection is therefore consistent for all agents in A′. Since the strategy
wins for all decisions of the agents in A r A′, it does not matter if some of their
decisions have been replaced. Note that, this way, only decisions of player reject
are changed in the harmonization.

Finally, suppose that G contains existential atoms. If an existential atom
(q,♦, A′) is the outcome of the first stage of the acceptance game, player accept
only decides after the decisions of the agents in A r A′ have been made by
player reject. To implement this order of the choices in the computation of the
transition function, we allow the player who chooses the last existential atom to
override all decisions for existential atoms of his opponent. We add the natural
numbers ≤ |A| as an additional component to the decisions of the agents. For a
given combined decision of the agents, the sum over the numbers in the decisions
of the agents, modulo |A|, then identifies one favored agent a0 ∈ A. In this
way, whichever player chooses last can determine the favored agent. Given the
decision of agent a0 for some atom (q′′,♦, A′′) or (q′′,¤, A′′), we replace each
decision for an existential atom by an agent a ∈ A r A′′ by the fixed decision
(q0,¤, {a}).

To win the acceptance game for C′, the strategy for player accept makes the
following choice after an atom (q′,♦, A′) has been chosen in the first stage and
player reject has made the decisions for all agents in A r A′: For all agents in
A′, she selects the atom (q′,♦, A′), combined with some number which ensures
that the favored agent a0 is in A′.

Example. Consider again the CGS C0, which is accepted by the ACG Gψ

with the winning strategy for player accept described in Section 4.3.1. Our

4.4. BOUNDED MODELS 77

p1,p2 ∗

Figure 4.2: Transforming the concurrent game structure C0 from Figure 4.1
with the winning strategy for the automaton Gψ from the example of Sec-
tion 4.3 results in the depicted concurrent game structure with only a sin-
gle state. Every pair (d1, d2) of decisions of the two participating agents
from the new set Γ = atom(Gψ) × {1, 2} of decisions (atom(Gψ) ={
(q0,♦, ∅), (qp2

,♦, {a2}), (qν ,¤, {a1}), (qµ,¤, {a1})
}
) is mapped to the pair

(0, 0) of decisions from the old set ∆ = R of decisions.

construction reduces the set of decisions to the finite set Γ = atom(Gψ)×{1, 2} ⊂
{q0, qµ, qν , qp2

}×{¤,♦}×2{a1,a2}×{1, 2}. The new transition function consists
of two steps:

In the first step, we harmonize the given combined decision of the agents by
replacing the inconsistent decisions. In the acceptance game, this may change
the decisions of the agents controlled by player reject. If, for example, the atom
(qp2

,♦, {a2}) is the outcome of the first stage of the acceptance game and player
reject makes the decision (q0,♦, ∅, 1) for agent a1, player accept responds by
making the decision (qp2

,♦, {a2}, 1) for agent a2. The sum of the natural num-
bers (1+1) identifies agent a2, and all existential choices for groups of agents not
containing a2 are overridden. The resulting choices are (q0,¤, {a1}) for agent
a1 and (qp2

,♦, {a2}) for agent a2.

In the second step, the decisions of the agents are mapped to decisions in the
CGS C0. First, the universal choices are evaluated: The winning strategy maps
(q0,¤, {a1}) to the decision d1 = 0 for agent a1. Then, the existential choice is
evaluated: The winning strategy maps (qp2

,♦, {a2}) and the decision d1 = 0 for
agent a1 to the decision d2 = d1 = 0 for agent a2.

The resulting bounded CGS is very simple: The new transition function
maps all decisions to state 0 (cf. Figure 4.2).

Theorem 4.3 An ε-free ACG G = (Σ, Q, q0, δ, α) is non-empty if and only if
it accepts an (|atom(G)| · |A|)-bounded CGS.

Proof: If C = (Π, A, S, s0, l,∆, τ) is accepted by the ε-free ACG G =
(2Π, Q, q0, δ, α), then player accept has a memoryless winning strategy in the
acceptance game for C. We fix such a memoryless strategy and use it to con-
struct the bounded CGS C′ = (Π, A, S, s0, l,Γ, τ ′).

78 CHAPTER 4. SATISFIABILITY OF ATµC

Decisions. For convenience, we assume that the set A of agents is an initial
sequence of the natural numbers. The new set of decisions Γ = atom(G) × A
consists of pairs of atoms and numbers. If the first component is an existential
atom (q,♦, A′), then the sum of the second components of the decisions of all
agents is used to validate the choice.

We say that two decisions d1, d2 ∈ Γ are equivalent if they agree on their
first component: (a1, a

′
1) ∼ (a2, a

′
2) :⇔ a1 = a2.

We say that a combined decision υ ∈ ΓA favors an agent a ∈ A, υ ֌ a, if
the sum of the second arguments, modulo |A|, of this combined decision is equal
to a.

We say that the decision da ∈ Γ of agent a prevails in the combined decision
υ ∈ ΓA if the following conditions hold for da = ((q, ◦, A′), a′′), ◦ ∈ {¤,♦}:

• a ∈ A′,

• all agents a′ ∈ A′ have made a decision da′ ∼ da equivalent to the decision
of a, and

• if ◦ = ♦, then a cooperates with the agent favored by the combined deci-
sion υ (υ ֌ a′ ∈ A′).

Harmonization. Let A = Q × {¤,♦} × 2A. The harmonization h : ΓA → AA

maps the decision of the agents to a harmonic decision. Intuitively, a harmonic
decision is a combined decision where the individual decision of every agent
prevails. As the second component of Γ is not needed in this case, it can be
pruned. However, given a decision d ∈ Γ, there is no guarantee that we can
change the non-prevailing choices consistently within the set ΓA such that all
individual decisions prevail. We therefore lift the restriction to atoms of G:
Harmonic decisions are elements of AA such that

• each agent a ∈ A chooses an atom (q, ◦, A′) with q ∈ Q, ◦ ∈ {¤,♦}, and
a ∈ A′ ⊆ A,

• if an agent a ∈ A chooses an atom (q, ◦, A′) ∈ A, then all agents a′ ∈ A′

choose the same atom, and

• if an agent a ∈ A chooses an existential atom (q,♦, A′) ∈ A, then all
agents a′ /∈ A′ choose universal atoms.

For prevailing decisions, the harmonization h only deletes the second com-
ponent. Non-prevailing decisions of an agent a are replaced by the fixed decision
(q0,¤, {a}) (which is not necessarily in atom(G)).

4.4. BOUNDED MODELS 79

Direction. We define the function fs : AA → ∆A that maps a harmonic decision
to a direction υ ∈ ∆A in C. fs depends on the state s ∈ S of C and is inferred
from the second stage of the fixed memoryless strategy. (Note that fresh atoms
(q0,¤, {a}) may not be covered by this strategy. They can be mapped to an
arbitrary (but fixed) decision d0 ∈ ∆.)

First, the universal decisions are evaluated: If an agent makes the harmonic
decision (q,¤, A′), then υ′ ∈ ∆A′

is determined by the choice of player accept
in the second stage of the winning strategy in state s, when confronted with the
atom (q,¤, A′).

Then, the existential decisions are evaluated: If an agent makes the harmonic
decision (q,♦, A′) then υ′ ∈ ∆A′

is determined by the choice of player accept
in the second stage of the winning strategy in state s, when confronted with
the atom (q,♦, A′) and the decision υ′′ ∈ ∆ArA′

fixed by the evaluation of the
universal harmonic decisions.

The new transition function τ ′ : S × ΓA → S is defined as τ ′ : (s, υ) 7→
τ(s, fs(h(υ))).

Acceptance. In the acceptance game for C′, player accept has the following strat-
egy: In the first stage of each round, she applies the winning strategy of the ac-
ceptance game for C. The strategy for the second stage depends on the outcome
of the first stage:

• If an atom (q,¤, A′) is chosen in the first stage, player accept fixes the
prevailing decision ((q,¤, A′), 1) for all agents a ∈ A′.

• If an atom (q,♦, A′) with A′ 6= ∅ is chosen in the first stage and player
reject has made the decisions da for all agents a /∈ A′, player accept fixes
the prevailing decisions ((q,♦, A′), na) for the agents a ∈ A′ such that an
agent a′ ∈ A′ is favored.

• If an atom (q,♦, ∅) is chosen in the first stage, then player accept does not
participate in the second stage.

We now show that the run tree 〈R′, r′〉 defined by this strategy is accept-
ing. Let 〈R, r〉 be the run tree defined by the winning strategy in the accep-
tance game for C. In the following, we argue that, for each branch labeled
(q0, s0) (q1, s1) (q2, s2) . . . in 〈R′, r′〉, there is an identically labeled branch in
〈R, r〉. Since all branches of 〈R, r〉 satisfy the parity condition, 〈R′, r′〉 must be
accepting as well.

The root of both run trees is labeled by (q0, s0). If a node labeled (qi, si) in
〈R′, r′〉 has a child labeled (qi+1, si+1), then there must be an atom (qi+1, ◦, A′) ∈

80 CHAPTER 4. SATISFIABILITY OF ATµC

Q×{¤,♦}×2A in the set of atoms chosen by player accept, such that following
holds: For the decision υ′ ∈ ΓA′

defined by the strategy of player accept, there
is a decision υ′′ ∈ ΓArA′

such that si+1 = τ ′(si, (υ
′, υ′′)) = τ(si, fsi

(h(υ′, υ′′))).
Now consider a node labeled (qi, si) in 〈R, r〉. Since the strategy of player

accept in the first stage of each round is identical for the two acceptance games,
the atom (qi+1, ◦, A′) is also included in the set of atoms chosen by player
accept in the acceptance game for C. Player reject can enforce the decision
υ = fsi

(h(υ′, υ′′)) as follows:

• If ◦ = ¤, player accept chooses the ∆A′

part of υ under the fixed memory-
less strategy for the acceptance game of C, and player reject can respond
by choosing the ∆ArA′

part of υ.

• If ◦ = ♦, player reject can choose the ∆ArA′

part of υ, and player accept
will react by choosing the ∆A′

part of υ under the fixed memoryless strat-
egy for the acceptance game of C, guaranteeing that υ = fsi

(h(υ′, υ′′)).

In both cases, the new state si+1 = τ(si, υ) is chosen. The node labeled (qi, si)
in 〈R, r〉 must therefore have a child labeled (qi+1, si+1). ¤

4.5 Satisfiability and Complexity

An ATµC formula is satisfiable if and only if the language of its ACG is non-
empty. A simple procedure for deciding emptiness of ACGs is immediately sug-
gested by Theorem 4.3: Since we can restrict our attention to m-bounded CGSs
with fixed m = |atom(G)| · |A|, we can replace (q, (¤, A′)) and (q, (♦, A′)) by
the corresponding positive Boolean combinations: The resulting automaton ac-
cepts exactly the m-bounded concurrent game structures in the language of G.
To decide emptiness, we nondeterminize the automaton [MS95] and then solve
the emptiness game. The complexity of this construction is double-exponential:
Solving the emptiness game of the nondeterministic automaton is exponential
in the number of directions, which is already exponential in the number of
agents (m|A|).

We now describe an alternative algorithm with only single-exponential com-
plexity. Instead of going through an alternating automaton to a nondeterministic
automaton, we go through a universal automaton to a deterministic automaton.
The advantage of solving the emptiness game for a deterministic automaton in-
stead of for a nondeterministic automaton is that the set of atoms chosen by

4.5. SATISFIABILITY AND COMPLEXITY 81

player accept is uniquely determined by the input letter; this reduces the num-
ber of choices from exponential in the number of directions to linear in the size
of the input alphabet.

The construction of the universal automaton is based on the observation that
the winning strategy of player accept that we defined in the previous section can
be represented by assigning a function fs : Q → 2atom(G) to each state s of C.
The set fs(q) contains the atoms that player accept chooses in the first stage of
the game at position (q, s). Since the strategy for the second stage depends only
on the chosen atom and not on the states of C and G, fs determines the entire
strategy of player accept.

The universal automaton runs on bounded CGSs that are annotated by this
function fs; that is, we extend the alphabet from Σ to Σ× (Q → 2atom(G)) and
a CGS is accepted if and only if fs identifies a winning strategy for player accept
in the acceptance game of the ACG. The construction does not change the set of
states and increases the input alphabet by an exponential factor in the number
of states and atoms of the ACG.

Lemma 4.4 Given an ε-free ACG G = (Σ, Q, q0, δ, α) and a set A of agents, we
can construct a universal parity automaton U = (Σ×(Q → 2atom(G)), (atom(G)×
A)A, Q, q0, δ

′, α) on Σ× (Q → 2atom(G))-labeled CGSs with the set atom(G)×A
of decisions such that U has the following properties:

• If U accepts a CGS C = (Π, A, S, s0, l × strat1, atom(G) × A, τ) then G
accepts its Σ projection C′ = (Π, A, S, s0, l, atom(G) × A, τ).

• If U is empty, then G is empty.

Proof: We denote with strat2 the function that maps each atom a of G to the
set D ⊆ (atom(G)×A)A of decisions that are the outcome of the second stage of
the acceptance game for some strategy of player reject, when the outcome of the
first stage is a and player accept follows the simple strategy for the second stage
described in the proof of Theorem 4.3. Generalizing strat2 to sets of atoms, we
define the transition function δ′ of U by setting δ′(q;σ, s) to false if s(q) does
not satisfy δ(q, σ), and to a conjunction over strat2(s(q)) otherwise.

If U accepts a CGS C = (Π, A, S, s0, l × strat1, atom(G) × A, τ), then player
accept has a winning strategy for C′ = (Π, A, S, s0, l, atom(G) × A, τ) in the
acceptance game of G, where the strategy in the first stage is defined by strat1

and the strategy in the second stage is as defined in the proof of Theorem 4.3.
If G accepts a CGS C, then there exists, as described in the proof of

Theorem 4.3, a CGS C′ = (Π, A, S, s0, l, atom(G) × A, τ), such that player

82 CHAPTER 4. SATISFIABILITY OF ATµC

accept wins the acceptance game using some memoryless strategy strat1 in
the first stage and the canonical strategy in the second stage. The CGS
C′′ = (Π, A, S, s0, l × strat1, atom(G) × A, τ) is accepted by U . ¤

We transform the universal parity automaton U = (Σ,Υ, Q, q0, δ, α) into
a deterministic parity automaton by first transforming U into a universal Co-
Büchi automaton with O(c ·n) states and then using Safra’s construction [Saf88,
Pit06].

Lemma 4.5 Given a universal automaton U with n states and c colors, we
can construct an equivalent deterministic automaton D with nO(c·n) states and
O(c · n) colors. ¤

Remark. The same construction can be used to nondeterminize alternating
automata A: Like in the construction of Lemma 4.4, we can enrich the input to
A by a memoryless strategy, resulting in a universal automaton U with the same
set of states and the same coloring function. Translating U by Lemma 4.5 to an
equivalent deterministic automaton D and then projecting away the strategy
(cf. Lemma 6.8) results in a nondeterministic automaton with the same states
as D and the same language as A.

Corollary 4.6 Given an alternating automaton A with n states and c col-
ors, we can construct an equivalent nondeterministic automaton N with nO(c·n)

states and O(c · n) colors. ¤

Our transformation of the ACG to the deterministic automaton D thus in-
creases both the number of states and the size of the input alphabet by a factor at
most exponential in the number of states of the ACG. In general, the emptiness
game of nondeterministic automata can be solved in time polynomial in both
in the number of states, the size of the input alphabet and the transition table,
where the size of the transition table is the number of disjuncts d =

∧
υ∈Υ(qυ, υ)

that appear in some disjunction δ(q, σ) =
∨

i∈I di of the transition function.

Theorem 4.7 Given a nondeterministic parity automaton N =
(Σ,Υ, Q, q0, δ, α) with n states, t different entries in the transition table,
and c colors, we can, in time (n + t)O(c), decide emptiness and, if L(N) 6= ∅,
construct a finite CGS C ∈ L(N) with at most n states in the language of N .

Proof: The emptiness problem can be reduced to a bipartite parity game with
n+t positions and c colors: Player accept owns the positions Q and chooses from

4.5. SATISFIABILITY AND COMPLEXITY 83

a position q a label σ ∈ Σ and a disjunct from δ(q, σ). Player reject owns these
disjuncts and picks state qυ from a conjunct (qυ, υ) of a disjunct d =

∧
υ∈Υ(qυ, υ)

(intuitively by choosing a direction υ ∈ Υ). The colors of the positions owned
by player accept are defined by the coloring function α, while all states owned
by player reject are colored by the minimum color in the mapping of α. This
parity game can be solved in time (n+t)O(c) by Theorem 2.14 and Theorem 3.5.

N is empty if and only if player reject has a winning strategy, and the Σ-
projection of a memoryless winning strategy for player accept defines a CGS in
the language of N . ¤

For general nondeterministic automata, the size of the transition table may
be exponential in the number of directions. When applied to concurrent game
structures, the number |∆A| of direction is always exponential in the number of
colors (even for binary sets of decisions).

For a deterministic automaton D, on the other hand, there is only one entry
in the transition table for each state and input letter pair. Different from the
emptiness game for general nondeterministic automata, the states of player re-
ject can thus be represented as a product of states and input letters of D rather
than using states and mappings from the directions to the states. This represen-
tation is much smaller, and allows for a tight complexity bound: The emptiness
game of D can be solved in time polynomial only in the number of states and
in the size of the input alphabet, which provides us with an exponential-time
procedure for deciding emptiness of an ACG.

Corollary 4.8 Given a deterministic parity automaton D = (Σ,Υ, Q, q0, δ, α)
with n states and c colors, we can, in time (n · |Σ|)O(c), decide emptiness and,
if L(D) 6= ∅, construct a finite CGS C ∈ L(D) with at most n states in the
language of D. ¤

Combining Theorem 4.3, Lemmata 4.4 and 4.5, and Corollary 4.8, we obtain
the finite model property of automata over concurrent game structures.

Theorem 4.9 Every non-empty ε-free ACG with n states, c colors, a atoms
and a′ agents accepts some finite CGS with (a · a′)a′

directions and at most

nO(c n) states, which can be constructed in time 2O(c2 n3 a). ¤

Combining Theorem 4.9 with Theorem 4.1 and Lemma 4.2, we furthermore
obtain the finite model property for the alternating-time µ-calculus:

84 CHAPTER 4. SATISFIABILITY OF ATµC

Theorem 4.10 Given an ATµC formula ϕ with alternation depth d, n subfor-
mulas, and a agents, we can decide satisfiability of ϕ and, if ϕ is satisfiable,
construct a model of ϕ with at most nO(n d2) states and O(dn a) decisions in

time 2O(d6 n4). ¤

Matching lower bounds for the ATµC satisfiability and synthesis problems
are given by the lower bounds for the classic µ-calculus [Koz83, KV00].

Corollary 4.11 The satisfiability and synthesis problems for the alternating-
time µ-calculus are EXPTIME-complete. ¤

Chapter 5

ATL* Satisfiability is
2EXPTIME-complete

Abstract

The two central decision problems that arise during the design of safety criti-
cal systems are the satisfiability and the model checking problem. While model
checking can only be applied after implementing the system, satisfiability check-
ing answers the question whether a system that satisfies the specification ex-
ists. Model checking is traditionally considered to be the simpler problem: For
branching-time and fixed point logics such as CTL, CTL*, ATL, and the clas-
sic and alternating time µ-calculus, the complexity of satisfiability checking is
considerably higher than the model checking complexity. We show that ATL*
is a notable exception of this rule: Both ATL* model checking and ATL* satis-
fiability checking are 2EXPTIME-complete.

5.1 Introduction

The alternating-time temporal logic ATL* [AHK02] extends the classic
branching-time temporal logic CTL* [Eme90] with path quantifiers that refer
to the strategic capabilities of groups of agents. An ATL* specification 〈〈A′〉〉ϕ
requires that the group A′ of agents can cooperate to enforce the path formula
ϕ. When interpreted over a concurrent game structure C, 〈〈A′〉〉ϕ holds true in a

85

86 CHAPTER 5. ATL* SATISFIABILITY IS 2EXPTIME-COMPLETE

Logic Model Checking (Structure) Model Checking Satisfiability Checking

LTL NLOGSPACE [Eme90] PSPACE [CES86] PSPACE [Eme90]
CTL NLOGSPACE [KVW00] PTIME [CES86] EXPTIME [CE82]
CTL* NLOGSPACE [KVW00] PSPACE [CES86] 2EXPTIME [Eme90]
ATL PTIME [AHK02] PTIME [AHK02] EXPTIME [WLWW06]

ATL* PTIME [AHK02] 2EXPTIME [AHK02] 2EXPTIME

Figure 5.1: For all previously considered branching-time temporal specifications,
satisfiability checking is at least exponentially harder than model checking (in
the specification). We show that ATL* is an interesting exception to this rule.

state s of C if the agents in A′ can win a two player game against the agents not
in A′. In this game, the two groups of agents take turns in making their deci-
sions (starting with the agents in A′), resulting in an infinite sequence ss1s2 . . .
of states of the concurrent game structure C. The agents in A′ win this game, if
the infinite sequence ss1s2 . . . satisfies the path formula ϕ.

Since ATL* specifications can canonically be transformed into alternating-
time µ-calculus (ATµC) formulas [dAHM01, AHK02], ATL* inherits the de-
cidability and finite model property from ATµC (cf. Corollary 4.11). This
translation from ATL* to ATµC comprises a doubly exponential blow-up,
which is in line with the doubly exponential model checking complexity of
ATL* [dAHM01, AHK02]. The complexity of the ATL* satisfiability and
synthesis problem, on the other hand, has been an interesting open chal-
lenge since its introduction [WLWW06]: The complexity of the satisfiability
problem is EXPTIME-complete for the least expressive alternating-time logic
ATL [vD03, WLWW06] as well as for the most expressive alternating-time logic
ATµC (Corollary 4.11), but the results of Chapter 4 only imply – together with
the doubly exponential translation to ATµC [dAHM01, AHK02] – a triply expo-
nential upper bound, while 2EXPTIME hardness is inherited from the syntactic
sublogic CTL*, leaving an exponential gap between both bounds.

Outline. In this chapter, we introduce an automata-theoretic decision pro-
cedure to demonstrate that deciding the satisfiability of an ATL* specification
and, for satisfiable specifications, constructing a model of the specifications is no
more expensive than model checking: Both problems are 2EXPTIME-complete
in the size of the specification. To the contrary, the cost of model checking a
concurrent game structure against an ATL* specification is also polynomial in
the size of the concurrent game structure. While polynomial conveys the im-

5.2. ATL* 87

pression of feasibility, the degree of this polynomial is, for known algorithms,
exponential in the size of the specification [AHK02, dAHM01].

On first glance, an automata-theoretic construction based on automata over
concurrent game structures does not seem to be a promising starting point for
the construction of a 2EXPTIME algorithm, because synthesis procedures based
on alternating automata usually shift all combinatorial difficulties to testing
their non-emptiness [KV99]. Using a doubly exponential translation from ATL*
through ATµC to an equivalent ACGs suffices to proof the finite model property
of ATL*, but indeed leads to a triply exponential construction.

In order to show that a constructive non-emptiness test for ATL* specifica-
tions can be performed in doubly exponential time, we combine two concepts:
We first show that every model can be transformed into an explicit model that
includes a certificate of its correctness. For this special kind of model, it suffices
to build an ACG that only checks the correctness of the certificate. Finally, we
show that we can construct such an automaton, which is only singly exponential
in the size of the specification. Together with the exponential cost of a construc-
tive non-emptiness test of ACGs (Theorem 4.9), we can provide a 2EXPTIME
synthesis algorithm for ATL* specifications that returns a model together with
a correctness certificate. 2EXPTIME-completeness then follows with the respec-
tive hardness result for the syntactic sublogic CTL* [Eme90] (and even for its
fragment CTL+ [Wil99]) of ATL*.

5.2 ATL*

ATL* [AHK02] extends the classical branching-time logic CTL* by path quan-
tifiers that allow for reasoning about the strategic capability of groups of agents.
In this section we recapitulate the syntax and semantics of ATL*.

ATL* Syntax. ATL* contains formulas 〈〈A′〉〉ψ, expressing that the group
A′ ⊆ A of agents can enforce that the path formula ψ holds true. Formally, the
state formulas (Φ) and path formulas (Ψ) of ATL* are given by the following
grammar (where p ∈ Π is an atomic proposition, and A′ ⊆ A is a set of agents).

Φ := true | p | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | 〈〈A′〉〉Ψ, and

Ψ := Φ | Ψ ∧ Ψ | Ψ ∨ Ψ | ¬Ψ | ©Ψ | ΨU Ψ.

Every state formula is an ATL* formula. We call an ATL* formula basic if
and only if it starts with a path quantifier 〈〈A′〉〉.

88 CHAPTER 5. ATL* SATISFIABILITY IS 2EXPTIME-COMPLETE

Semantics. An ATL* specification with atomic propositions Π is interpreted
over a CGS C = (Π, A, S, s0, l,∆, τ). ‖ϕ‖C ⊆ S denotes the set of states where
ϕ holds. A CGS C = (Π, A, S, s0, l,∆, τ) is a model of a specification ϕ (C |= ϕ)
with atomic propositions Π if and only if ϕ holds in the initial state (s0 ∈ ‖ϕ‖C).

For each state s of C, path(s) denotes the set of all paths in C that originate
from s, and path(C) =

⋃{path(s) | s ∈ S} denotes the set of all paths in C.

For a CGS C, a strategy for a set A′ ⊆ A of agents is a mapping fA′ : S∗ →
∆A′

from finite traces to decisions of the agents in A′, and a counter strategy is
a mapping fc

ArA′ : S∗ × ∆A′ → ∆ArA′

from finite traces and decisions of the
agents in A′ to decisions of the agents in A r A′. For a given strategy fA′ and
counter strategy fc

ArA′ , the set of plays starting at a position s1 is defined as

• plays(s1, fA′) =
{s1s2s3 . . . | ∀i ≥ 1∃d′ ∈ ∆ArA′

. si+1 = τ(si, (fA′(s1 . . . si), d
′))}, and

• plays(s1, f
c
ArA′) =

{s1s2s3 . . . | ∀i ≥ 1∃d ∈ ∆A′

. si+1 = τ(si, (f
c
ArA′(s1 . . . si, d), d))}.

An ATL* formula is evaluated along the structure of the formula.

• Atomic propositions and Boolean connectives are interpreted as usual:

– ‖true‖C = S,

– ‖p‖C = {s ∈ S | p ∈ l(s)},
– ‖ϕ ∧ ψ‖C = ‖ϕ‖C ∩ ‖ψ‖C ,

– ‖ϕ ∨ ψ‖C = ‖ϕ‖C ∪ ‖ψ‖C , and

– ‖¬ϕ‖C = S r ‖ϕ‖C .

• Basic formulas ϕ = 〈〈A′〉〉ψ hold true in a state s if the agents in A′

have a strategy which ensures that all plays starting in s satisfy the path
formula ψ: s ∈ ‖ϕ‖C ⇔ ∃fA′ : S∗ → ∆A′

. plays(s, fA′) ⊆ ‖ψ‖path
C .

For a path formula ϕ and a CGS C, ‖ϕ‖path
C ⊆ path(C) denotes the set of

paths of C where ϕ holds. Path formulas are interpreted as follows:

• For state formulas ϕ, ‖ϕ‖path
C =

⋃{path(s) | s ∈ ‖ϕ‖C}.

• Boolean connectives are interpreted as usual:

– ‖ϕ ∧ ψ‖path
C = ‖ϕ‖path

C ∩ ‖ψ‖path
C ,

5.3. FROM GENERAL TO EXPLICIT MODELS 89

– ‖ϕ ∨ ψ‖path
C = ‖ψ‖path

C ∪ ‖ϕ‖path
C , and

– ‖¬ϕ‖path
C = path(C) r ‖ϕ‖path

C .

• A path π = s1, s2, s3, s4 . . . satisfies ©ϕ (read: next ϕ), if the path
s2, s3, s4 . . . obtained by deleting the first letter of π satisfies ϕ:

‖© ϕ‖path
C = {s1, s2, s3, s4 . . . ∈ path(C) | s2, s3, s4 . . . ∈ ‖ϕ‖path

C }.

• A path π = s1, s2, s3, s4 . . . satisfies ϕU ψ (read: ϕ until ψ), if there is a
natural number n ∈ N such that

(1) the path sn, sn+1, sn+2 . . . obtained by deleting the initial sequence
s1, s2, s3 . . . sn−1 of π satisfies the path formula ψ, and

(2) for all i < n, the path si, si+1, si+2 . . . obtained by deleting the initial
sequence s1, s2, s3 . . . si−1 of π satisfies the path formula ϕ:

‖ϕU ψ‖path
C = {s1, s2, s3, s4 . . . ∈ path(C) |

∃n ∈ N. (sn, sn+1, sn+2 . . . ∈ ‖ψ‖path
C ∧∀i < n. si, si+1, si+2 . . . ∈ ‖ϕ‖path

C)}.

Note that the validity of basic formulas 〈〈A′〉〉ψ is implicitly defined by
the outcome of a two player game with an ω-regular (LTL) objective. Such
games are determined [dAHM01]. Consequently, there is a counter strategy

fc
ArA′ : S∗ × ∆A′ → ∆ArA′

such that plays(s, fc
ArA′) ⊆ ‖¬ψ‖path

C if and only if
s /∈ ‖〈〈A′〉〉ψ‖C .

5.3 From General to Explicit Models

In this section we show that every model of a specification can be transformed
into an explicit model, which makes both the truth of each basic subformula in
the respective state and a (counter) strategy that witnesses the validity or inva-
lidity of this basic subformulas explicit. This result is exploited in the following
section by constructing a small ACG Aϕ that accepts the explicit models of ϕ.
Constructing an explicit model from a general model consists of three steps:

1. In a first step, we add a fresh atomic proposition b for each basic subfor-
mula b of ϕ, and extend the labeling function such that b is in the label
of a states s if and only if b holds true in s (b ∈ l(s) ⇔ s ∈ ‖b‖C).

Note that witnesses for the validity or invalidity of basic subformulas can-
not be encoded in the same way, because every position of the ACG may
occur (multiple times) in infinitely many of these witnesses.

90 CHAPTER 5. ATL* SATISFIABILITY IS 2EXPTIME-COMPLETE

(a) (b)

Figure 5.2: In the central third step of the transformation of an arbitrary model
into an explicit CGT, a CGT is widened in order to enable a finite encoding
of witness strategies for the (in)validity of basic subformulas in the labels. Fig-
ure 5.2a shows a CGT for a single agent a and a binary set ∆ = {left , right},
where 〈〈a〉〉ϕ holds in every position. The color coding maps a witness strategy
for 〈〈a〉〉ϕ to every position p – in the single agent case an infinite path rooted
in p that satisfies ϕ. In Figure 5.2a, the path that always turns left is a witness
strategy for the validity of 〈〈a〉〉ϕ in the root, indicated by coloring this path and
the root of the tree in the same color (red). In general, witness strategies cannot
be finitely encoded in the labels of a CGT, because there is no bound on the
number of paths a position belongs to. The tree is therefore widened by extend-
ing ∆ to ∆′ = {(left ,new), (left , cont), (right ,new), (right , cont)} (Figure 5.2b).
Witness strategies for the resulting CGT are constructed from witness strate-
gies for the original CGT by turning first to a new , and henceforth to a cont
direction, avoiding the unbounded overlap of witness strategies – for 〈〈a〉〉ϕ, ev-
ery position p occurs in at most one witness strategy that does not start in p –
allowing for a finite representation of the witness strategies in the labels.

2. In a second step, we unravel the model obtained in the first step to a tree.

Using trees guarantees that no position can be part of infinitely many
witnesses. However, the number of witness strategies a position might
belong to remains unbounded. (It may be linear in the number of its
predecessors.)

3. In a final step, we widen the tree by adding a single Boolean decision to
the set ∆ of decisions available to every agent (cf. Figure 5.2).

This widening allows us to map arbitrary but fixed witness (counter)
strategies from the original tree to witness (counter) strategies in the

5.3. FROM GENERAL TO EXPLICIT MODELS 91

widened tree such that witnesses for the validity of the same basic subfor-
mula b (or its negation ¬b) in different states do not overlap. (With the
exception of the trivial case that the witness strategy must cover all suc-
cessors.) This allows us to explicitly encode the witnesses in the widened
strategy trees.

From Models to Basic Models. For a given ATL* specification ϕ, we de-
note with Bϕ the set of its basic subformulas. We call a model C = (Π ⊎ Bϕ,
A, S, s0, l,∆, τ) |= ϕ of an ATL* formula ϕ basic if, for all basic subformulas
b ∈ Bϕ of ϕ and all states s ∈ S of C, b ∈ l(s) ⇔ s ∈ ‖b‖C holds true. Since
the additional propositions Bϕ do not occur in the specification, the following
lemma holds trivially:

Lemma 5.1 An ATL* formula ϕ is satisfiable if and only if it has a basic
model. ¤

From Models to Tree Models. We call a CGS C = (Π, A, S, s0, l,∆, τ) a
concurrent game tree (CGT) if S = (∆A)∗, s0 = ε, and τ(s, d) = s · d. For a
CGS C = (Π, A, S, s0, l,∆, τ), we call TC = (Π, A, (∆A)∗, ε, l ◦ u,∆, τ ′) where
τ ′(s, d) = s · d, and where the unraveling function u : (∆A)∗ → S is defined
recursively by u(ε) = s0, and u(s) = s′ ⇒ u(s ·d) = τ(s′, d), the unraveling of C.
We extend u to finite and infinite paths (u(s0s1s2 . . .) = u(s0)u(s1)u(s2) . . .).

Lemma 5.2 A CGS C is a (basic) model of a specification ϕ if and only if its
unraveling TC is a (basic) model of ϕ.

Proof: By induction over the structure of ϕ, it is easy to prove that s ∈
‖ϕ‖TC

⇔ u(s) ∈ ‖ϕ‖C , and π ∈ ‖ϕ‖path
TC

⇔ u(π) ∈ ‖ϕ‖path
C . The only non-

trivial part in the induction is the transformation of the witness strategies for
basic formulas (ϕ = 〈〈A′〉〉ψ). However, we can simply use the unraveling func-
tion u to transform a witness (counter) strategy fA′ or fc

ArA′ for C into a
witness (counter) strategy f ′

A′ or fc
ArA′

′, respectively, for TC . For this, we fix
f ′

A′(π) = fA′(u(π)) or fc
ArA′

′(π, d) = fc
ArA′(u(π), d), respectively. This en-

sures that plays(u(s), fA′) = u(plays(s, f ′
A′)) := {u(π) | π ∈ plays(s, f ′

A′)}, or
plays(u(s), fc

ArA′) = u(plays(s, fc
ArA′

′)). Using the induction hypothesis, we

get plays(s, f ′
A′) ⊆ ‖ψ‖path

C or plays(s, fc
ArA′

′) ⊆ ‖¬ψ‖path
C , respectively. ¤

92 CHAPTER 5. ATL* SATISFIABILITY IS 2EXPTIME-COMPLETE

From Tree Models to Explicit Tree Models. For a CGT T =
(Π, A, (∆A)∗, ε, l,∆, τ), we call the CGT Tw = (Π, A, (∆′A)∗, ε, l ◦ h,∆′, τ ′),
where ∆′ = ∆ × {new , cont}, h : (∆′A)∗ → (∆A)∗ is a hiding function that
hides the {new , cont} part of a trace position-wise, and τ ′(s, d) = s · d is the
usual transition function of trees, the (Boolean) widening of T .

Lemma 5.3 A CGT T is a (basic) model of a specification ϕ if and only if its
(Boolean) widening Tw is a (basic) model of ϕ.

Proof: By induction over the structure of ϕ. Again, the only non-trivial part
is the transformation of the witness strategies for basic formulas (ϕ = 〈〈A′〉〉ψ).
For this part, we can use the hiding function h to transform a witness strategy
fA′ in T into a witness strategy f ′

A′ in its widening Tw by choosing f ′
A′(π) =

(fA′(h(π)), ∗), where ∗ ∈ {new , cont} can be chosen arbitrarily. This ensures
plays(h(s), fA′) = h(plays(s, f ′

A′)) := {h(π) | π ∈ plays(s, f ′
A′)}. Using the in-

duction hypothesis, we get plays(s, f ′
A′) ⊆ ‖ψ‖path

C . As in the previous lemma, we
get the analogous result for the transformation of a witness counter strategy. ¤

Let, for a basic subformula Bϕ ∋ b = 〈〈A′〉〉ϕb of a specification ϕ,
a(b) = A′ and a(¬b) = A r A′ denote the set of agents that cooperate
to ensure ϕb and the set of their opponents, respectively, and let Eϕ =
{(b,new), (b, cont), (¬b,new), (¬b, cont) | b ∈ Bϕ} denote an extended set
of subformulas. We call a concurrent game structure C = (Π ⊎ Bϕ ⊎ Eϕ,
A, S, s0, l,∆, τ) well-formed if it satisfies the following requirements:

• ∀s ∈ S. b ∈ l(s) ⇒ ∃d ∈ ∆a(b)∀d′ ∈ ∆a(¬b). (b,new) ∈ l(τ(s, (d, d′))),

• ∀s ∈ S. (b,new) ∈ l(s) ⇒
∃d ∈ ∆a(b)∀d′ ∈ ∆a(¬b). (b, cont) ∈ l(τ(s, (d, d′))),

• ∀s ∈ S. (b, cont) ∈ l(s) ⇒
∃d ∈ ∆a(b)∀d′ ∈ ∆a(¬b). (b, cont) ∈ l(τ(s, (d, d′))),

• ∀s ∈ S. b /∈ l(s) ⇒ ∀d ∈ ∆a(b)∃d′ ∈ ∆a(¬b). (¬b,new) ∈ l(τ(s, (d, d′))),

• ∀s ∈ S. (¬b,new) ∈ l(s) ⇒
∀d ∈ ∆a(b)∃d′ ∈ ∆a(¬b). (¬b, cont) ∈ l(τ(s, (d, d′))), and

• ∀s ∈ S. (¬b, cont) ∈ l(s) ⇒
∀d ∈ ∆a(b)∃d′ ∈ ∆a(¬b). (¬b, cont) ∈ l(τ(s, (d, d′))).

5.3. FROM GENERAL TO EXPLICIT MODELS 93

For a basic subformula Bϕ ∋ b = 〈〈a(b)〉〉ϕb of ϕ and its negation ¬b, we call
the set of traces witness(s, b) = {ss1s2s3 . . . ∈ path(s) | b ∈ l(s), (b,new) ∈ l(s1)
and ∀i ≥ 2. (b, cont) ∈ l(si)} and witness(s,¬b) = {ss1s2s3 . . . ∈ path(s) |
b /∈ l(s), (¬b,new) ∈ l(s1) and ∀i ≥ 2, (¬b, cont) ∈ l(si)} the explicit wit-
nesses for b and ¬b in s. C is called an explicit model of ϕ if the explicit wit-
nesses are contained in the set of paths that satisfy ϕb and ¬ϕb, respectively.
(witness(s, b) ⊆ ‖ϕb‖path

C and witness(s,¬b) ⊆ ‖¬ϕb‖path
C for all s ∈ S and

b ∈ Bϕ.) Note that explicit models of ϕ are in particular basic models of ϕ.

Lemma 5.4 Given a CGT T that is a basic model of an ATL* formula ϕ and
a set of witness strategies for T , we can construct an explicit model of ϕ.

Proof: In the proof of the previous lemma, we showed that the widening Tw of a
basic tree model T of ϕ is a basic model of ϕ. Moreover, we showed that, for the
translation of witness (counter) strategies that demonstrate the (in)validity of
a subformula b ∈ Bϕ of ϕ in a state s of Tw, any extension ∗ ∈ {new , cont} can
be chosen. In particular, the agents in a(b) or a(¬b), respectively, can choose to
first pick the new extension, and henceforth to pick the extension cont . For non-
universal specifications, that is, for the case a(b) 6= ∅ or a(¬b) 6= ∅, respectively,
this particular choice provides the guarantee that states reachable under the new
strategy f ′

a(b) or counter strategy fc
a(¬b)

′, respectively, from different states in Tw

are disjoint. (∀s1, t1 ∈ (∆′A)∗ ∀i, j > 1. s1s2s3 . . . ∈ plays(s1, f
′
a(b))∧ t1t2t3 . . . ∈

plays(t1, f
′
a(b)) ∧ si = tj ⇒ s1 = t1, and the analogous result for fc

a(¬b)
′.)

For universal specifications, that is, for the case a(b) = ∅ or a(¬b) = ∅,
respectively, the respective player intuitively has no choice, and the (counter)
strategy f ′

a(b) or fc
a(¬b)

′ is well defined.

In both cases, we mark the positions reachable under f ′
a(b) in one step from

a position s1 with b ∈ l(s1) by (b,new) and positions reachable under fc
a(¬b)

′ in

one step from a position s1 with b /∈ l(s1) by (¬b,new), and we mark positions
reachable in more than one step by (b, cont) and (¬b, cont), respectively.

By construction, the resulting CGT Tw is well-formed, and b ∈ l(s) ⇒
witness(s, b) = plays(s, f ′

a(b)) and b /∈ l(s) ⇒ witness(s,¬b) = plays(s, fc
a(¬b)

′)

hold. By Lemma 5.3, we also get b ∈ l(s) ⇒ plays(s, f ′
a(b)) ⊆ ‖ϕb‖path

C and

b /∈ l(s) ⇒ plays(s, fc
a(¬b)

′) ⊆ ‖¬ϕb‖path
C . ¤

Theorem 5.5 A specification has an explicit model if and only if it has a model.

Proof: The ‘if’ direction is implied by the lemmata of this section. For the ‘only
if’ direction, it is obvious that, for a given explicit model (Π ⊎ Bϕ ⊎ Eϕ, A, S,

94 CHAPTER 5. ATL* SATISFIABILITY IS 2EXPTIME-COMPLETE

s0, l,∆, τ) of an ATL* specification ϕ, and for the projection of the labeling
function to the atomic propositions (l′(s) = l(s) ∩ Π), (Π, A, S, s0, l

′,∆, τ) is a
model of ϕ. ¤

5.4 ATL* Satisfiability is 2EXPTIME-Complete

We exploit the explicit model theorem by constructing an ACG Aϕ from an
ATL* specification ϕ that accepts only the explicit models of ϕ. Testing if
a CGS is a model of ϕ is considerably harder than testing if it is an explicit
model. The latter only comprises two simple tests: Checking the well-formedness
criterion can be performed by a (safety) ACG with O(|Bϕ|) states, while, for
all basic subformulas b ∈ Bϕ of ϕ, testing if all paths in witness(s, b) satisfy the
path formula ϕb and if all paths in witness(s,¬b) satisfy the path formula ¬ϕb

can be performed by a universal ACG that is exponential in ϕb.
Automata that check the (much weaker) model property, on the other hand,

need to guarantee consistency of the automaton decisions, which is usually
solved by using deterministic word automata to represent the single ϕb, leading
to an exponentially larger ACG (with parity acceptance condition and a number
of colors exponential in the length of ϕ).

We call a CGS C plain if all states in C are reachable from the initial state.
We can restrict our focus without loss of generality to plain concurrent game
structures, because unreachable states have no influence on the model property
(nor are they traversed by an automaton).

Lemma 5.6 For a specification ϕ, we can build an ACG Aw with O(|Eϕ|) states
that accepts a plain CGS C = (Π ⊎ Bϕ ⊎ Eϕ, A, S, s0, l,∆, τ) if and only if it is
well-formed.

Proof: We can simply set Aw = (Σw, Qw, qw
0 , δ, ∅) with Σw = 2Bϕ⊎Eϕ (the

atomic propositions Π are not interpreted), Qw = {qw
0 } ⊎ Eϕ, and

• δ(qw
0 , σ) = (qw

0 ,¤, ∅) ∧ ∧
b∈σ∩Bϕ

((b,new),¤, a(b))

∧∧
b∈Bϕrσ((¬b,new),♦, a(¬b))

∧∧
(b,∗)∈σ∩Eϕ

((b, cont),¤, a(b))

∧∧
(¬b,∗)∈σ∩Eϕ

((¬b, cont),♦, a(¬b)), and

• for all e ∈ Eϕ, δ(e, σ) = true if e ∈ σ, and δ(e, σ) = false otherwise.

5.4. ATL* SATISFIABILITY IS 2EXPTIME-COMPLETE 95

The (qw
0 ,¤, ∅) part of the transition function guarantees that every reachable

position in the input CGS is traversed, and the remainder of the transition
function simply reflects the well-formedness constraints. ¤

Theorem 5.7 [Eme90, KV05] Given an LTL formula ϕ, we can build an equiv-
alent universal Co-Büchi word automaton whose size is exponential in the length
of ϕ. ¤

For ease of notation, the equivalent universal word automaton is read as a
universal ACG U that accepts exactly those words that satisfy the LTL formula.
(Words can be viewed as special concurrent game structures with a singleton
set of decisions (|∆| = 1) or an empty set of agents (A = ∅).)

Let, for a path formula ψ, ψ̂ denote the formula obtained by replacing all
occurrences of direct basic subformulas b ∈ Bψ by b (read as atomic proposition).

Lemma 5.8 For a specification ϕ and every Bϕ ∋ b = 〈〈a(b)〉〉ϕb we can build
two universal ACGs Ab and A¬b whose size is exponential in the size of ϕ̂b

and that accept a plain CGS C = (Π ⊎ Bϕ ⊎ Eϕ, A, S, s0, l,∆, τ) if and only if

witness(s, b) ⊆ ‖ϕ̂b‖path
C and witness(s,¬b) ⊆ ‖¬ϕ̂b‖path

C , respectively, hold true
for every state s ∈ S.

Proof: By Theorem 5.7 we can translate the LTL formula ϕ̂b into an equivalent
universal ACG Ub = (Π ⊎ Bϕ, Qb, q

b
0, δb, Fb) whose size is exponential in the

length of ϕ̂b. From Ub, we infer the universal ACG Ab = (Π ⊎ Bϕ ⊎ Eϕ, Qb ×
{new , cont} ⊎ {qb}, qb, δ, Fb × {cont}) with the following transition function:

• δ(qb, σ) = (qb,¤, ∅) if b /∈ σ, and

• δ(qb, σ) = (qb,¤, ∅) ∧ ∧
q∈δb(qb

0,σ)((q,new),¤, ∅) otherwise,

• δ((q,new), σ) = true if (b,new) /∈ σ, and

• δ((q,new), σ) =
∧

q′∈δb(q,σ)((q
′, cont),¤, ∅) otherwise, and

• δ((q, cont), σ) = true if (b, cont) /∈ σ, and

• δ((q, cont), σ) =
∧

q′∈δb(q,σ)((q
′, cont),¤, ∅) otherwise.

δ again uses the (qb,¤, ∅) part of the transition function to traverse every
reachable position in the input CGS. The assignments δ((q, ∗), σ) = true ensure
that, starting in any reachable state s, only the infinite paths in witness(s, b)

96 CHAPTER 5. ATL* SATISFIABILITY IS 2EXPTIME-COMPLETE

are traversed. The remaining transitions reflect the requirement that, for all
reachable positions s, all paths in witness(s, b) must satisfy the path formula ϕ̂b.

A¬b can be constructed analogously. ¤

Theorem 5.9 For a given ATL* specification ϕ, we can construct an ACG Aϕ

that is exponential in the size of ϕ and that accepts a plain CGS if and only if
it is an explicit model of ϕ.

Proof: We build the automaton Aϕ = (2Π⊎Bϕ⊎Eϕ , {q0}⊎Qw⊎⊎
b∈Bϕ

{qb, q¬b}⊎
(Qb ⊎ Q¬b) × {new , cont}, q0, δ,

⊎
b∈Bϕ

(Fb ⊎ F¬b) × {cont}) that consists of the
states of the ACG Aw and, for every basic subformula b ∈ Bϕ of ϕ, of the
ACGs Ab and A¬b, and a fresh initial state q0. The transition function for
the non-initial states is simply inherited from the respective ACG, and for the
initial state we set δ(q0, σ) = false if σ does not satisfy ϕ (when read as a
Boolean formula over atomic propositions and basic subformulas), and δ(q0, σ) =
δ(qw

0 , σ) ∧ ∧
b∈Bϕ

δ(qb, σ) ∧ δ(q¬b, σ) otherwise.
The lemmata of this section imply that Aϕ is exponential in the size of ϕ,

and accepts a plain CGS if and only if it is an explicit model of ϕ. ¤

It is only a small step from the non-emptiness preserving reduction of ATL*
to a 2EXPTIME algorithm for ATL* satisfiability checking and synthesis.

Together, Theorems 4.9, 5.5 and 5.9 provide a 2EXPTIME algorithm for
a constructive satisfiability test for an ATL* specification. The corresponding
hardness result can be inferred from the 2EXPTIME-completeness of the sat-
isfiability problem for the syntactic sublogic CTL* [Eme90] (and even for its
fragment CTL+ [Wil99]) of ATL*.

Corollary 5.10 The ATL* satisfiability and synthesis problems are
2EXPTIME-complete. ¤

5.5 Conclusions

We showed that the satisfiability and synthesis problem of ATL* specifications
is 2EXPTIME-complete. This result is surprising: For the remaining branching-
time temporal logics, the satisfiability problem is at least exponentially harder
than the model checking problem [Eme90, KV99] (in the size of the specifica-
tion). ATL* specifications thus seem to be particularly well suited for synthesis:
They form one of the rare exceptions of the rule that testing is simpler than
constructing a solution.

5.5. CONCLUSIONS 97

What is more, the suggested reduction indicates that ATL* synthesis may
be feasible. The exponential blow-up in the construction of the ACG is the
same blow-up that occurs when translating an LTL specification to a nonde-
terministic word automaton. While this blow-up is unavoidable in principle, it
is also known that no blow-up occurs in most practical examples. This gives
rise to the assumption that, for most practical ATL* specifications ϕ, the size
of the emptiness equivalent Co-Büchi ACG Aϕ will be small. Moreover, Aϕ is
essentially universal (plus a few simple local constraints), and can therefore be
treated with the bounded synthesis techniques proposed in Chapter 7.

Part III

Open & Distributed
Synthesis

99

Overview

In the traditional approach to distributed synthesis [PR90, MT01, KV01,
WM03], linear or branching-time specification languages are used to specify
the behavior of distributed systems, while the distribution is due to a physical
division of the system into communicating processes, whereas alternating-time
specifications cause a division by assigning different objectives to the agents.

This part of the thesis covers the classic problem of distributed synthesis,
and connects it with alternating-time specification languages. We study systems
with a predefined architecture, which is given as a directed graph. The nodes
of this graph represent processes and may include the external environment as
a special process. The edges of the graph are labeled with variables, indicating
that data may be transmitted between two processes. These variables have a
dual functionality: They are used for inter-process communication and, at the
same time, serve as atomic propositions in the system specification.

We generalize the established architecture models [PR90, KV01, MT01]:

• Different to Pnueli and Rosner [PR90], and Madhusudan and Thiagara-
jan [MT01], we allow for cyclic architectures, such as rings.

• While Kupferman and Vardi [KV01] assumed that all processes present
the same output to all adjunct processes (complete broadcast), Pnueli
and Rosner [PR90], and Madhusudan and Thiagarajan [MT01] assume
that different edges of the communication graph are labeled with disjoint
sets of variables (excluded broadcast).

The suggested architecture model allows for a graded form of broadcast,
leaving the choice to the system designer.

• While previous architectural models [PR90, KV01, MT01, WM03] distin-
guish only between system processes and the environment, we distinguish
between four different types of processes:

100

101

– We distinguish white-box processes, which come with a known and
fixed implementation, from black-box processes, for which an imple-
mentation is sought. This is inspired by the fact that systems are
often build in large parts from legacy products, which are not re-
implemented, but rather used as plug-in components. Many problems
of incomplete information that occur during the process of synthe-
sis refer to black-box components only, and the distinction between
black-box and white-box components significantly enhances the scope
of automated decision procedures.

– We also distinguish deterministic processes from nondeterministic
processes. From a technical point of view, introducing nondetermin-
ism is a necessity if we allow for alternating-time specification lan-
guages. The introduction of nondeterminism also provides a deeper
insight into the mechanisms that lead to undecidability.

The architecture defines the level of information each process can obtain
about the current state of the overall system. Usually, this information is in-
complete, resulting in the general undecidability of distributed synthesis [PR90].
In spite of this general undecidability result, many architectures, most notably
pipelines [PR90], chains and rings [KV01], have decidable synthesis problems.

The results of this thesis show that the basic concept that distinguishes ar-
chitectures with a decidable synthesis problem from undecidable architectures is
the possibility to order the black-box processes with respect to their informed-
ness.

For synchronous systems, we introduce information forks, a simple but com-
prehensive criterion that characterizes all architectures for which the synthesis
problem is undecidable. An information fork describes a situation, where the
environment – or, more general, nondeterministic processes – can send incom-
parable information to different black-box processes, unobservable by the other.
We show that the absence of information forks can be checked by a quadratic al-
gorithm, and provide a unified synthesis algorithm for all fork-free architectures
(Chapter 6).

While Chapter 6 draws a clear line between decidable and undecidable ar-
chitectures, the complexity of distributed synthesis – which is nonelementary
even in the decidable fragment – seems to prohibit the transition of synthesis
techniques into practice. We argue that this intuition is misleading: It relies on
the fact that there are specifications and decidable architectures such that the
smallest distributed implementation has a size nonelementary in the length of

102

the specification [Ros92]. But this effect does not vanish only because the pro-
gram is constructed by a human rather than by a machine. Practical experience
shows that, in most cases, small distributed models exist. What is more, small
implementations are often an implicit design constraint, for example, because
the size of the memory is limited. In Chapter 7, we therefore introduces the
bounded synthesis problem, where we seek small implementations of bounded
size. Different to distributed synthesis, bounded synthesis is decidable for all ar-
chitectures, even if they contain an information fork. Furthermore, the complex-
ity of bounded synthesis is nondeterministic quasilinear in the minimal output,
rather than nonelementary in the input.

Additional types of processes are integrated into the automata theoretic
framework in Chapters 8 and 9. Probabilistic processes (Chapter 8) choose
their actions randomly rather than nondeterministically. Probabilistic processes
are useful abstractions for unknown environments; we show that open syn-
thesis is not harder for probabilistic environments (EXPTIME-complete and
2EXPTIME-complete for CTL and LTL specifications, respectively).

In Chapter 9, reactive processes that have the power to disable a subset
of their actions are considered. They prove to be useful in devising a com-
positional synthesis rule for the construction of distributed systems. We show
that the incomplete information each process has about the global system state
does not increase the complexity for open synthesis with reactive environments
(3EXPTIME-complete for CTL*, and 2EXPTIME-complete for CTL and the
classic and alternating-time µ-calculus).

The synthesis algorithms suggested in the Chapters 6 through 9 assume the
processes to run synchronously. Synthesis of asynchronous systems (Chapter 10)
is more difficult: While synchronous processes are aware of each change to their
inputs, asynchronous processes may fail to see certain changes (when the writing
process is faster than the reading process) and may see duplicate input values
(when the reading process is scheduled multiple times between two writes).

The central new aspect in asynchronous synthesis is the concept of a sched-
uler that, in each turn, decides which group of processes is scheduled. It turns
out that the existence of an order on the informedness of the black-box processes
remains the basic concept that determines decidability.

A scheduler can, in general, destroy any order of informedness between differ-
ent processes: We show that the synthesis of asynchronous distributed systems
is decidable if and only if at most one process implementation is unknown. The
cost of synthesizing a single-process implementation is the same for synchronous
and asynchronous systems (2EXPTIME-complete for CTL*, and EXPTIME-

103

complete for CTL and the classic µ-calculus) if we assume a known scheduler,
such as the full scheduler that allows every possible scheduling behavior. Lift-
ing this assumption leaves an exponentially harder synthesis problem for asyn-
chronous systems.

For systems that are globally asynchronous, but have local synchronization
quotients (GALS systems), the scheduler cannot interfere with the relative in-
formedness between different processes from the same synchronization quotient:
We show that synthesis remains decidable if and only if all black-box processes
are contained in a single fork-free synchronization quotient.

Chapter 6

Uniform Distributed
Synthesis

Abstract

We provide a uniform solution to the problem of synthesizing a finite-state dis-
tributed system. An instance of the synthesis problem consists of a system ar-
chitecture and a temporal specification. The architecture is given as a directed
graph, where the nodes represent processes that communicate synchronously
through shared variables attached to the edges. The same variable may occur
on multiple outgoing edges of a single node, allowing for the broadcast of data.
A solution to the synthesis problem is a collection of finite-state programs for
the processes in the architecture, such that the joint behavior of the programs
satisfies the specification in an unrestricted environment. We define information
forks, a comprehensive criterion that characterizes all architectures with an un-
decidable synthesis problem. The criterion is effective: For a given architecture
with n processes and v variables, it can be determined in O(n2 v) time whether
the synthesis problem is decidable. We give a uniform synthesis algorithm for
all decidable cases. Our algorithm works for all ω-regular tree specification lan-
guages, including the alternating-time µ-calculus. The undecidability proof, on
the other hand, uses only LTL or, alternatively, CTL as specification language.
Our results therefore hold for the entire range of specification languages from
LTL/CTL to the alternating-time µ-calculus.

104

6.1. INTRODUCTION 105

p1

p2 p3

a b

c d

Figure 6.1: The architecture A0

6.1 Introduction

Program synthesis, which automatically transforms a specification into a correct
implementation, has been an active field of research since Church’s solvability
problem [Chu63] in the early sixties. For a given sequential specification over two
sets I,O of Boolean input and output variables, Church’s problem is to find an
implementation f : (2I)ω → (2O)ω such that (i, f(i)) satisfies the specification
for all possible input sequences i ∈ (2I)ω. Church’s problem has been intensively
studied in the setting of temporal logics [CE82, Wol82, PR89a, KV97b, KV00].

More recently, Church’s problem has been extended to distributed sys-
tems [PR90, KV01, MT01, WM03], where the implementation consists of sev-
eral independent processes which must choose their actions based on generally
incomplete information about the system state.

The synthesis algorithms in the literature solve various instances of this
problem that differ in the choice of the system architecture and the specifica-
tion logic. Closed synthesis, the case of a single-process implementation without
any interaction with the environment, was solved for CTL [CE82] and LTL
[Wol82]. Open synthesis concerns systems consisting of a single process and an
environment and was solved for LTL [PR89a] and CTL* [KV97b] as well as
for the µ-calculus [KV00]. An automata-based synthesis algorithm for pipeline
and ring architectures and CTL* specifications is due to Kupferman and Vardi
[KV01]; Walukiewicz and Mohalik provided an alternative game-based construc-
tion [WM03]. There is also a negative result: Pnueli and Rosner [PR90] showed
that the synthesis problem is undecidable for LTL specifications and the simple
architecture A0 in Figure 6.1, consisting of an unconstrained environment and
two independent system processes.

The question arises whether it is necessary to continue this series of iso-
lated results, one for each architecture and logic. Can synthesis be extended to

106 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

...
...

...

(a) inconsistent strategy

o o o o o o o

o o o
iii

i
iii

i
i

i

...
...

...

(b) consistent strategy

o o o o o o o

o o o
iii

i
iii

i
i

i

...
...

(c) choice-set tree

{o} {o} {o} {o, o}

{o, o} {o}
iiii

ii

Figure 6.2: Figure 6.2a shows an inconsistent nondeterministic strategy: On the
leftmost branch (with input i·i) the process always reacts with output o, while on
the rightmost branch, with identical input i·i, it reacts with output o. Figure 6.2b
shows a consistent nondeterministic strategy. Figure 6.2c shows the choice-set
representation of the consistent nondeterministic strategy of Figure 6.2b.

alternating-time specifications, and thus to nondeterministic implementations?
Can we provide a comprehensive criterion to determine if the distributed synthe-
sis problem for a given system architecture and specification logic is decidable?
And can the synthesis problem in fact be solved uniformly, that is, by a single
algorithm for all decidable cases? This chapter gives a positive answer to these
questions.

Nondeterministic Processes. Giving a positive answer to the first ques-
tion means solving the synthesis problem for alternating-time logics. For this
purpose, we generalize Church’s notion of an implementation as a determin-
istic strategy or function f : (2I)ω → (2O)ω to nondeterministic strategies or
relations r ⊆ (2I)ω × (2O)ω, which allow for multiple possible outcomes due to
choices made by the process.

Church’s representation facilitates the development of automata-theoretic
synthesis algorithms, because deterministic strategies can be represented as trees
that branch according to the possible inputs. Each node carries a label that

6.1. INTRODUCTION 107

indicates the output of the process after seeing the input defined by the path
to the node. Sets of such trees can be represented as tree automata, and can
therefore be manipulated by standard tree automata operations.

Along the same lines, nondeterministic strategies can be understood as trees
that branch not only according to inputs but also to the choices of the process.
However, in this representation, sets of implementations can no longer be repre-
sented by tree automata, because tree automata cannot ensure that the choices
available to the process are consistent with its observations: A strategy tree is
consistent if every pair of nodes that are reached on paths labeled by the same
input allows the same set of choices (for each input). For example, Figure 6.2a
shows an inconsistent strategy tree, while the strategy tree in Figure 6.2b is
consistent. Unfortunately, the consistent trees do not form a regular language,
and can therefore not in general be recognized by tree automata.

We solve this problem with a new encoding of nondeterministic strategies as
trees where each node is labeled by the set of possible choices. Figure 6.2c shows
the representation of the consistent strategy of Figure 6.2b as such a choice-set
tree. Choice-set trees always represent consistent strategies, and every consistent
strategy can be represented as a choice-set tree (modulo bisimilarity). Using the
choice-set representation, we define an automata-theoretic synthesis algorithm
which solves the distributed synthesis problem for all hierarchical architectures.

Uniform Synthesis Algorithm. In the uniform distributed synthesis prob-
lem, we decide for a given architecture A and a temporal specification ϕ over a
set of Boolean variables Π whether there exists a finite-state program for each
process in A, such that the composition of the programs satisfies ϕ. The archi-
tecture A is given as a directed graph, where the nodes represent processes. The
edges of the graph are labeled by variables from Π, indicating that data can be
transmitted between two processes. The same variable may occur on multiple
outgoing edges of a single node, allowing for the broadcast of data. Among the
processes, we distinguish different types: A process is black-box if its implemen-
tation is unknown and needs to be discovered by the synthesis algorithm. A
process is white-box if the implementation is already known and fixed. We also
distinguish processes that are required (in case of black-box processes) or known
(in case of white-box processes) to be deterministic from processes that may
show or are known to display a nondeterministic behavior1. Figure 6.3 shows

1As comparison, in traditional approaches to distributed synthesis, the environment, which
is unconstrained in the sense that it always enables all possible actions, has been the only
nondeterministic process.

108 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

p1 p2 p3 p4

(a) Pipeline

a b c

p1 p2 p3 p4

(b) Two-way chain

a b c

c d
b c d

p1 p2 p3 p4

(c) Two-way chain
with white-box process

a b c

c d
b c d

p1 p2

p3

p4

(d) One-way ring

a
b

c

d

p1 p2

p3

p4

(e) 3-process two-way ring

a

b

c

d

c
db

b

c

d

p1 p2

p3 p4

p5p6

(f) 5-process two-way ring

a

b
c

d

e
f

c
d

e

f
b

b

c d

ef

p1 p2

p3 p4

p5p6

(g) 5-process two-way ring
with white-box process

a

b
c

d

e
f

c
d

e

f
b

b

c d

ef

Figure 6.3: Distributed architectures

several example architectures, depicting the environment as a circle, black-box
processes as filled rectangles, and white-box processes as empty rectangles.

We provide a comprehensive criterion for the decidability of the synthesis
problem for a given architecture: The problem is decidable if and only if the ar-
chitecture does not contain an information fork. Intuitively, an information fork
is a situation where two black-box processes receive – directly or indirectly – in-
formation from nondeterministic processes (for example, from the environment)
in such a way that they cannot completely deduce the information received by
the other process.

6.1. INTRODUCTION 109

With the information fork criterion, it is simple to determine for a given
architecture whether the synthesis problem is decidable. Consider, for example,
the 5-process two-way ring of Figure 6.3f. The synthesis problem is undecidable
even if the white-box process p1 (which intuitively represents an unconstrained
external environment) is the only nondeterministic process, because of the in-
formation fork in the processes p4 and p5. The environment p1 can transmit
information through a, b, c to p4 that remains unknown to p5, and, vice versa,
transmit information through a, b, f to p5 that remains unknown to p4. Interest-
ingly, the architecture becomes decidable if we eliminate one of the two processes
(resulting in a 4-process two-way ring) or, alternatively, fix the implementation
of p4 or p5, turning the process into a white-box, as shown for p4 in Figure 6.3g.

Different to deterministic processes, the output of nondeterministic processes
cannot be inferred from their input. This leads to a slight restriction of the class
of decidable architectures. Two way rings, for example, remain decidable up to
the 3-process two-way ring from Figure 6.3e (while 4-process two-way rings are
decidable for deterministic black-box processes). For nondeterministic processes,
the two-way chain in Figure 6.3b is undecidable, because of the information fork
in the processes p2 and p4: While the information a is unknown to process p4,
process p2 cannot infer the value of d. The architecture becomes decidable if we
turn p2 white-box (Figure 6.3c).

The information fork criterion connects and extends the isolated decidability
results in the literature. Pipelines and one-way rings, for example, have decidable
synthesis problems [KV01] because the environment cannot communicate any
information to a process without giving the same information to all processes
to the left (when depicted as in Figure 6.3). By allowing for both broadcast and
single-process communication, we distinguish the undecidable architecture A0

of Figure 6.1 from the decidable architecture that can be obtained by adding
variable a to the edge between processes p1 and p3 in architecture A0. By
identifying processes as black-box and white-box, we distinguish the decidable
architecture in Figure 6.3g from the undecidable two-way ring in Figure 6.3f.
And by identifying deterministic processes, we distinguish architectures that
are decidable for multi-agent systems (such as the 3-process ring in Figure 6.3e)
from architectures that are decidable only for deterministic processes (such as
the one-way ring of Figure 6.3d) and undecidable architectures (such as the
5-process two-way ring of Figure 6.3f).

We solve the uniform synthesis problem with a single algorithm for all de-
cidable cases. The algorithm consists of a first phase in which any architecture
without an information fork is transformed into a hierarchical architecture, that
is, an architecture where the input to different black-box processes is pairwise

110 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

comparable, with an equivalent synthesis problem. For this type of architec-
ture, we solve the synthesis problem with an automata-based construction that
successively eliminates processes along the information order, starting with the
best-informed process.

6.2 The Synthesis Problem

In this chapter, we solve the distributed synthesis problem for the alternating-
time µ-calculus. Given an ATµC formula ϕ and a system architecture, we decide
if there exists a distributed implementation that satisfies ϕ.

In a distributed system where all processes cooperate, we can assume that
the behavior of every process is fixed a priori : in each state, the next transition
follows a deterministic strategy. If we allow for non-cooperating behavior, we
can no longer assume a deterministic choice. Instead, we fix the set of possible
decisions and the effect each decision has on the state of the system. At each
point in a computation, the processes choose a decision from the given set and
the system continues in the successor state determined by that choice.

6.2.1 Architectures

In a distributed system, it is not generally the case that every process is informed
about the decisions of all other processes. The system architecture fixes a set
of output variables for each process such that every decision corresponds to a
certain value of the output variables. An output variable can be an input variable
to another process, indicating that the value of the variable is communicated
to that process. An architecture is a tuple A = (A,B,D,Π, {Ia}a∈A, {Oa}a∈A)
with

• a set A of processes, which is partitioned into a set B ⊆ A of black-box pro-
cesses, whose implementations we wish to synthesize, and a set W = ArB
of white-box processes, which have known and fixed implementations,

• a set D ⊂ A of deterministic processes,

• a set Π of system variables that also serve as atomic propositions,

• a family {Ia}a∈A of sets of input variables, such that Ia ⊆ Π denotes the
variables visible to agent a, and

• a family {Oa}a∈A of non-empty sets of output variables that disintegrates
the set Π of system variables.

6.2. THE SYNTHESIS PROBLEM 111

An architecture is called hierarchical if the informedness relation
¹ = {(b, b′) ∈ B × B | Ib ⊆ Ib′} on the black-box processes is a linear preorder.

6.2.2 Implementations

An implementation defines for each position of a computation a subset of the
output values as the set of possible decisions available to a process. The set
of possible decisions must be consistent with the knowledge of the process: An
implementation of a nondeterministic process a ∈ A r D is a function

pa : (2Ia)∗ → 22Oa

r {∅} = Oa

that assigns a choice-set of possible output values to each history of input values.
For deterministic processes a ∈ D, Oa is restricted to singleton choice-sets:

pa : (2Ia)∗ → {Oa ⊆ 2Oa | |Oa| = 1} = Oa.

Occasionally, we consider implementations that have access to a superset I
of their input variables. We call a function pa : (2I)∗ → Oa with Ia ⊂ I a relaxed
implementation of a with input I.

A distributed implementation is a set P = {pa}a∈A of process implementa-
tions, one for each process a in the architecture.

We identify process implementations with trees. As usual, an Υ-tree is a
prefix closed subset Y ⊆ Υ∗ of finite words over a predefined set Υ of directions.
For a non-empty word y ·υ, x ∈ Υ∗, υ ∈ Υ, we call the last letter υ the direction
dir(y · υ) = υ, and fix a root-direction υ0 = dir(ε) ∈ Υ for the empty word ε.
For given sets Σ and Υ, a Σ-labeled Υ-tree is a pair 〈Y, l〉, consisting of a tree
Y ⊆ Υ∗ and a labeling function l : Y → Σ that maps every node of Y to a letter
of Σ. If Υ and Σ are not important or clear from the context, 〈Y, l〉 is called a
tree. If Y ∋ ε contains the empty word and, for each y ∈ Y , some successor y ·υ
(υ ∈ Υ) of y is in Y , then Y and 〈Y, l〉 are called total. If Y = Υ∗, Y and 〈Y, l〉
are called full.

6.2.3 Compositions

The strategies of the processes are composed synchronously. In every step, each
process a ∈ A fixes, based on the history of inputs visible to a, a set Oa ∈ Oa of
possible valuations of its output variables Oa. The composition of a set S ⊆ A of
processes maps the global input history to the possible valuation of their joint

112 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

output variables
⋃

a∈S Oa, which is defined by the decisions of the strategies
{pa}a∈S of the processes in S.

As an auxiliary notion, we first define the composition of sets:

• We define the composition A ⊕ B = {a ∪ b | a ∈ A, b ∈ B} of sets of sets
A and B as the set of unions of their elements.

• Likewise we define the composition A⊗B = {a⊕ b | a ∈ A, b ∈ B} of sets
of sets of sets A and B as the set of compositions of their elements.

We use OS to abbreviate the set
⊗

a∈S Oa of possible joint decisions of the
processes in S. The composition of two implementations pa and pa′ of processes
a and a′ with complete information (Ia = Ia′ = Π) is the joint implementation
p{a,a′} : (2Π)∗ → Oa ⊗Oa′ with p{a,a′}(y) = pa(y) ⊕ pa′(y) for all y ∈ (2Π)∗.

In the general case of incomplete information we need to compose strategies
of processes with different sets of input variables. We define two auxiliary func-
tions: The function hide projects a history of variable assignments to a history
for a subset of the variables (such as the visible input variables of a process).
The function wide extends a strategy to a larger set of input variables, without
changing its behavior (that is, the extended strategy does not depend on the
new input variables).

• For a set Ξ × Υ of directions and a node x ∈ (Ξ × Υ)∗, hideΥ(x) denotes
the node in Ξ∗ obtained from x by replacing (ξ, υ) by ξ in each letter of x.

• For a Σ-labeled Ξ-tree 〈Ξ∗, l〉, 〈(Ξ×Υ)∗,wideΥ(l)〉, denotes the Σ-labeled
Ξ × Υ-tree 〈(Ξ × Υ)∗, l′〉 with l′(x) = l(hideΥ(x)).

The widening function wideΥ guarantees that the label of each node y ∈
(Ξ×Υ)∗ in the resulting tree depends only on the visible part hideΥ(y) ∈ Ξ∗ of
the input history. This construction is illustrated with an example in Figure 6.4.

We define the composition p{a,a′} : (2Π)∗ → O{a,a′} = Oa ⊗ Oa′ of
two strategies pa : (2Ia)∗ → Oa and pa′ : (2Ia′)∗ → Oa′ as the strategy
p{a,a′} = wide2ΠrIa (pa) ⊕ wide2ΠrI

a′ (pa′), and use pS as an abbreviation for
the composition

⊕
a∈S pa of the strategies {pa}a∈S of the processes in S.

6.2.4 Computations

An implementation {pa : (2Ia)∗ → Oa}a∈A defines the computation tree
〈‖pA‖, dir〉, where pA =

⊕
a∈A pa denotes the composition of the process strate-

gies, and ‖pA‖ denotes the set of computations allowed by pA: ‖pA‖ is the

6.2. THE SYNTHESIS PROBLEM 113

...

(a) word 〈∅∗, l〉

p

p

¬p

p

...

(b) the widening 〈B∗,wideB(l)〉 of 〈∅∗, l〉

p p p p p p p p

p p p p

¬p ¬p

p

10101010

1010

10

...

(c) tree 〈B∗, l〉

p ¬p ¬p ¬p

¬p p

p

1010

10

...

(d) the widening 〈(B × B)∗,wideB(l)〉 of 〈B∗, l〉

p p ¬p ¬p p p ¬p ¬p ¬p ¬p ¬p ¬p ¬p ¬p ¬p ¬p

¬p ¬p p p

p

11100100111001001110010011100100

11100100

Figure 6.4: The widening function wideΥ maps a Ξ-tree 〈Ξ∗, l〉 to the Ξ × Υ-
tree whose label depends only on the Ξ-part of the history. Figure 6.4a shows
a unary tree (or word) as a simple input to the widening function wideB. The
result is a B-tree, where every path is labeled identically (Figure 6.4b). Fig-
ure 6.4d shows the result of a Boolean widening on the Boolean tree 〈B, l〉 from
Figure 6.4c. Here, every pair y, y′ ∈ (B × B)∗ of nodes which are indistinguish-
able under hiding of the second element (hideB(y) = hideB(y′)) has the same
label l(hideB(y)).

greatest total tree Y ⊆ (2Π)∗ such that for all y ∈ (2Π)∗ and all υ ∈ 2Π, if
y · υ ∈ Y , then y ∈ Y and υ ∈ pA(y). Figure 6.5 illustrates the construction of
the computation tree with an example.

Computations can be viewed as a concurrent game tree GA
pA

=
(Π, A, S, s0, l, {∆a}a∈A, τ), where

• Π is the finite set of atomic propositions from the architecture,

• A is the set of processes,

114 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

...

(a) strategy tree 〈B∗, pA : B∗ → 22B

r {∅}〉

{1}

{0, 1} {0}

{0} {1} {0, 1} {0}

{0} {1} {0, 1} {1} {0} {1} {0, 1} {0, 1}
10101010

1010

10

...

(b) computation tree 〈‖pA‖, dir〉

0

0 1

0 1 0 1

0 1 0 1 0 1 0 0

10101010

1010

10

Figure 6.5: Figure 6.5a shows a Boolean strategy tree 〈B∗, pA〉. Every node is
labeled with a nonempty subset of B, indicating the possible futures. Figure 6.5b
shows (in solid lines) the computation tree 〈‖pA‖, dir〉. The computation tree
contains those paths of the full tree 〈B, dir〉 (shown in gray) that are consistent
with the strategy.

• S = (2Π)∗ is the set of finite sequences of valuations of the atomic propo-
sitions, with the empty sequence s0 = ε as initial state,

• l = dir is a labeling function that decorates each state with its direction,
and

• ∆a = pa ◦ hide2ΠrIa maps, for each process a ∈ A, a state s of the con-
current game tree to the set Oa ∈ Oa of decisions that are available to a
in s.

⊕
a∈A ∆a maps each state s ∈ S to a vector of possible decisions for

the processes.

6.2. THE SYNTHESIS PROBLEM 115

• τ : (s, d) 7→ s ·d is the usual transition function for trees that maps a state
s and a vector d ∈ ⊕

a∈A ∆a(s) of possible decisions for the processes to
a successor state s · d ∈ S.

A system with composed strategy pA satisfies a specification ϕ if and only
if the computation tree 〈‖pA‖, dir〉 ² ϕ is a model of ϕ.

6.2.5 Specification Languages

We consider ω-regular specification languages, in particular the alternating-time
µ-calculus and the classic µ-calculus as its syntactic sublogic (where the modal
operator ¤ is interpreted as ¤∅, and ♦ as ¤A), and ATL* and its sublogics
CTL* (where all universal and existential path quantifiers are translated to 〈〈∅〉〉
and 〈〈A〉〉, respectively), ACTL*, LTL, and CTL.

A specification is called universal if it is recognized by a universal ACG. In
particular, all specifications in ACTL* (and in its sublogics ACTL and LTL),
and µ-calculus specifications that do not contain ♦ operators are universal.

For universal specifications, we assume that all black-box processes are de-
terministic: Replacing the nondeterministic implementation pa of one or more
processes by any determinization p′a (p′a(y) ⊆ pa(y)∀y ∈ (2I

a)∗), the resulting
computation tree ‖p′A‖ ⊆ ‖pA‖ is a subtree of ‖pA‖. If a universal ACG ac-
cepts 〈‖pA‖, dir〉, it also accepts 〈‖p′A‖, dir〉, using the same winning strategy
(cf. Subsection 9.6.5).

6.2.6 Realizability and Synthesis

The realizability problem is to decide for the triple (A, ϕ, {pw}w∈W), consist-
ing of an architecture A = (A,B,D,Π, {Ia}a∈A, {Oa}a∈A), an ATµC or ATL*
formula ϕ, and a set of white-box implementations PW = {pw}w∈W , whether
there exists a set PB = {pb}b∈B of implementations for the black-box process
in A, such that the joint behavior 〈‖pA‖, dir〉 satisfies ϕ. The synthesis problem
is to construct such a set of implementations (provided such a set exists).

An architecture A is called decidable if realizability can be decided for all
formulas ϕ and implementations PW of the white-box processes. In the following
sections, we give a criterion that decides if an architecture is decidable, and
provide a synthesis algorithm that works for all decidable architectures.

116 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

6.3 Information Forks

As discussed in the introduction, an information fork is a situation where two
black-box processes receive information from nondeterministic processes (di-
rectly or indirectly) in such a way that they cannot completely deduce the
information received by the other process. Formally, an information fork is a
tuple (A′, p, p′, q, q′, E), where

• A′ ⊆ A is a subset of the processes,

• p, p′ ∈ B are two different black-box processes,

• q, q′ ∈ A′ are two not necessarily different processes in A′ such that

– q can transmit information to p unobservable by p′ –
(Oq ∩ Ip) r Ip′ 6= ∅,

– q′ can transmit information to p′ unobservable by p –
(Oq′ ∩ Ip′) r Ip 6= ∅, and

– E ⊆ {(a, d) ∈ A′ × D ∩ A′ | (Oa ∩ Id) r (Ip ∪ Ip′) 6= ∅} is a set
of connections between two processes a ∈ A′ and d ∈ D ∩ A′ that
are unobservable by p and p′, such that (A′, E) is an acyclic directed
graph that has only nondeterministic sources a /∈ D2.

For example, the architecture A0 contains the information fork
({p1}, p2, p3, p1, p1, ∅). The 5-process two-way ring of Figure 6.3d contains the
information fork (A′, p4, p5, p3, p6, E) with A′ = {p1, p2, p3, p6}, and E =
{(p1, p2), (p2, p3), (p2, p6)}.

We now show that the information fork criterion is effectively decidable. Our
construction is based on the observation that every architecture that does not
contain an information fork can be ordered according to the relative informed-
ness of the processes.

Consider, for a process p, the set

Ep = {(a, a′) ∈ A × A | (Oa ∩ Ia′) r Ip 6= ∅}
of connections between two processes a and a′ that are unobservable by p, and
the set

there is no nontrivial directed path from a nondeterministic
Up =

{
a ∈ A

}
process a′ ∈ A r D to a in the directed graph (A,Ep)

2If p or p′ are deterministic, this implies p /∈ A′ or p′ /∈ A′, respectively.

6.4. SYNTHESIS FOR FORK-FREE ARCHITECTURES 117

of processes that are not reachable from any nondeterministic process by such
edges. The preorder <⊆ A × A (read: has more or equal information than) is
then defined as follows: A process p ∈ A has more or equal information than a
process a ∈ A if and only if a is an element of Up (p < a ⇔ a ∈ Up). º is the
restriction of < to black-box processes (º= (B × B)∩ <).

An architecture A is called ordered if º is a linear preorder.

Theorem 6.1 An architecture A is ordered if and only if A does not contain
an information fork.

Proof: Suppose A contains an information fork (A′, p, p′, q, q′, E), then p ² p′

because
(
A′ ∪ {q}, E ∪ {(q, p)}

)
is a subgraph of (A,Ep′) that witnesses p ² p′.

p′ ² p follows analogously.

If A is ordered, then ∀p, p′ ∈ B. p º p′ ∨ p′ º p. Let us assume without loss
of generality that p º p′ holds true. By definition, there is no nontrivial directed
path from any nondeterministic process a ∈ ArD to p′ in (A,Ep). Let us assume
that (A′, p, p′, q, q′, E) is an information fork. Then

(
A′ ∪ {q′}, E ∪ {(q′, p′)}

)
is

a subgraph of (A,Ep), and there is a directed path from a nondeterministic
process a to q′ in (A′, E). Ã ¤

Whether a given architecture A contains an information fork can therefore
be checked by first computing º, and then checking if each pair of black-box
processes p, p′ ∈ B, is comparable by º (p º p′ or p′ º p).

The algorithm runs in O(n2 · v) time, where n = |A| is number of processes
and v = |Π| is the number of variables in the architecture A. We show in Section
6.6 that architectures that contain an information fork are undecidable. In the
following sections, we show that architectures without information forks are
decidable.

6.4 Synthesis for Fork-Free Architectures

The synthesis algorithm consists of three phases: In the first phase, the archi-
tecture is transformed into a hierarchical architecture. In the second phase, an
automata-based construction decides the realizability problem for the simpli-
fied architecture. If it is realizable, an implementation is constructed in the
third phase.

118 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

6.4.1 Architecture Transformations

Edges from processes with a lower level of informedness to those with a higher
level are always redundant, because the feedback can be simulated by the better-
informed process. Feedback edges can therefore removed without changing the
decidability of the architecture. Likewise, we can also add feedback edges with-
out changing the decidability.

Let, for an architecture A = (A,B,D,Π, {Ia}a∈A, {Oa}a∈A), feedback(A) =
(A,B,D,Π, {I ′a}a∈A, {Oa}a∈A) denote the architecture with

I ′a = Ia ∪
⋃

a<d,d∈D

Od ∀a ∈ B.

That is, we add the output of all less informed deterministic processes to the
input of a black-box process.

Lemma 6.2 If A is ordered then feedback(A) is hierarchical.

Proof: For two comparable black-box processes b ¹ b′,
⋃

b<d,d∈D Od ⊆⋃
b<d,d∈D Od holds by construction. It thus suffices to show that Ib ⊆ I ′b′ .

Let us assume that Ib * I ′b′ , and let p ∈ Π be an atomic proposition in
Ib r I ′b′ . We distinguish two cases:

• p is in the output of a nondeterministic process (p ∈ Oa, a /∈ D).

This implies b′ ² b. Ã

• p is in the output of a deterministic process (p ∈ Od, d ∈ D).

This implies that b is not better informed than d (because p /∈⋃
b<d,d∈D Od), which in turn implies b /∈ Ub′ . Ã. ¤

An ordered architecture A is equivalent to feedback(A) in the sense that the
same specifications are realizable for the same for set of implementations for the
white-box processes.

Theorem 6.3 Let the architecture A be ordered, and let A′ = feedback(A).
Then an ATµC formula ϕ is realizable in A for a given set PW = {pw}w∈W of
implementations for the white-box processes if and only if ϕ is realizable in A

for PW .

6.5. THE SYNTHESIS ALGORITHM 119

Proof: The ‘if’ direction is trivial: It suffices that every black-box process
ignores the additional information. A suitable implementation PB = {pb}b∈B

for A can simply be translated to the implementation P ′
B = {pb ◦hideI′

b
rIb

}b∈B .
For the ‘only if’ direction, we show by induction that each black-box pro-

cesses b in A can simulate the behavior of the black-box processes in A′

by showing that they can infer the input sequence I ′0I
′
1I

′
2 . . . I ′n in A′ from

the input sequence hideI′
b
rIb

(I ′0I
′
1I

′
2 . . . I ′n−1). Let P ′ = PW ∪ P ′

B for a fixed

P ′
B = {pb : (2Ib)∗ → 2Ob}b∈B be an implementation for A′.

For the induction basis, the process b in A can infer the empty input sequence
ε that it had seen in A′.

For the induction step, the black-box process b in A can infer
the input sequence I ′0I

′
1I

′
2 . . . I ′n−1 ∈ (2I′

b)n from the input sequence
hideI′

b
rIb

(I ′0I
′
1I

′
2 . . . I ′n−1) by induction hypothesis. For all deterministic pro-

cesses d that are less informed than b (b < d), b can therefore infer the re-
action On = pd(hideI′

b
rI′

d
I ′0I

′
1I

′
2 . . . I ′n−1) of d. Thus, b can infer I ′0I

′
1I

′
2 . . . I ′n ∈

(2I′
b)(n+1) from the input sequence hideI′

b
rIb

(I ′0I
′
1I

′
2 . . . I ′n). ¤

6.5 The Synthesis Algorithm

In this section, we present a synthesis algorithm for hierarchical architectures.
The construction is based on automata over infinite trees and concurrent game
structures (cf. Chapter 4).

6.5.1 Realizability in 1-Black-Box Architectures

We first consider the realizability problem for architectures with a single black-
box process. Given such an architecture A = (A, {b},D,Π, {Ia}a∈A, {Oa}a∈A),
an ATµC specification ϕ and a set PW = {pw}w∈W of implementations for
the white-box processes, the following algorithm constructs a nondeterministic
automaton F , which accepts an implementation pb of the black-box process b if
and only if the distributed implementation P = PW ∪{pb} defines a computation
tree 〈‖pA‖, dir〉 that is a model of ϕ. Realizability can then be checked by solving
the emptiness game for F . The synthesis algorithm uses the following automata
operations:

• From specification to automata. First, a specification ϕ is turned into
an ε-free ACG A that accepts exactly the models of ϕ (Theorem 4.1 and
Lemma 4.2).

120 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

• From models to implementations. We then transform A into an
alternating tree automaton B that accepts a relaxed implementation
〈(2Π)∗, l × ⊕

a∈A p′a〉 (extended by atomic propositions; l : (2Π)∗ → 2Π)
with input Π if and only if 〈‖p′A‖, l〉 is a model of ϕ (Lemma 6.4).

• Adjusting for white-box processes. In a third step, we construct an
alternating automaton C that accepts a 2Π × Ob-labeled 2Π-tree 〈(2Π)∗,
l × pb〉 if and only if the 2Π × OA-labeled 2Π-tree 〈(2Π)∗, l × ⊕

a∈A pa〉
obtained by composing pb with the implementations PW = {pw}w∈W of
the white-box processes is accepted by B (Lemma 6.5).

• Pruning the directions from the label. We then construct an alter-
nating automaton D that accepts an Ob-labeled 2Π-tree 〈(2Π)∗, pb〉 if and
only if the 2Π × Ob-labeled 2Π-tree 〈(2Π)∗, dir × pb〉 obtained by adding
the directions to the label is accepted by C (Lemma 6.6).

• Incomplete information. In a fifth step, we transform D into an al-
ternating automaton E that accepts an Ob-labeled 2Ib -tree 〈(2Ib)∗, pb〉 if
and only if its suitable widening 〈(2Π)∗, pb ◦ hide2ΠrIb 〉 is accepted by D
(Lemma 6.7).

• Emptiness test. In the last step, we test the emptiness of E by first
constructing a nondeterministic tree automaton F with L(F) = L(E)
(Corollary 4.6), and then performing a constructive non-emptiness test
for E (Theorem 4.7).

From Specifications to Automata. By Theorem 4.1 and Lemma 4.2, an
ATµC formulas of length l and alternation depth d can be transformed to an
equivalent ε-free automaton over concurrent game structures A with O(l · d)
atoms and O(d) colors (cf. Chapter 4).

From Models to Implementations. To transformation A into an alter-
nating tree automaton that accepts a relaxed implementation if and only if it
defines a model of ϕ, we construct an automaton that represents the second
phase of the acceptance game for ACGs by an

∧ ∨
or

∨ ∧
representation for

the choice-sets defined by the implementations (Lemma 6.4).

Lemma 6.4 For an ε-free ACG A = (2Π, Q, q0, δ, α) and an architecture A =
(A,B,D,Π, {Ia}a∈A, {Oa}a∈A) we can construct an alternating automaton B =
(2Π ×OA, 2Π, Q, q0, δ

′, α) that accepts a tree 〈(2Π)∗, l ×⊕
a∈A pa〉 if and only if

6.5. THE SYNTHESIS ALGORITHM 121

the concurrent game tree G = (A,Π, (2Π)∗, ε, l, {pa}a∈A, τ) with τ : (s, d) 7→ s ·d
is accepted by A.

Proof: Since the potential decisions of the processes are determined by the
(relaxed) implementation, the universal and existential atoms can be resolved
by Boolean combinations of concrete directions.

We obtain δ′(q, (V,
⊕

a∈A Oa)) by resolving the ∀∃ and ∃∀ semantics of uni-
versal and existential atoms in δ(q, π) in the following way:

• Each occurrence of (q′,¤, A′) in δ(q, π) is replaced by∨
OA′∈

L

a∈A′ Oa

∧
OArA′∈

L

a∈ArA′ Oa

(q′, OA′ ∪ OArA′).

The outer disjunction refers to the fact that the agents in A′ first choose
a direction in accordance with the enabled directions in the current state.
The inner conjunction refers to the counter choice made by the agents in
A r A′.

• Likewise, each occurrence of (q′,♦, A′) in δ(q, π) is replaced by∧
OArA′∈

L

a∈ArA′ Oa

∨
OA′∈

L

a∈A′ Oa

(q′, OA′ ∪ OArA′). ¤

Adjusting for White-Box Processes. The OW -fraction of the label repre-
sents the decisions made by the white-box processes. Consequently, we are only
interested in those trees, where the label of every node is in accordance with
these decisions. This information is then redundant and can be pruned. We as-
sume that the composed strategy

⊕
w∈W pw of the white-box processes is repre-

sented as a deterministic finite-state Moore machine M = (2Π, O, o0, dW , oW),
where O is a set of states, o0 the initial state, the transition function dW :
2Π × O → O is a mapping from the input alphabet and the set of states to
the set of states, and the output function oW : O → OW maps each state to
a nonempty set of output letters. The following operation performs the prun-
ing; the state space of the resulting automaton is bilinear in the state space of
the original automaton and the number of states of M, while the set of colors
remains unchanged.

Lemma 6.5 Given an alternating automaton B = (Σ × Ξ,Υ, Q, q0, δ, α) and
a deterministic finite-state Moore machine M = (Σ, O, o0, dW , oW) that pro-
duces a Ξ-labeled Υ-tree 〈Υ∗, l〉, we can construct an alternating automaton
C = (Σ,Υ, Q × O, (q0, o0), δ

′, α′) over Σ-labeled Υ-trees, such that C accepts

122 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

〈Υ∗, l′〉 if and only if B accepts 〈Υ∗, l′′〉 with l′′ : y 7→ (l′(y), l(y)).
If B is a nondeterministic automaton, so is C.

Proof: If δ : (q;σ, ξ) 7→ b(q,σ,ξ)({qi, υi | i ∈ I}), we can set δ′ : (q, o;σ) 7→
b(q,σ,oW (o))

(
{(qi, dW (σ, o)), υi | i ∈ I}

)
. The coloring function can simply be set

to α′ : (q, o) 7→ α(q). ¤

Pruning the Directions from the Label. The label of each state of the
game structures is determined by the last common decision made by the pro-
cesses. Recall that 〈Υ∗, dir〉 denotes the Υ-labeled Υ-tree with dir : y · υ = υ
for all y ∈ Υ∗ and υ ∈ Υ, and dir : ε 7→ υ0 for some predefined root direction
υ0 ∈ Υ.

Lemma 6.6 [KV99] Given an alternating automaton C = (Υ×Σ,Υ, Q, q0, δ, α)
over Υ × Σ-labeled Υ-trees, we can construct an alternating automaton D =
(Σ,Υ, Q × Υ, (q0, υ0), δ

′, α′) over Σ-labeled Υ-trees such that D accepts a tree
〈Υ∗, l〉 if and only if C accepts 〈Υ∗, dir × l〉. ¤

Constructing D is simple: It suffices to store the last direction
υ in the extended state (q, υ) ∈ Q × Υ, and to use the direc-
tion stored in the state as substitution for the eliminated direction.
That is, for δ

(
q, (υ, σ)

)
= b

(
(q1, υ1), . . . , (qn, υn)

)
, we get δ′

(
(q, υ), σ

)
=

b
(
((q1, υ1), υ1), . . . , ((qn, υn), υn)

)
.

If we want to allow for a set Υ0 ⊆ Υ of different root directions, we can add
a fresh initial state q′0 and set δ′(q′0, σ) =

∨
υ∈Υ0

= δ′
(
(q0, υ), σ

)
.

Incomplete Information. The output of the black-box process b may only
depend on the input Ib visible to b. We therefore construct an automaton that
accepts an implementation if and only if its widening is accepted by C.

Lemma 6.7 [KV99] Given an alternating automaton D = (Σ,Ξ×Υ, Q, q0, δ, α)
over Σ-labeled Ξ × Υ-trees, we can construct an alternating automaton E =
(Σ,Ξ, Q, q0, δ

′, α) over Σ-labeled Ξ-trees, such that E accepts 〈Ξ∗, l〉 if and only
if D accepts 〈(Ξ × Υ)∗,wideΥ(l)〉. ¤

This automata transformation changes the transition function δ. The new
transition function δ′ is constructed by replacing each occurrence of (q, (ξ, υ)) in
the mapping of δ by (q, ξ). A memoryless winning strategy of E for a Σ-labeled
Ξ-tree 〈Ξ∗, l〉 defines a memoryless winning strategy for D on its Υ-widening

6.5. THE SYNTHESIS ALGORITHM 123

〈(Ξ×Υ)∗,wideΥ(l)〉: If the winning strategy of E maps a node x ∈ Ξ∗ and a state
q ∈ Q to a set {(qi, ξi) | i ∈ I} of atoms, then the winning strategy of D maps
a state y ∈ (Ξ × Υ)∗ with hideΥ(y) = x and q to {(qi, (ξi, υ)) | i ∈ I, υ ∈ Υ}.

Vice versa, an accepting run-tree of D for 〈(Ξ×Υ)∗,wideΥ(l)〉 can be turned
into an accepting run tree of E for a Σ-labeled Ξ-tree 〈Ξ∗, l〉 by replacing every
node y ∈ (Ξ × Υ)∗ from each label of the run tree by hideΥ(y).

Emptiness Test. The resulting alternating automaton E can be transformed
into an equivalent nondeterministic automaton F by Corollary 4.6, for which
we can perform a constructive non-emptiness test by Theorem 4.7.

6.5.2 Realizability in Hierarchical Architectures

For a hierarchical architecture A = (A,B,D,Π, {Ia}a∈A, {Oa}a∈A), the linear
informedness preorder º = {(b, b′) ∈ B × B | Ib ⊇ Ib′} partitions the black-box
processes B into equivalence classes and defines an order on them. If º defines
n different equivalence classes, we say that A has n levels of informedness. We
define an ordering function o : Nn → 2B , which maps each natural number
i ∈ Nn = {1, . . . , n} to the set of i-th best informed black-box processes. For
convenience, we use Oi =

⊕
b∈o({i,...,n}) Ob and Ii = Ib for b ∈ o(i).

The Algorithm. We start by applying the transformations discussed in the
previous subsection (Theorem 4.1, Lemma 4.2, and Lemmata 6.4 through 6.5)
to construct a tree automaton D1 that accepts a set of relaxed implementations
P0 = {pb}b∈B (with input Π) if and only if P = PW ∪ P0 satisfies ϕ.

Then, we stepwise eliminate the processes in decreasing order of informed-
ness. We successively construct:

• The alternating automaton Ei that accepts an Oi-labeled 2Ii -tree if and
only if its widening is accepted by Di (Lemma 6.7).

A set Pi = {pi
b | b ∈ Bi} of relaxed implementations with input Ii for the

processes in Bi = o({i, . . . , n}) is accepted by Ei if and only if there is a set
P i = {pi

b | b ∈ Bi} of implementations for the processes in Bi = o(Ni−1),
such that PW ∪ Pi ∪ P i satisfies ϕ.

• The nondeterministic automaton Fi with L(Fi) = L(Ei) (Corollary 4.6);
and

124 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

• The nondeterministic automaton Di+1 that accepts an Oi+1-labeled Ii-
tree if and only if it can be extended to an Oi-labeled Ii-tree accepted by
Di (Lemma 6.8).

Narrowing and nondeterminization have been discussed in the previous section,
and language projection is a standard operation on nondeterministic automata.

Lemma 6.8 Given a nondeterministic automaton F = (Σ × Ξ,Υ, Q, q0, δ, α)
that runs on Σ × Ξ-labeled Υ-trees, we can construct a nondeterministic au-
tomaton D = (Σ,Υ, Q, q0, δ

′, α) that accepts a Σ-labeled Υ-tree 〈Υ∗, lΣ〉 if and
only if there is a Σ × Ξ-labeled Υ-tree 〈Υ∗, lΣ × lΞ〉 that is accepted by F .

Proof: D can be constructed by using δ′ to guess the correct tree: We set
δ′ : (q, σ) 7→ ∨

ξ∈Ξ δ(q, (σ, ξ)).
If F accepts a Σ×Ξ-labeled Υ-tree 〈Υ∗, l〉, than F has a memoryless winning

strategy for 〈Υ∗, l〉. From this strategy, we can infer a memoryless winning
strategy for D on the Σ-projection: D can simply choose, for a position y ∈ Υ∗

in the tree and a state q of the automaton, the same set of atoms F chooses.
Vice versa, if D accepts a Σ-labeled Υ-tree 〈Υ∗, l′〉, than it has a memoryless

winning strategy for it. This strategy defines a run tree, which maps each node of
〈Υ∗, l′〉 to a (unique) state of the automaton. Knowing the memoryless strategy,
the position y in the tree and the state q of the automaton, we can infer first
the set of atoms chosen by the strategy, and then an element ξ ∈ Ξ such that
this set of atoms satisfies δ(q, l′(y), ξ). If we use this method to construct a Ξ-
labeled Υ-tree 〈Υ∗, l′′〉, then the Σ × Ξ-labeled Υ-tree 〈Υ∗, l′ × l′′〉 is accepted
by F (with the memoryless winning strategy of D for 〈Υ∗, l′〉). ¤

We check realizability by solving the emptiness game for Fn. This step can be
extended to the synthesis of implementations {pb}b∈B of the black-box processes.

6.5.3 Synthesis

The specification is realizable if and only if player accept has a winning strategy
in the emptiness game of Fn. From this strategy we obtain by projection a
family of implementations Pn = {pa | a ∈ o(n)} for the least-informed processes.

In increasing order of informedness, we obtain implementations for
the other processes: After computing implementations for the processes in
o({i + 1, . . . , n}), they are represented as deterministic finite-state Moore ma-
chines. Using Lemma 6.5, we then construct from Fi a nondeterministic au-
tomaton Gi that accepts those implementations P̂i for the processes in o(i) for

6.5. THE SYNTHESIS ALGORITHM 125

which there exists a set of implementations P i−1 = {pa | a ∈ o(Ni−1)} such that

PW ∪ P i−1 ∪ P̂i ∪ Pi+1 satisfies ϕ. Gi is non-empty by construction. From the
winning strategy for player accept we obtain by projection a family of imple-
mentations P ′ = {pa | a ∈ o(i)}, and set Pi to P ′ ∪ Pi+1.

Theorem 6.9 The distributed synthesis problem for a hierarchical architecture
A with n levels of informedness, a specification ϕ given as an ATµC formula,
and a family PW = {pw}w∈W of implementations of the white-box processes can
be solved in time n-exponential in the number of subformulas of ϕ.

Proof: The specification ϕ is realizable for an architecture A and a given set
{pw}w∈W of white-box strategies if and only if Fn is not empty. The construction
of Fn involves one transformation of an alternating automaton to a nondeter-
ministic automaton for each i ∈ Nn, and therefore takes time n-exponential in
the number of subformulas of ϕ. The size of each nondeterministic automaton Gi

is linear in the size of Fi and the size of the Moore machines for the strategy of
the less-informed processes. Each step along the order of informedness therefore
again takes n-exponential time. ¤

Remark. The construction is also n-exponential in the size of the Moore
machine M that represents the white-box strategies. This complexity can be
improved by pruning the directions successively and removing the strategies
of the white-box processes as late as possible, that is, directly before the first
elimination of information that is available to the white-box process.

Upper bounds for ATL, CTL* and ATL* follow from linear translations
to alternation-free ATµC [AHK02], exponential translations to the µ-calculus
[BC96], and doubly exponential translations to ATµC [dAHM01, AHK02], re-
spectively. µ-calculus and CTL form a syntactical subset of ATµC and ATL,
respectively.

Corollary 6.10 The distributed synthesis problem for a hierarchical architec-
ture A with n levels of informedness and a specification ϕ can be performed in
time n-exponential in the length of ϕ for specifications in CTL, ATL, or the
classic µ-calculus, (n + 1)-exponential in the length of ϕ for specifications in
CTL*, and (n + 2)-exponential in the length of ϕ for specifications in ATL*. ¤

A matching nonelementary lower bound (for LTL formulas and pipelines) is
provided in [PR90].

126 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

From Implementations for feedback(A) to Implementations for A. We
start with composing the deterministic finite-state Moore machines that repre-
sent the implementations {pa}a∈A of the individual processes to a single deter-
ministic finite-state Moore machine M. For M = (2Π, O, o0, dA, oA, lA),

• O is a set of states – the product state from the individual implementa-
tions,

• the initial state o0 is the tuple of individual initial states,

• the output function oA : O → OA maps each state to a nonempty set of
possible decision of the processes, and is composed from the individual
output functions,

• the transition function dA : 2Π × O ⇀ O is a partial mapping from the
input alphabet and the set of states to the set of states, such that (π, o) ∈
2Π × O is in the preimage of the (partial) transition function dA if and
only if π ∈ oA(o) is a possible decision in o, and

• lA : O → 2Π is a labeling function that maps each state to the set of
atomic propositions valid in it.

By construction of M, the size |O| of M is n-exponential in the length of an
ATµC specification ϕ, and M is input preserving, that is, l

(
dA(π, o)

)
= π ∀o ∈

O, π ∈ oA(o), and l(o0) = π0.

Theorem 6.11 The distributed synthesis problem for a fork-free architecture
A whose (hierarchical) architecture feedback(A) has n levels of informedness
and a specification ϕ can be performed in time n-exponential in the length of
ϕ for specifications in CTL, ATL, or the classic or alternating-time µ-calculus,
(n + 1)-exponential in the length of ϕ for specifications in CTL*, and (n + 2)-
exponential in the length of ϕ for specifications in ATL*.

Proof: By Corollary 6.10, the representations of the implementations of the
black-box processes – and thus M – have the claimed size. We assume with-
out loss of generality that all states of M are reachable from the initial state.
(Otherwise, we can restrict M to its reachable fragment.)

By Theorem 6.3, the Ob part of the label and the 2Ob part of the output
of M does, for each black-box process b, only depend on the visible fragment
hide2ΠrIb of the input history. Consequently, we can compute, for each black-
box process b, the coarsest bisimulation relation ∼b that distinguishes two states
o1, o2 ∈ O of M if they

6.6. COMPLETENESS 127

• differ in the Ob part of the label – l(o1) ∩ Ob 6= l(o2) ∩ Ob,

• differ in the 2Ob part of the set of possible decisions – oA(o1) ∩ 2Ob 6=
oA(o2) ∩ 2Ob , or

• have successors that are not identified by ∼b in directions indistinguishable
by Ib – ∃π1 ∈ oA(o1), π2 ∈ oA(o2). π1 ∩ Ib = π2 ∩ Ib ∧ dA(π1, o1) ≁b

dA(π1, o1).

Computing the coarsest bisimulation relation is cheap [PT87], and a finite state
implementation for pb : (2Ib)∗ → Ob with states O/∼b can be read from M
and ∼b. ¤

6.6 Completeness

The algorithm from Section 6.4 solves the synthesis problem for all architectures
without information forks. In this section, we show that the occurrence of an
information fork is a sufficient condition for the undecidability of an architecture,
and hence establish the completeness of our approach.

Pnueli and Rosner [PR90] showed undecidability for the architecture A0

of Figure 6.1 and LTL, using a reduction from the halting problem. In the
proof of Lemma 6.12 we give a new reduction that applies to both CTL and
LTL. Lemma 6.13 and Theorem 6.14 extend this result to all architectures that
contain an information fork.

Older works focus on deterministic processes. That is, the only nondeter-
ministic process allowed for is traditionally an environment env as a special
process that always enables all decisions. (In our setting, the environment env
can be viewed as a white box process, whose implementation penv is a constant
function that maps every input history to 2Oenv .) To cover this classical setting,
the completeness proof is therefore divided into two parts:

• In Subsection 6.6.1, we show that even in this restricted setting (envi-
ronment realizability), architectures that contain an information fork are
undecidable for LTL and CTL specifications.

• In Subsection 6.6.2, we demonstrate completeness for general architectures
that may contain nondeterministic black-box processes.

128 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

6.6.1 Environment Undecidable Architectures

The environment realizability problem is to decide for the
triple (A, ϕ, {pw}w∈W), consisting of an architecture A =
(A,B,D,Π, {Ia}a∈A, {Oa}a∈A) that has only deterministic black-box pro-
cesses (B ⊆ D), a specification ϕ, and a set of white-box implementations
PW = {pw}w∈W , where all implementations pd of nondeterministic white-box
processes d ∈ W r D are constant functions that map every input history
to 2Od , whether there exists a set PB = {pb}b∈B of implementations for the
black-box process in A, such that the joint behavior 〈‖pA‖, dir〉 of the system
satisfies ϕ. (In this case, all nondeterministic white-box processes can be
merged into a single environment process.)

An architecture A that has only deterministic black-box processes is called
environment decidable if realizability can be decided for all formulas ϕ from a
given specification language and suitable implementations PW of the white-box
processes.

Lemma 6.12 The architecture A0 is not environment decidable for CTL and
LTL specifications.

Proof: For a given deterministic Turing machine M , we define a specification
ϕM that is realizable if and only if M halts on the empty input tape.

In the architecture A0 (see Figure 6.1), the environment p1 communicates
independently with two system processes p2 and p3 through their input variables
a and b, respectively. In a first step, we define a specification ψM that has exactly
one (not necessarily finite-state) implementation in which the environment p1

can prompt the processes p2 and p3 to output the entire computation of M
(that is, a series of successive configurations) on the (hidden) variables c and d,
respectively, by sending a start command through the input variables a and b,
respectively. Further start commands have no effect.

A configuration C is output as follows: It starts with the (possibly empty)
sequence of tape symbols left of the read/write head, followed by first the inter-
nal state of M , and then the sequence of tape symbols from the position of the
read/write head up to the first blank -sign.

Let ⊥ denote the terminal state of the Turing machine and let C ⊢ C ′ denote
that C ′ is the configuration succeeding C.

The specification ψM = ψp2
∧ ψp3

is constructed as the conjunction of the
assertions ψp2

and ψp3
, where ψp2

is defined as follows:

6.6. COMPLETENESS 129

• Initially, p2 outputs ⊥ symbols, until the first start symbol is received.
Then, p2 outputs the initial configuration of M and the second configura-
tion of M , followed by a sequence of legal configurations of M .

• If p2 and p3 output C and C ′ respectively (starting concurrently) and
C ⊢ C ′ holds, then the configurations Cnew and C ′

new, output next by p2

and p3, respectively, have to satisfy Cnew ⊢ C ′
new.

Note that their output starts concurrently if and only if the head was not
at the end of the tape (that is, over the blank) in C ′, and C ′

new is output
with a delay of exactly one symbol otherwise.

ψp3
is the corresponding assertion, where the roles of p2 and p3 are swapped.

A simple inductive argument shows that ψM has only the canonical imple-
mentation, where both processes output the computation of M :

Assume there is an implementation, where both processes always output the
first i configurations following the canonical implementation, but one process
(without loss of generality p2) fails to output the (i + 1)-th configuration. If p1

sends the start command on b exactly n steps after sending the start command
on a, where n is the number of steps needed to output the (i−1)-th configuration,
then p3 writes the (i − 1)-th configuration at the same time as p2 outputs the
i-th configuration. Hence, p2 is forced to output the (i + 1)-th configuration
correctly as well.

Consequently, the specification ϕM , ensuring that

• ψM holds and

• p2 and p3 always eventually output ⊥,

has a (finite state) implementation if and only if M halts on the empty input
tape. The specification ϕM can easily be expressed in both CTL and LTL. ¤

The argument that the canonical implementation is the only possible imple-
mentation relies on the fact that p2 is oblivious of b and d, and p3 is oblivious
of a and c. In the architecture A0, a and b are hidden because the environment
communicates with both processes separately, and c and d are hidden because
neither process is aware of the output of the other process. We generalize the
argument to all architectures with an information fork by first showing that the
architecture A0 remains environment undecidable if the output becomes visi-
ble and, in a second step, by allowing for indirect communication between the
environment and the two processes.

130 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

p1

p2 p3

a b

c

d

Figure 6.6: Architecture A1

Lemma 6.13 The architecture A1 = (A,B,D,Π, {Ia}a∈A, {Oa}a∈A) with A =
{p1, p2, p3}, B = D = {p2, p3}, Π = {a, b, c, d}, Ip1

= ∅3, Ip2
= {a, d}, Ip3

=
{b, c}, Op1

= {a, b}, Op2
= {c}, and Op3

= {d} of Figure 6.6 (architecture
architecture A0 plus communication between p2 and p3) is not environment
decidable for CTL and LTL specifications.

Proof: We interpret the input a and b, respectively, in odd and even cycles
in different ways: While only the input in odd cycles may be read as the start
signal that triggers the output of sequences of configurations, the input in even
cycles is interpreted as an XOR key for the following output.

Using only every second bit of the output to encode the configuration, the
nondeterminism is exploited to provide us with a perfect encryption. In this
setting, we can state the specification as in the proof of Lemma 6.12, with the
difference that the decrypted version of the output has to satisfy the output-
requirements. Even though the processes may read each others encrypted out-
put, they are oblivious of its decrypted meaning. ¤

For the undecidability of an architecture it already suffices if the environ-
ment can pass separate information to two different processes. This extends the
class of environment undecidable architectures further to those containing an
information fork.

Theorem 6.14 The distributed environment realizability problem for LTL
and for CTL specifications is undecidable for all architectures A =
(A,B,D,Π, {Ia}a∈A, {Oa}a∈A) with B ⊆ D that contain an information fork.

Proof: If (A′, p, p′, q, q′, E) is an information fork, we can fix two shortest paths

(that may have length 0) pq
0p

q
1p

q
2 . . . pq

m, pq′

0 pq′

1 pq′

2 . . . pq′

n ∈ (A′rD)(A′∩D)∗, with

(pq
i , p

q
i+1) ∈ E for all i < m, (pq′

i , pq′

i+1) ∈ E for all i < n, pq
m = q, and pq′

n = q′.

3The input Ip1 of the environment p1 is not important, because its output is constant.

6.6. COMPLETENESS 131

p p′
ip ip′

op op′

(a)

p p′
ip ip′op

op′

(b)

p p′

ip ip′

(c)

Figure 6.7: Three undecidable situations: An architecture is undecidable if it
contains two processes with incomparable sets of inputs.

We use these paths to transfer secrets represented by the valuation of two (not
necessarily different) environment variables a ∈ (Op

q
0
∩ Ip

q
1
) r (Ip ∪ Ip′) and

b ∈ (O
p

q′

0

∩ I
p

q′

1

) r (Ip ∪ Ip′) via pq
0p

q
1p

q
2 . . . pq

m to p and via pq′

0 pq′

1 pq′

2 . . . pq′

n to

q′, respectively. (To cover the cases that the variables are not different (a =

b) or that the paths pq
0p

q
1p

q
2 . . . pq

m and pq′

0 pq′

1 pq′

2 . . . pq′

n have to share transport
variables, we only use the values of a in even, and the value of b in odd cycles.)

Undecidability therefore follows as in Lemma 6.13. ¤

6.6.2 Undecidable Architectures

As discussed in Subsection 6.2.5, we can assume for all universal specification
languages that all black-box processes are deterministic. For LTL, the undecid-
ability result of Theorem 6.14 therefore covers all architectures that contain an
information fork. For the non-universal specification language CTL, we proof the
completeness of the synthesis procedure introduced in Section 6.4 by showing
that an architecture is decidable if and only if it is fork-free.

The proof is an extension of the reductions from the previous subsection.
In addition to the architectures considered there, we have to take into account
the situation where the two processes do not receive any input from an external
environment (Figure 6.7c). To cover this case, we specify that the start-symbols
and XOR keys are chosen completely nondeterministically during the first and
second phase. The configurations of the Turing machine are emitted in a separate
third phase, where the values of the output variables are specified to be chosen
deterministically.

Theorem 6.15 The synthesis problem for CTL specifications is undecidable for
an architecture A = (A,B,D,Π, {Ia}a∈A, {Oa}a∈A) that contains an informa-
tion fork (A′, p, p′, q, q′, E).

Proof: We use a reduction similar to the one in Theorem 6.14: We again

fix two shortest paths (that may have length 0) pq
0p

q
1p

q
2 . . . pq

m, pq′

0 pq′

1 pq′

2 . . . pq′

n ∈

132 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

(A′ r D)(A′ ∩ D)∗, with (pq
i , p

q
i+1) ∈ E for all i < m, (pq′

i , pq′

i+1) ∈ E for all

i < n, pq
m = q, and pq′

n = q′ and use these paths to transmit a secret to p that
remains hidden from p′ and, vice versa, transmit a secret to p′ that remains
hidden from p.

In the setting with nondeterministic processes, there may arise an addi-
tional problem: p and p′ can be part of A′, and they can, in principle, be the
source of nondeterminism used to establish a secret. To handle this problem, we
implement a three-phase protocol, where the first two phases are again used to
transmit secrets, while emitting the encrypted configurations needs to be moved
to a separated third phase:

• In the first phase, a start symbol is transmitted through the unobservable
pathways to p and p′, respectively.

• In the second phase, an XOR key is transmitted to p and p′ through ip
and ip′ .

• p and p′ output an encoded letter of their output sequence in the third
phase.

We extend the specification with the following guarantees:

• The values of the variables op and op′ are fixed deterministically if p and
p′ output an encrypted bit in the third phase.

• The values of the input variables Ip ∪ Ip′ to p and p′ are chosen determin-
istically with the possible exception of cycles, where they serve as a source
of nondeterminism (for the secret).

• If the values of the input variables Ip ∪ Ip′ to p and p′ are chosen deter-
ministically, then they are set to true with the possible exception of cycles
where they are used to

– transmit a secret to p or p′, respectively, or

– are used to emit the encrypted output bit in the third phase (if they
coincide with op or op′ , respectively).

If the white-box strategies are chosen accordingly, the synthesis problem has
a solution if and only if M halts on the empty input tape. ¤

The Theorems 6.14 and 6.15 imply the completeness of the proposed syn-
thesis algorithm:

6.7. CONCLUSIONS 133

Corollary 6.16 The algorithm from Section 6.4 solves the synthesis problem
for all decidable architectures.

6.7 Conclusions

The invention of model checking in the 1980s has brought formal methods to in-
dustrial practice. Hardware and many communication protocols can be modeled
as finite-state automata and their automatic analysis makes formal verification
economically feasible. A major drawback of model checking methods is that
they require the complete design to be known before they can be applied. It is,
however, crucial to find design errors early, before much effort has gone into the
implementation.

The results from this chapter make incomplete designs accessible to au-
tomated analysis. As soon as enough components have been implemented to
make the architecture decidable, we can automatically complete the design by
deriving an implementation for the remaining processes. If synthesis fails, the
unrealizability of the specification demonstrates an error in the existing partial
design.

Will it be possible to completely automatize the construction of distributed
systems? The results of this chapter mark the limits of system synthesis, be-
cause the introduced algorithm is already applicable to all decidable architec-
tures. Automated program construction is still likely to work in many practical
applications. An example is the system maintenance phase, which dominates
the life-time cost of most systems today. Since in every maintenance cycle only
a few components are modified, nearly all components remain white-box and
the architecture is likely to be decidable.

The description of the set of decidable architectures can also be used to
streamline the design process: We can now identify (sets of) processes that, when
turned white-box, render undecidable architectures decidable. For the 5-process
two-way ring of Figure 6.3f, for example, implementing one of the processes p4

or p5 breaks the information fork, resulting in a decidable architecture, whereas
implementing the three processes p2, p3, and p6 leaves an undecidable architec-
ture. This observation can also be exploited by semi-algorithms for undecidable
architectures: If a finite-state solution exists, it can be found by a simple enu-
meration of the process strategies. Our results show that it is not necessary to
enumerate the strategies of all processes. Since enumerating the strategies of a
black-box process turns that process white-box, it suffices to consider a sufficient

134 CHAPTER 6. UNIFORM DISTRIBUTED SYNTHESIS

subset of the processes, such that all information forks are eliminated from the
architecture.

Another option is the usage of incomplete methods for unrealizable archi-
tectures (or for a reduction in the number of different levels of informedness to
accelerate synthesis). We can use overapproximations (where the single black-
boxes receive additional information) of an architecture to demonstrate that a
synthesis problem is unrealizable, and underapproximations (where the input
to the black-boxes is reduced) to construct an implementation.

Chapter 7

Bounded Synthesis

Abstract

The bounded synthesis problem is to construct an implementation that satisfies
a given temporal specification and a given bound on the number of states. We
present a solution to the bounded synthesis problem for linear-time temporal
logic (LTL), based on a novel emptiness-preserving translation from LTL to
safety tree automata. For distributed architectures, where standard unbounded
synthesis is in general undecidable, we show that bounded synthesis can be
reduced to a SAT problem. As a result, we obtain an effective algorithm for
the bounded synthesis from LTL specifications in arbitrary architectures. By
iteratively increasing the bound, our construction can also be used as a semi-
decision procedure for the unbounded synthesis problem. We also show that
the algorithm extends to the general distributed synthesis problem with ATµC
specifications introduced in the Chapter 6.

7.1 Introduction

Verification and synthesis both provide a formal guarantee that a system is im-
plemented correctly. The difference between the two approaches is that while
verification proves that a given implementation satisfies the specification, syn-
thesis automatically derives one such implementation. Synthesis thus has the
obvious advantage that it completely eliminates the need for manually writing
and debugging code.

135

136 CHAPTER 7. BOUNDED SYNTHESIS

env p1 p2 p3
a b c d

(a)

env

p1 p2

r1 r2

g1

g2

(b)

env

p1 p2

r1, r2 r1, r2

g1

g2

(c)

env p1
r1, r2 g1, g2

(d)

Figure 7.1: Distributed architectures: (a) pipeline architecture, (b) 2-process ar-
biter architecture, (c) 2-process arbiter architecture with complete information,
(d) single-process architecture.

Unfortunately, the synthesis problem is undecidable even for simple dis-
tributed architectures. Consider, for example, the typical 2-process arbiter ar-
chitecture shown in Figure 7.1b: The environment (env) sends requests (r1, r2)
for access to a critical resource to two processes p1 and p2, which react by
sending out grants (g1, g2). As shown in Lemma 6.13, the synthesis problem
is undecidable for this architecture, because both p1 and p2 have access to in-
formation (r1 and r2, respectively) that is hidden from the other process. For
system architectures without such information forks (Chapter 6), like pipeline
architectures (Figure 7.1a shows a pipeline of length 3), the synthesis problem
is decidable, but has nonelementary complexity.

The high complexity of synthesis is explained by the fact that, as pointed out
by Rosner [Ros92], a small LTL formula of size n which refers to m different pro-
cesses already suffices to specify a system that cannot be implemented with less
than m-exp(n) states. From a practical point of view, however, it is question-
able whether such huge implementations should be considered by the synthesis
algorithm, because they are likely to violate other design considerations (such
as the available memory). In this chapter, we therefore study a variation of the
synthesis problem, which we call the bounded synthesis problem, where an upper
limit on the size of the implementation is set in advance. The bound may either
be an explicit design constraint or the result of iteratively increasing the limit
in the search for a solution of minimal size.

Our starting point is the representation of the LTL specification as a uni-
versal Co-Büchi tree automaton. We show that the acceptance of a finite-state
transition system by a universal Co-Büchi automaton can be characterized by
the existence of an annotation that maps each pair of a state of the automa-

7.1. INTRODUCTION 137

ton and a state of the transition system to a natural number. The advantage
of this characterization is that the acceptance condition can be simplified to a
simple safety condition: We show that the universal Co-Büchi automaton can
be translated to an (emptiness-equivalent) deterministic safety automaton that
implicitly builds a valid annotation. The emptiness of the safety automaton can
then be determined in a simple two-player game, where player accept represents
the system implementation and wins the game if the specification is satisfied;
the opponent, player reject, wins the game if the specification is violated.

If the system architecture consists of a single process, as in Figure 7.1d,
then a victory for player accept means that the specification is realizable. Any
winning strategy for player accept immediately defines a correct implementation
for the process. If the architecture consists of more than one process, as in the
arbiter architecture of Figure 7.1b, then a victory for player accept only means
that the specification can be implemented in the slightly modified architecture
(shown for the arbiter example in Figure 7.1c), where all processes have the
same information. An implementation for the architecture with incompletely
informed processes must additionally satisfy a consistency requirement: If a
process cannot distinguish between two different computation paths, it must
react in the same way.

Inspired by the success of bounded model checking [CFG+01, BCC+03], we
show that the bounded synthesis problem for distributed architectures can be
effectively reduced to a SAT problem. We define a constraint system that de-
scribes the existence of a valid annotation and, additionally, ensures that the
resulting implementation is consistent with the limited information available
to the distributed processes. For this purpose, we introduce a mapping that
decomposes the states of the safety game into the states of the individual pro-
cesses: Because the reaction of a process only depends on its local state, the
process is forced to give the same reaction whenever it cannot distinguish be-
tween two paths in the safety game. The satisfiability of the constraint system
can be checked using standard SAT solvers [GPFW97, MMZ+01]. As a result,
we obtain an effective algorithm for the bounded synthesis from LTL specifica-
tions in arbitrary distributed architectures. By iteratively increasing the bound,
our construction can also be used as a semi-decision procedure for the standard
(unbounded) synthesis problem.

Furthermore, for architectures with a decidable synthesis problem (cf. Chap-
ter 6), there is a computable bound for which the two problems coincide. For
the unbounded synthesis problem, the algorithm thus provides both a decision
procedure for fork-free architectures and a semi-decision procedure for all other
architectures.

138 CHAPTER 7. BOUNDED SYNTHESIS

Finally, we show that it is simple to extend the method proposed in this
chapter to full the full distributed synthesis problem discussed in Chapter 6.

Related work. The synthesis of distributed reactive systems was pioneered
by Pnueli and Rosner [PR90], who showed that the synthesis problem is unde-
cidable in general and has nonelementary complexity for pipeline architectures.
An automata-based synthesis algorithm for pipeline and ring architectures is
due to Kupferman and Vardi [KV01]; Walukiewicz and Mohalik provided an
alternative game-based construction [WM03]. We showed in Chapter 6 that the
synthesis problem is decidable if and only if the architecture does not contain
an information fork. Madhusudan and Thiagarajan [MT01] consider the special
case of local specifications (each property refers only to the variables of a single
process). Among the class of acyclic architectures (without broadcast) this syn-
thesis problem is decidable for exactly the doubly-flanked pipelines. Castellani,
Mukund and Thiagarajan [CMT99] consider transition systems as the specifi-
cation language: An implementation is correct if the product of the processes
is bisimilar to the specification. In this case, the synthesis problem is decidable
independently of the architecture.

Our translation of LTL formulas to tree automata is based on Kupferman
and Vardi’s Safraless decision procedures [KV05]. We use their idea of avoiding
Safra’s determinization using universal Co-Büchi automata. Our construction
improves on [KV05] in that it produces deterministic safety automata instead
of nondeterministic Büchi automata.

7.2 Preliminaries

We consider the synthesis of distributed reactive systems that are specified in
linear-time temporal logic (LTL). For simplicity, we focus on environment archi-
tectures, where a dedicated environment process env is the only nondeterministic
process, and the only white-box process. The environment is always maximal,
that is, penv maps every input history to 2Oenv . Given an environment architec-
ture E and an LTL formula ϕ, we decide whether there is an implementation
for each system process in A, such that the composition of the implementations
satisfies ϕ.

7.2. PRELIMINARIES 139

7.2.1 Environment Architectures

An environment architecture E = (B,Π, {Ib}b∈B , {Ob}b∈B∪{env})
is an abbreviation for an architecture A = (B ⊎ {env}, B,B,
Π, {Ib}b∈B∪{env}, {Ob}b∈B∪{env}) with Ienv = ∅, and the implementation
PW = {penv} that maps every input history to 2Oenv .

We call an environment architecture fully informed if every black-box process
has access to the complete output of the environment (Ib = Oenv ∀b ∈ B).
Note that this implies that the process has access to the full system state (cf.
Chapter 6).

Since every process in a fully informed architecture has enough information
to simulate every other process, we can assume without loss of generality that
a fully informed architecture contains only a single black-box process b.

7.2.2 Implementations as Labeled Transition Systems

Considering linear-time specifications and having a fixed set of directions, we
can use ordinary transition systems instead of concurrent game structures to
represent implementations.

For a given finite set Υ of directions and a finite set Σ of labels, a Σ-labeled
Υ-transition system is a tuple T = (T, t0, τ, o), consisting of a set of states T , an
initial state t0 ∈ T , a transition function τ : T ×Υ → T , and a labeling function
o : T → Σ. T is a finite-state transition system if and only if T is finite.

Each system process b ∈ B is implemented as a 2Ob -labeled 2Ib -transition
system Tb = (Tb, tb, τb, ob). The specification ϕ refers to the composition of
the system processes, which is the 2Π-labeled 2Oenv -transition system TE =
(T, t0, τ, o), defined as follows: the set T =

⊗
b∈B Tp × 2Oenv of states is formed

by the product of the states of the process transition systems and the possible
values of the output variables of the environment. The initial state t0 is formed
by the initial states tp of the process transition systems and a designated root
direction ⊆ Oenv . The transition function updates, for each system process b,
the Tb part of the state in accordance with the transition function τb, using (the
projection of) o as input, and updates the 2Oenv part of the state with the output
of the environment process. The labeling function o labels each state with the
union of its 2Oenv part with the labels of its Tp parts.

With respect to the system processes, the combined transition system thus
simulates the behavior of all process transition systems; with respect to the
environment process, it is input-preserving, that is, in every state, the label
accurately reflects the input received from the environment.

140 CHAPTER 7. BOUNDED SYNTHESIS

7.2.3 Synthesis

A specification ϕ is (finite-state) realizable in an environment architecture E =
(B,Π, {Ib}b∈B , {Ob}b∈B∪{env}) if and only if there exists a family of (finite-
state) implementations {Tb | b ∈ b} of the system processes, such that their
composition TE satisfies ϕ.

7.2.4 Bounded Synthesis

We introduce bounds on the size of the process implementations and
on the size of the composition. For a given architecture E =
(B,Π, {Ib}b∈B , {Ob}b∈B∪{env}), a specification ϕ is bounded realizable with re-
spect to a family of bounds {ba ∈ N | a ∈ B} on the size of the system processes
and a bound bE ∈ N on the size of the composition TE , if there exists a family
of implementations {Ta | a ∈ B}, where, for each process a ∈ B, Ta has at most
ba states, such that their composition TE satisfies ϕ and has at most bE states.

7.3 Annotated Transition Systems

In this section, we introduce an annotation function for transition systems. The
annotation function has the useful property that a finite-state transition system
satisfies the specification if and only if it has a valid annotation.

Our starting point is a representation of the specification as a universal
alternating Co-Büchi automaton. Since the alternating automaton is universal,
every transition system in the language of the automaton has a unique run tree.
This run tree r is self-similar: Two nodes y, y′ of the run tree that are decorated
with the same label r(y) = r(y′) = (q, t) have sets S(y), S(y′) of successors that
are equally labeled ({r(s) | s ∈ S(y)} = {r(s) | s ∈ S(y′)}). We can therefore
view the run tree as (the unraveling of) a run graph, with the same acceptance
condition.

The annotation assigns to each pair (q, t) of a state q of the automaton and
a state t of the transition system either a natural number or a blank sign. The
natural number indicates the maximal number of rejecting states that occur on
some path to (q, t) in the run graph.

We show that the finite-state transition systems accepted by the automaton
are exactly those transition systems for which there is an annotation that assigns
only natural numbers to the vertices of the run graph. We call such annotations
valid.

7.3. ANNOTATED TRANSITION SYSTEMS 141

Our construction has two steps. In the first step, we translate the specifica-
tion to a universal Co-Büchi automaton. This standard construction is language-
preserving: The automaton accepts exactly the transition systems that satisfy
the specification.

In the second step, we translate the universal Co-Büchi automaton to a
parametrized deterministic safety automaton. The relationship between the Co-
Büchi automaton and the safety automaton is the following: For every param-
eter value, the safety automaton recognizes a sublanguage of the Co-Büchi
automaton; for sufficiently high parameter values, the Co-Büchi automaton
and the safety automaton become emptiness-equivalent. The advantage of this
parametrized construction is that it is possible to increase the value of the pa-
rameter (and therefore also the size of the emptiness game) incrementally.

7.3.1 Recap: Universal Co-Büchi Automata

We translate a given LTL specification ϕ into an equivalent universal Co-Büchi
automaton Uϕ. This can be done with a single exponential blow-up by first
negating ϕ, then translating ¬ϕ into an equivalent nondeterministic Büchi word
automaton [GO01], and then dualizing the resulting nondeterministic Büchi
automaton into a universal Co-Büchi automaton [MS87] (cf. Lemma 9.3) that
accepts a transition system T if and only if the specification ϕ holds along every
path of T .

Theorem 7.1 [KV05] Given an LTL formula ϕ, we can construct a universal
Co-Büchi automaton Uϕ with 2O(|ϕ|) states that accepts a transition system T
if and only if T satisfies ϕ. ¤

7.3.2 Bounded Annotations

As a preparation for the translation of universal Co-Büchi tree automata to
deterministic safety tree automata, we introduce an annotation function that
assigns to each pair (q, t) of a state q of the automaton and a state t of the
transition system either a natural number or a blank sign. Intuitively, the an-
notation indicates the maximal number of rejecting states that occur on some
path from the initial state to (q, t) in the run graph.

An annotation of a transition system T = (T, t0, τ, o) on a universal Co-
Büchi automaton U = (Σ,Υ, Q, δ, F) is a function λ : Q × T → { } ∪ N. We
call an annotation c-bounded if its mapping is contained in { }∪ {0, . . . , c}, and

142 CHAPTER 7. BOUNDED SYNTHESIS

bounded if it is c-bounded for some natural number c ∈ N. An annotation is
valid if it satisfies the following conditions:

• the pair (q0, t0) of initial states is annotated with a natural number
(λ(q0, t0) 6=), and

• if a pair (q, t) is annotated with a natural number (λ(q, t) = n 6=) and
(q′, υ) ∈ δ(q, o(t)) is an atom of the conjunction δ(q, o(t)), then (q′, τ(t, υ))
is annotated with a greater number, which needs to be strictly greater if
q′ ∈ F is rejecting. That is, λ(q′, τ(t, υ)) ⊲q′ n where ⊲q′ is > for q′ ∈ F
and ≥ otherwise.

Theorem 7.2 A finite-state Σ-labeled Υ-transition system T = (T, t0, τ, o) is
accepted by a universal Co-Büchi automaton U = (Σ,Υ, Q, δ, F) if and only if
it has a valid (|T | · |F |)-bounded annotation.

Proof: Since U is universal, U has a unique run graph G = (G,E) on T . Since
T and U are finite, G is finite, too.

If G contains a lasso with a rejecting state in its loop, that is, a path
(q0, t0)(q1, t1) . . . (qn, tn) = (q′0, t

′
0) and a path (q′0, t

′
0)(q

′
1, t

′
1) . . . (q′m, t′m) =

(q′0, t
′
0) such that q′i is rejecting for some i ∈ {1, . . . ,m}, then, by induction,

any valid annotation λ satisfies

• λ(qj , tj) ∈ N for all j ∈ {0, . . . , n},

• λ(q′j , t
′
j) ∈ N for all j ∈ {0, . . . ,m},

• λ(q′j−1, t
′
j−1) ≤ λ(q′j , t

′
j) for all j ∈ {1, . . . ,m}, and

• λ(q′i−1, t
′
i−1) < λ(q′i, t

′
i). Ã

If, on the other hand, G does not contain a lasso with a rejecting state in
its loop, we can infer a valid (|T | · |F |)-bounded annotation by assigning to
each vertex (q, t) ∈ G of the run graph the highest number of rejecting states
occurring on some path (q0, t0)(q1, t1) . . . (q, t), and by assigning to every pair
of states (q, t) /∈ G not in G. ¤

7.3.3 Estimating the Bound

Since the distributed synthesis problem is undecidable, it is in general not pos-
sible to estimate a sufficient bound c that guarantees that a transition system
with a valid c-bounded annotation exists if the specification is realizable.

7.4. AUTOMATA-THEORETIC BOUNDED SYNTHESIS 143

For fully informed architectures, however, such an estimate is possible. If a
universal Co-Büchi automaton is non-empty, then the size of a smallest accepted
transition system can be estimated by the size of an equivalent deterministic
parity automaton.

Theorem 7.3 [Pit06] Given a universal Co-Büchi automaton U with n states,
we can construct an equivalent deterministic parity automaton P with n2n+2

states and 2n colors. ¤

A solution to the synthesis problem is required to be input-preserving, that
is, in every state, the label must accurately reflect the input. Input preservation
can be checked with a deterministic safety automaton DI , whose states are
formed by the possible inputs I = 2Oenv . In every state i ∈ I, DI checks if
the label agrees with the input i, and sends the successor state i′ ∈ I into the
direction i′. If U accepts an input-preserving transition system, then we can
construct a finite input-preserving transition system, which is accepted by U ,
by evaluating the emptiness game of the product automaton of P and DI . The
minimal size of such an input-preserving transition system can be estimated by
the size of P and I.

Corollary 7.4 If a universal Co-Büchi automaton U with n states and m re-
jecting states accepts an input-preserving transition system, then U accepts a fi-
nite input-preserving transition system T with n2n+2·|I| states, where I = 2Oenv .
T has a valid m · n2n+2 · |I|-bounded annotation for U . ¤

7.4 Automata-Theoretic Bounded Synthesis

Using the annotation function, we can reduce the synthesis problem for fully
informed architectures to a simple emptiness check on safety automata. The
following theorem shows that there is a deterministic safety automaton that,
for a given parameter value c, accepts a transition system if and only if it has
a valid c-bounded annotation. This leads to the following automata-theoretic
synthesis procedure for fully informed architectures:

Given a specification, represented as a universal Co-Büchi automaton U =
(Σ,Υ, Q, q0, δ, F), we construct a sequence of safety automata that check for
valid bounded annotations up to the bound c = |F | · b, where b is either the
predefined bound bE on the size of the transition system, or the sufficient bound
n2n+2 · |I| from Corollary 7.4. If the intersection of DI with one of these au-
tomata is non-empty, then the specification is realizable; if the intersection with

144 CHAPTER 7. BOUNDED SYNTHESIS

the safety automaton for the largest parameter value c is empty, then the specifi-
cation is unrealizable. The emptiness of the automata can be checked by solving
their emptiness games.

Theorem 7.5 Given a universal Co-Büchi automaton U = (Σ,Υ, Q, q0, δ, F),
we can construct a family of deterministic safety automata {Dc =
(Σ,Υ, Sc, s0, δc) | c ∈ N} such that Dc accepts a transition system if and only if
it has a valid c-bounded annotation.

Construction: We choose the functions from Q to the union of N and a
blank sign (S = Q → { } ∪ N) as the state space of an abstract deterministic
safety automaton D = (Σ,Υ, S, s0, δ∞). Each state of D indicates how many
times a rejecting state may have been visited in some trace of the run graph
that passes the current position in the transition system. The initial state of D
maps the initial state of U to 0 (s0(q0) = 0) and all other states of U to blank
(∀q ∈ Q r {q0}. s0(q) =).

Let δ+
∞(s, σ) = {((q′, s(q′) + f(q′)), υ) | q, q′ ∈ Q, s(q) 6= , and (q′, υ) ∈

δ(q, σ)}, where f(q) = 1∀q ∈ F , and f(q) = 0∀q /∈ F , be the function that
collects the transitions of U . The transition function δ∞ is defined as follows:
δ∞(s, σ) =

∧
υ∈Υ(sυ, υ) with sυ(q) = max{n ∈ N | ((q, n), υ ∈ δ+

∞(s, σ)} (where
max{∅} =).

Dc is formed by restricting the states of D to Sc = Q → { } ∪ {0, . . . , c}.
Proof: Let λ be a valid c-bounded annotation of T = (T, t0, τ, o) for U , and let
λt denote the function with λt(q) = λ(q, t). For two functions s, s′ : Q → { }∪N,
we write s ≤ s′ if s(q) ≤ s′(q) holds for all q ∈ Q, where is the minimal
element (< n for all n ∈ N). We show by induction that Dc has a run graph
G = (G,E) for T , such that s ≤ λt holds true for all vertices (s, t) ∈ G of
the run graph. For the induction basis, s0 ≤ λt0 holds by definition. For the
induction step, let (s, t) ∈ G be a vertex of G. By induction hypothesis, we
have s ≤ λt. With the definition of δ+

∞ and the validity of λ, we can conclude
that ((q′, n), υ) ∈ δ+

∞(s, o(t)) implies n ≤ λτ(t,υ)(q
′), which immediately implies

s′ ≤ λt′ for all successors (s′, t′) of (s, t) in G.
Let now G = (G,E) be an accepting run graph of Dc for T , and let

λ(q, t) = max{s(q) | (s, t) ∈ G}. Then λ is obviously a c-bounded annota-
tion. For the validity of λ, λ(q0, t0) ∈ N holds true since s0(q0) ∈ N is a
natural number and (s0, t0) ∈ G is a vertex of G. Also, if a pair (q, t) is
annotated with a natural number λ(q, t) = n 6= , then there is a vertex
(s, t) ∈ G with s(q) = n. If now (q′, υ) ∈ δ(q, o(t)) is an atom of the conjunction
δ(q, o(t)), then ((q′, n + f(q′)), υ) ∈ δ+

∞(s, o(t)) holds true, and the υ-successor

7.5. CONSTRAINT-BASED BOUNDED SYNTHESIS 145

1

2 3⊥

∗

g1 g2

r1 r2g1g2

Figure 7.2: Specification of a simple arbiter, represented as a universal Co-Büchi
automaton. The states depicted as double circles (2 and 3) are the rejecting
states in F .

(s′, τ(t, υ)) of (s, t) satisfies s′(q′) ⊲q′ n. The validity of λ now follows with
λ(q′, τ(t, υ) ≥ s′(q′). ¤

Remark. Since U may accept transition systems where the number of reject-
ing states occurring on a path is unbounded, the union of the languages of all Dc

is, in general, a strict subset of the language of U . Every finite-state transition
system in the language of U , however, is accepted by almost all Dc.

Example. Consider the specification of a simple arbiter, depicted as a univer-
sal Co-Büchi automaton in Figure 7.2. The specification requires that globally

• at most one process has a grant, and

• each request is eventually followed by a grant.

The emptiness game for D1 intersected with DI is depicted in Figure 7.3.

7.5 Constraint-Based Bounded Synthesis

We now develop an alternative synthesis method for fully informed architectures
that uses a SAT solver to determine an input-preserving transition system with
a valid annotation. The constraint system defined in this section will provide
the foundation for the synthesis method for general distributed architectures in
Section 7.6.

We represent the (unknown) transition system and its annotation by un-
interpreted functions. The existence of a valid annotation is thus reduced to

146 CHAPTER 7. BOUNDED SYNTHESIS

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)

(0, 1,)

(0, , 1)

(0, 1, 1)

g1g2,

g1g2,

g1g2

g1g2,

g1g2

g
1

g
2

g
1g

2

g1g2,

g1g2

g1
g2

g1g2

g1g2

g1g2

g1g2

g
1

g
2

g1g2

g1g2

g1g2

g
1 g

2
g1g2

(0, ,)

(0, ,)
r1r2

(0, , 1)

Figure 7.3: Example of a safety game for synthesis in a fully informed architec-
ture. The figure shows the emptiness game for the intersection of D1 and DI in
the arbiter example (Figure 7.2). Rectangles denote game positions for player
accept, ovals denote game positions for player reject. Game positions that are
not completely expanded (that is, that have more successors if the parameter
is increased) are dashed. The starting position specifies r1r2 as root direction.
Player accept wins the game by avoiding the move to (0, 1, 1).

7.5. CONSTRAINT-BASED BOUNDED SYNTHESIS 147

the satisfiability of a constraint system in first-order logic modulo finite integer
arithmetic. The advantage of this representation is that the size of the constraint
system is small (bilinear in the size of U and the number of directions). Further-
more, the additional constraints needed for distributed synthesis, which will be
defined in Section 7.6, have a compact representation as well (logarithmic in the
number of directions of the individual processes).

Remark. Integer arithmetic is useful for explaining the algorithm, but we do
not need to build on integer arithmetic: The essential property is to guarantee
the absence of cycles that contain a rejecting state. But to prove this absence,
any ordered set (finite or not) suffices for the labels. Finiteness, in turn, is only
used to restrict the size of the system. An efficient implementation will therefore
build on theories with more efficient algorithms.

The constraint system specifies the existence of a finite input-preserving 2Π-
labeled 2Oenv -transition system T = (T, t0, τ, o) that is accepted by the universal
Co-Büchi automaton Uϕ = (Σ,Υ, Q, q0, δ, F) and has a valid annotation λ.

To encode the transition function τ , we introduce a unary function symbol
τυ for every output υ ⊆ Oenv of the environment. Intuitively, τυ maps a state t
of the transition system T to its υ-successor τυ(t) = τ(t, υ).

To encode the labeling function o, we introduce a unary predicate symbol a
for every variable a ∈ Π. Intuitively, a maps a state t of the transition system
T to true if and only if it is part of the label o(t) ∋ a of T in t.

To encode the annotation, we introduce, for each state q of the universal
Co-Büchi automaton U , a unary predicate symbol λB

q and a unary function

symbol λ#
q . Intuitively, λB

q maps a state t of the transition system T to true if and

only if λ(q, t) is a natural number, and λ#
q maps a state t of the transition system

T to λ(q, t) if λ(q, t) is a natural number, and is unconstrained if λ(q, t) = .
We can now formalize that the annotation of the transition system is valid

by the following first order constraints (modulo finite integer arithmetic):

∀t. λB

q (t) ∧ (q′, υ) ∈ δ(q,−→a (t)) → λB

q′(τυ(t)) ∧ λ#
q′(τυ(t)) ⊲q λ#

q (t),

where −→a (t) represents the label o(t), (q′, υ) ∈ δ(q,−→a (t)) represents the corre-
sponding propositional formula, and ⊲q stands for ⊲q ≡> if q ∈ F and ⊲q ≡≥
otherwise. Additionally, we require λB

q0
(0), that is, we require the pair of initial

states to be labeled by a natural number.
To guarantee that the resulting transition system is input-preserving, we

add, for each a ∈ Oenv and each υ ⊆ Oenv , a constraint

148 CHAPTER 7. BOUNDED SYNTHESIS

∀t. a(τυ(t)) if a ∈ υ,

and a constraint
∀t.¬a(τυ(t)) if a /∈ υ.

Additionally, we require that the initial state is labeled with the root direction.
As an obvious implication of Theorem 7.2, this constraint system is satisfi-

able if and only if U accepts a finite input-preserving transition system.

Theorem 7.6 For fully informed architectures, the constraint system inferred
from the specification, represented as the universal Co-Büchi automaton U , is
satisfiable modulo finite integer arithmetic if and only if the specification is finite-
state realizable. ¤

Lemma 7.7 For a specification represented as a universal Co-Büchi automaton
U = (2Π, 2Oenv , Q, q0, δ, F), the inferred constraint system has size O(|δ| · |Π| +
|Oenv | · |2Oenv |). ¤

The main parameter of the constraint system is the bound bE on the size
of the transition system TE . If we use bE to unravel the constraint system
completely (that is, if we resolve the universal quantification explicitly), the size
of the resulting constraint system is linear in bE .

Theorem 7.8 For a specification, represented as a universal Co-Büchi au-
tomaton U = (2Π, 2Oenv , Q, q0, δ, F), and a given bound bE on the size of the
transition system TE, the unraveled constraint system has size O(bE · (|δ|·|Π| +
|Oenv |·|2Oenv |)). It is satisfiable if and only if the specification is bounded real-
izable in the fully informed architecture ({env , p},Π, {Ip = Oenv}, {Oenv , Op =
Π r Oenv}) with bound bE. ¤

Example. Figure 7.4 shows the constraint system, resulting from the specifi-
cation of an arbiter by the universal Co-Büchi automaton depicted in Figure 7.2,
implemented on the single process architecture of Figure 7.1d (or, likewise, on
the distributed but fully informed architecture of Figure 7.1c).

The first constraint represents the requirement that the resulting transition
system must be input-preserving, the second requirement represents the initial-
ization (where ¬r1(0) ∧ ¬r2(0) represents an arbitrarily chosen root direction),
and the requirements 3 through 8 each encode one transition of the universal au-
tomaton of Figure 7.2. Following the notation of Figure 7.2, r1 and r2 represent
the requests and g1 and g2 represent the grants.

7.5. CONSTRAINT-BASED BOUNDED SYNTHESIS 149

1. ∀t. r1(τr1r2
(t)) ∧ r2(τr1r2

(t)) ∧ r1(τr1r2
(t)) ∧ ¬r2(τr1r2

(t))
∧ ¬r1(τr1r2

(t)) ∧ r2(τr1r2
(t)) ∧ ¬r1(τr1r2

(t)) ∧ ¬r2(τr1r2
(t))

2. λB
1 (0) ∧ ¬r1(0) ∧ ¬r2(0)

3. ∀t. λB
1 (t) → λB

1 (τr1r2
(t)) ∧ λ#

1 (τr1r2
(t)) ≥ λ#

1 (t)

∧ λB
1 (τr1r2

(t)) ∧ λ#
1 (τr1r2

(t)) ≥ λ#
1 (t)

∧ λB
1 (τr1r2

(t)) ∧ λ#
1 (τr1r2

(t)) ≥ λ#
1 (t)

∧ λB
1 (τr1r2

(t)) ∧ λ#
1 (τr1r2

(t)) ≥ λ#
1 (t)

4. ∀t. λB
1 (t) → ¬g1(t) ∨ ¬g2(t)

5. ∀t. λB
1 (t) ∧ r1(t) → λB

2 (τr1r2(t)) ∧ λ#
2 (τr1r2(t)) > λ#

1 (t)

∧ λB
2 (τr1r2

(t)) ∧ λ#
2 (τr1r2

(t)) > λ#
1 (t)

∧ λB
2 (τr1r2

(t)) ∧ λ#
2 (τr1r2

(t)) > λ#
1 (t)

∧ λB
2 (τr1r2

(t)) ∧ λ#
2 (τr1r2

(t)) > λ#
1 (t)

6. ∀t. λB
1 (t) ∧ r2(t) → λB

3 (τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

1 (t)

∧ λB
3 (τr1r2

(t)) ∧ λ#
3 (τr1r2

(t)) > λ#
1 (t)

∧ λB
3 (τr1r2

(t)) ∧ λ#
3 (τr1r2

(t)) > λ#
1 (t)

∧ λB
3 (τr1r2

(t)) ∧ λ#
3 (τr1r2

(t)) > λ#
1 (t)

7. ∀t. λB
2 (t) ∧ ¬g1(t) → λB

2 (τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB
2 (τr1r2

(t)) ∧ λ#
2 (τr1r2

(t)) > λ#
2 (t)

∧ λB
2 (τr1r2

(t)) ∧ λ#
2 (τr1r2

(t)) > λ#
2 (t)

∧ λB
2 (τr1r2

(t)) ∧ λ#
2 (τr1r2

(t)) > λ#
2 (t)

8. ∀t. λB
3 (t) ∧ ¬g2(t) → λB

3 (τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB
3 (τr1r2

(t)) ∧ λ#
3 (τr1r2

(t)) > λ#
3 (t)

∧ λB
3 (τr1r2

(t)) ∧ λ#
3 (τr1r2

(t)) > λ#
3 (t)

∧ λB
3 (τr1r2

(t)) ∧ λ#
3 (τr1r2

(t)) > λ#
3 (t)

Figure 7.4: Example of a constraint system for synthesis in a fully informed
architecture. The figure shows the constraint system for the arbiter example
(Figure 7.2). The arbiter is to be implemented in the fully informed architecture
shown in Figure 7.1d.

150 CHAPTER 7. BOUNDED SYNTHESIS

7.6 Distributed Synthesis

To solve the distributed synthesis problem for a given environment architecture
E = (B,Π, {Ib}b∈B , {Ob}b∈B∪{env}), we need to find a family of (finite-state)

transition systems {Tb = (Tb, t
b
0, τb, ob) | b ∈ B} such that their composition to

TE satisfies the specification. The constraint system developed in the previous
section can be adapted to distributed synthesis by explicitly decomposing the
global state space of the combined transition system TE : We introduce a unary
function symbol db for each process b ∈ B, which, intuitively, maps a state
t ∈ TE of the product state space to its b-component tb ∈ Tb.

The value of an output variable a ∈ Ob may only depend on the state of
the process transition system Tb. We therefore replace every occurrence of a(t)
in the constraint system of the previous section by a(db(t)). Additionally, we
require that every process b acts consistently on any two histories that it cannot
distinguish. The update of the state of Tb may thus only depend on the state of
Tb and the input visible to b. This is formalized by the following constraints:

1. ∀t. db(τυ(t)) = db(τυ′(t)) for all decisions υ, υ′ ⊆ Oenv of the environment
that are indistinguishable for p (that is, υ ∩ Ib = υ′ ∩ Ib).

2. ∀t, u. db(t) = db(u) ∧ ∧
a∈IbrOenv

(
a(dba

(t)) ↔ a(dba
(t))

)
→ db(τυ(t)) =

db(τυ(u)) for all decisions υ ⊆ Oenv ∩ Ib (picking one representative for
each class of environment decisions that p can distinguish). ba ∈ B denotes
the process controlling the output variable a ∈ Oba

.

Since the combined transition system TE is finite-state, the satisfiability
of this constraint system modulo finite integer arithmetic is equivalent to the
distributed synthesis problem.

Theorem 7.9 The constraint system inferred from the specification, repre-
sented as the universal Co-Büchi automaton U , and the environment architecture
E is satisfiable modulo finite integer arithmetic if and only if the specification is
finite-state realizable in the environment architecture E. ¤

Lemma 7.10 For a specification, represented as a universal Co-Büchi automa-
ton U = (2Π, 2Oenv , Q, q0, δ, F), and an environment architecture E, the inferred
constraint system for distributed synthesis has size O(|δ| · |Π|+ |Oenv | · |2Oenv |+∑
b∈B

|Ib r Oenv |). ¤

7.6. DISTRIBUTED SYNTHESIS 151

4. ∀t. λB
1 (t) → ¬g1(d1(t)) ∨ ¬g2(d2(t))

7. ∀t. λB
2 (t) ∧ ¬g1(d1(t)) → λB

2 (τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB
2 (τr1r2

(t)) ∧ λ#
2 (τr1r2

(t)) > λ#
2 (t)

∧ λB
2 (τr1r2

(t)) ∧ λ#
2 (τr1r2

(t)) > λ#
2 (t)

∧ λB
2 (τr1r2

(t)) ∧ λ#
2 (τr1r2

(t)) > λ#
2 (t)

8. ∀t. λB
3 (t) ∧ ¬g2(d2(t)) → λB

3 (τr1r2(t)) ∧ λ#
3 (τr1r2(t)) > λ#

3 (t)

∧ λB
3 (τr1r2

(t)) ∧ λ#
3 (τr1r2

(t)) > λ#
3 (t)

∧ λB
3 (τr1r2

(t)) ∧ λ#
3 (τr1r2

(t)) > λ#
3 (t)

∧ λB
3 (τr1r2

(t)) ∧ λ#
3 (τr1r2

(t)) > λ#
3 (t)

9. ∀t. d1(τr1r2
(t)) = d1(τr1r2

(t)) ∧ d1(τr1r2
(t)) = d1(τr1r2

(t))
∧ d2(τr1r2

(t)) = d2(τr1r2
(t)) ∧ d2(τr1r2

(t)) = d2(τr1r2(t))

10. ∀t, u. d1(t) = d1(u) ∧
(
g2(d2(t)) ↔ g2(d2(u))

)

→ d1(τr1r2
(t)) = d1(τr1r2

(u)) ∧ d1(τr1r2
(t)) = d1(τr1r2

(u))

11. ∀t, u. d2(t) = d2(u) ∧
(
g1(d1(t)) ↔ g1(d1(u))

)

→ d2(τr1r2
(t)) = d2(τr1r2

(u)) ∧ d2(τr1r2
(t)) = d2(τr1r2

(u))

Figure 7.5: Example of a constraint system for distributed synthesis. The figure
shows modifications and extensions to the constraint system from Figure 7.4
for the arbiter example (Figure 7.2) in order to implement the arbiter in the
distributed architecture shown in Figure 7.1b.

The main parameters of the constraint system for distributed synthesis are
the bound bE on the size of the transition system TE and the family {bb | b ∈ B}
of bounds on the process transition systems {Tb | b ∈ B}. If we use these
parameters to unravel the constraint system completely (that is, if we resolve
the universal quantification explicitly), the resulting transition system is linear
in bE , and quadratic in bb.

Theorem 7.11 For a given specification, represented as a universal Co-Büchi
automaton U = (2Π, 2Oenv , Q, q0, δ, F), an environment architecture E =
(B,Π, {Ib}b∈B , {Ob}b∈B∪{env}), a bound bE on the size of the input-preserving
transition system TE, and a family {bb | b ∈ B} of bounds on the process
transition systems {Tb | b ∈ B}, the unraveled constraint system has size
O(bE · (|δ| · |Π| + |Oenv | · |2Oenv |) +

∑
b∈B bb

2|Ib r Oenv |)). It is satisfiable if

152 CHAPTER 7. BOUNDED SYNTHESIS

bound | 4 | 5 | 6 | 7 | 8 | 9

result | unsatisfiable | unsatisfiable | unsatisfiable | unsatisfiable | satisfiable | satisfiable

decisions | 3957 | 13329 | 23881 | 68628 | 72655 | 72655

conflicts | 209 | 724 | 1998 | 15859 | 4478 | 4478

Boolean variables | 1011 | 2486 | 4169 | 9904 | 5214 | 5214

memory (MB) | 16.9102 | 18.1133 | 20.168 | 27.4141 | 26.4375 | 26.4414

time (seconds) | 0.05 | 0.28 | 1.53 | 35.99 | 7.53 | 7.31

Table 7.1: Experimental results from the synthesis of a single-process arbiter
using the specification from Figure 7.2 and the architecture from Figure 7.1a.
The table shows the time and memory consumption of Yices 1.0.9 when solving
the SMT problem from Figure 7.4, with all quantifiers replaced by explicit con-
junctions for different bounds on the number of states in the transition system.

and only if the specification is bounded realizable in A for the bounds bE and
{bb | b ∈ B}. ¤

Example. As an example for the reduction of the distributed synthesis prob-
lem to SAT, we consider the problem of finding a distributed implementation to
the arbiter specified by the universal automaton of Figure 7.2 in the architecture
of Figure 6.3b. The functions d1 and d2 are the mappings to the processes p1 and
p2, which receive requests r1 and r2 and provide grants g1 and g2, respectively.
Figure 7.5 shows the resulting constraint system. Constraints 1–3, 5, and 6 are
the same as in the fully informed case (Figure 7.4). The consistency constraints
9–11 guarantee that processes p1 and p2 show the same behavior on all input
histories they cannot distinguish.

7.7 Experimental Results

Using the reduction described in the previous sections, we considered five bench-
marks; we synthesized implementations for simple arbiter specification from
Figure 7.2 and the two architectures from Figure 7.1, and for a full arbiter
specification and the two architectures from Figure 7.1, and we synthesized a
strategy for dining philosophers to satisfy the specification from Figure 7.7.
The arbiter examples are parametrized in the size of the transition system(s),
the dining philosophers benchmark is additionally parametrized in the number
of philosopher. As the SMT solver, we used Yices version 1.0.9 on a 2.6 Ghz
Opteron system.

In all benchmarks, Yices is unable to directly determine the satisfiability of
the quantified formulas. (For example the formulas from Figure 7.4 and Fig-

7.7. EXPERIMENTAL RESULTS 153

bound | 4 | 5 | 6 | 7

result | unsatisfiable | unsatisfiable | unsatisfiable | unsatisfiable

decisions | 6041 | 15008 | 35977 | 89766

conflicts | 236 | 929 | 2954 | 30454

Boolean variables | 1269 | 2944 | 5793 | 9194

memory (MB) | 17.0469 | 18.4766 | 22.1992 | 33.1211

time (seconds) | 0.06 | 0.35 | 3.3 | 120.56

bound | 8 | 9 | 8 (1) | 8 (2)

result | satisfiable | satisfiable | unsatisfiable | satisfiable

decisions | 197150 | 154315 | 178350 | 71074

conflicts | 33496 | 24607 | 96961 | 18263

Boolean variables | 7766 | 8533 | 12403 | 6382

memory (MB) | 37.4297 | 36.2734 | 39.4922 | 29.1992

time (seconds) | 70.97 | 58.43 | 200.07 | 36.38

Table 7.2: Experimental results from the synthesis of a two-process arbiter us-
ing the specification from Figure 7.2 and the architecture from Figure 7.1b. The
table shows the time and memory consumption of Yices 1.0.9 when solving the
SMT problem from Figure 7.5, with all quantifiers replaced by explicit conjunc-
tions for different bounds on the number of states in the global transition system
and on the number of states in the individual processes (shown in parentheses).

154 CHAPTER 7. BOUNDED SYNTHESIS

bound | 4 | 5 | 6 | 7 | 8

result | unsatisfiable | satisfiable | satisfiable | satisfiable | satisfiable

decisions | 17566 | 30011 | 52140 | 123932 | 161570

conflicts | 458 | 800 | 1375 | 2614 | 3987

Boolean variables | 1850 | 2854 | 3734 | 5406 | 6319

memory (MB) | 18.3008 | 20.0586 | 22.5781 | 27.5000 | 35.7148

time (seconds) | 0.21 | 0.63 | 1.72 | 5.15 | 12.38

Table 7.3: Experimental results from the synthesis of a single-process arbiter
using the specification from Figure 7.6 and the architecture from Figure 7.1a.
The table shows the time and memory consumption of Yices 1.0.9 when solving
the resulting SMT problem, with all quantifiers replaced by explicit conjunctions
for different bounds on the number of states in the transition system.

ure 7.5, respectively, for the monolithic and distributed synthesis in the simple
arbiter example.) However, after replacing the universal quantifiers with ex-
plicit conjunctions (for a given upper bound on the number of states in the
implementation), Yices solved all satisfiability problems quickly.

A single-process implementation of the arbiter needs 8 states. Table 7.1 shows
the time and memory consumption of Yices when solving the SMT problem
from Figure 7.4 with the quantifiers unraveled for different upper bounds on
the number of states. The correct implementation with 8 states is found in 8
seconds.

7.7.1 Arbiter

Table 7.2 shows the time and memory consumption for the distributed synthesis
problem. The quantifiers in the formula from Figure 7.5 were unraveled for
different bounds on the size of the global transition system and for different
bounds (shown in parentheses) on the size of the processes. A correct solution
with 8 global states is found by Yices in 71 seconds if the number of process
states is left unconstrained. Restricting the process states explicitly to 2 leads
to an acceleration by a factor of two (36 seconds).

Table 7.3 and Table 7.4 show the time and memory consumption of Yices
when solving the SMT problem resulting from the arbiter specification of Fig-
ure 7.6. The correct monolithic implementation with 5 states is found in less
than one second, and Yices needs only half a minute to construct a correct
distribute implementation. The table also shows that borderline cases like the

7.7. EXPERIMENTAL RESULTS 155

bound | 4 | 5 | 6 | 7 | 8 | 9

result | unsat | unsat | unsat | unsat | sat | sat

decisions | 16725 | 47600 | 91480 | 216129 | 204062 | 344244

conflicts | 326 | 1422 | 8310 | 61010 | 11478 | 16347

Boolean variables | 1890 | 7788 | 5793 | 13028 | 8330 | 10665

memory (MB) | 18.0273 | 22.2109 | 28.5312 | 43.8594 | 42.2344 | 61.9727

time (seconds) | 0.16 | 1.72 | 14.84 | 208.78 | 32.47 | 72.97

bound | 8 (1) | 8 (2) | 8 (3) | 8 (4)

result | unsat | unsat | sat | sat

decisions | 309700 | 1122755 | 167397 | 208255

conflicts | 92712 | 775573 | 13086 | 13153

Boolean variables | 15395 | 25340 | 8240 | 7806

memory (MB) | 54.1641 | 120.0160 | 42.1484 | 42.7188

time (seconds) | 263.44 | 5537.68 | 31.12 | 30.36

Table 7.4: Experimental results from the synthesis of a two-process arbiter using
the specification from Figure 7.6 and the architecture from Figure 7.1b. The
table shows the time and memory consumption of Yices 1.0.9 when solving the
resulting SMT problem, with all quantifiers replaced by explicit conjunctions
for different bounds on the number of states in the global transition system and
on the number of states in the individual processes (shown in parentheses).

156 CHAPTER 7. BOUNDED SYNTHESIS

1

2 3

4 5

⊥

∗

g1 g2

g1(r2 ∨ g2) g2(r1 ∨ g1)

r1 r2

r1 r2

g1 g2

g1g2

g1r1 g2r2

Figure 7.6: Extended specification of an arbiter, represented as a universal Co-
Büchi automaton with edge-based acceptance. (Since our acceptance mechanism
is edge based, it is more efficient to use an edge-based acceptance condition for
the automaton. Moving from state-based to edge-based acceptance can lead to
a reduction in the statespace up to 50%.) The edges depicted as double-line
arrows are the rejecting edges in F .

fruitless search for an implementation with 8 states, but only 2 local states, can
become very expensive; in the example, Yices needed more than 1.5 hours to
determine unsatisfiability. Compromising on optimality, by slightly increasing
the bounds, greatly improves the performance. Searching for an implementation
with 8 states and 3 or 4 local states takes approximately 30 seconds.

7.7.2 Dining Philosophers

Table 7.5 shows the time and memory consumption for synthesizing a strategy
for the dining philosophers to satisfy the specification shown in Figure 7.7. In
the dining philosophers benchmark, the size of the specification grows linearly
with the number of philosophers; for 10.000 philosophers this results in systems
of hundreds of thousands constraints. In spite of the large size of the resulting
constraint system, the synthesis problem remains tractable; Yices solves all re-
sulting constraint systems within a few hours, and within a minutes for small
constraint systems with up to 1000 philosophers.

7.7. EXPERIMENTAL RESULTS 157

3 states 4 states 6 states
phil. | time (s) | memory (MB) | result | time (s) | memory (MB) | result | time (s) | memory (MB) | result

125 | 1.52 | 23.2695 | unsat | 23.84 | 36.2305 | unsat | 236.5 | 87.7852 | sat

250 | 5.41 | 29.2695 | unsat | 130.07 | 52.0859 | sat | 141.36 | 91.1328 | sat

375 | 22.81 | 38.9727 | unsat | 128.83 | 58.1992 | unsat | 890.58 | 154.355 | sat

500 | 17.98 | 39.9297 | unsat | 15.84 | 52.9336 | sat | 237.04 | 119.309 | sat

625 | 35.57 | 49.5586 | unsat | 417.05 | 94.7188 | unsat | 486.5 | 130.977 | sat

750 | 22.25 | 52.3359 | unsat | 20.85 | 69.1562 | sat | 82.63 | 99.707 | sat

875 | 51.98 | 56.0859 | unsat | 628.84 | 119.363 | unsat | 2546.88 | 255.965 | sat

1000 | 168.17 | 70.3906 | unsat | 734.74 | 117.703 | sat | 46.18 | 124.691 | sat

1125 | 67.14 | 70.1133 | unsat | 1555.18 | 165.922 | unsat | 1854.77 | 246.848 | sat

1250 | 165.59 | 76.2227 | unsat | 122.8 | 107.645 | sat | 596.8 | 203.012 | sat

1375 | 104.27 | 75.4531 | unsat | 3518.85 | 191.113 | unsat | 8486.18 | 490.566 | sat

1500 | 187.25 | 82.8867 | unsat | 85.52 | 129.215 | sat | 232.81 | 214.68 | sat

1625 | 85.83 | 88.8047 | unsat | 2651.82 | 246.734 | unsat | 1437.45 | 281.203 | sat

1750 | 169.93 | 97.543 | unsat | 107.14 | 126.477 | sat | 257.77 | 185.887 | sat

1875 | 174.03 | 105.25 | unsat | 3629.18 | 234.527 | unsat | 4641.03 | 405.781 | sat

2000 | 25.86 | 102.125 | unsat | 242.55 | 157.734 | sat | 811.78 | 269.375 | sat

2125 | 163.39 | 113.27 | unsat | 5932.24 | 315.711 | unsat | 6465.75 | 424.121 | sat

2250 | 412.37 | 115.438 | unsat | 523.87 | 162.391 | sat | 5034.83 | 456.316 | sat

2375 | 201.95 | 120.047 | unsat | 7311.03 | 313.168 | unsat | 4887.76 | 451.332 | sat

2500 | 375.29 | 135.535 | unsat | 235.17 | 202.59 | sat | 319.78 | 253.781 | sat

2625 | 544.03 | 135.379 | unsat | 6560.53 | 312.355 | unsat | 23990.5 | 808.633 | sat

2750 | 559.35 | 139.137 | unsat | 817.41 | 226.082 | sat | 632.28 | 349.992 | sat

2875 | 308.36 | 151.727 | unsat | 7273.89 | 299.016 | unsat | 8638.96 | 551.5 | sat

3000 | 666.18 | 155.57 | unsat | 533.23 | 228.961 | sat | 3158.26 | 493.617 | sat

3125 | 235.52 | 141.93 | unsat | 12596.6 | 377.328 | unsat | 10819.7 | 693.133 | sat

3250 | 869.53 | 153.633 | unsat | 2089.72 | 308.719 | sat | 21298.8 | 889.285 | sat

3375 | 260.88 | 145.918 | unsat | 11581.7 | 379.949 | unsat | 21560 | 741.09 | sat

3500 | 308.23 | 169.348 | unsat | 897.6 | 270.676 | sat | 829.52 | 398.008 | sat

5000 | 982.68 | 240.273 | unsat | 3603.7 | 421.832 | sat | 1357.48 | 582.457 | sat

7000 | 2351.87 | 313.277 | unsat | 7069.55 | 535.98 | sat | 6438.73 | 1081.68 | sat

10000 | 4338.83 | 448.648 | unsat | 4224.28 | 761.008 | sat | 10504.6 | 1121.58 | sat

Table 7.5: Experimental results from the synthesis of a strategy for the dining
philosophers using the specification from Figure 7.7. The table shows the time
and memory consumption of Yices 1.0.9 when solving the resulting SMT prob-
lem, with all quantifiers replaced by explicit conjunctions for different bounds
on the number of states in the transition system.

158 CHAPTER 7. BOUNDED SYNTHESIS

0

1 2 3 · · · n

⊥

∗

s1 s2 s3 sn

h h h
h

∨
i=1,...,n

sisi⊕1

Figure 7.7: Specification of a dining philosopher problem with n philosophers.
The environment can cause the philosophers to become hungry (by setting h
to true). The states depicted as double circles (1 through n) are the rejecting
states in F ; state i refers to the situation where philosopher i is hungry and
starving (si). A fail state is reached when two adjacent philosophers try to
reach for their common chopstick; the fail state refers to the resulting eternal
philosophical quarrel that keeps the affected philosophers from eating.

7.8 Extension to General Architectures and
ATµC Specification

The restrictions to linear-time logic and environment architectures is only cho-
sen for two reasons: First and foremost, they simplify the presentation, but it
seems also doubtful that more general specification languages can be treated
comparably efficiently.

To extend the methods proposed in this chapter to general architectures and
ATµC specifications, we first observe that the synthesis technique proposed in
Chapter 6 produces an input enabled transition system, namely the finite state
Moore machine from Theorem 6.11. Instead of constructing it using the purely
automata based approach from Chapter 6, we can guess this transition sys-
tem, and instead of using the quotient construction based on finding a coarsest
bisimulation relation for the extraction of the single implementations, we can
use the constraints from Section 7.6 to guarantee that the processes only use
information available to them.

Technically, these extensions are simple:

• We start with constructing an alternating automaton B that accepts a
relaxed implementation 〈(2Π)∗, l ×⊕

a∈A p′a〉 (extended by atomic propo-
sitions; l : (2Π)∗ → 2Π) with input Π if and only if 〈‖p′A‖, l〉 is a model of
ϕ (Theorem 4.1, and Lemmata 4.2 and 6.4, cf. Subsection 6.5.1).

7.9. CONCLUSIONS 159

• If B = (Σ,Υ, Q, q0, δ, α) accepts an input enabled transition system T =
(T, t0, τ, o), than it has a memoryless winning strategy in the acceptance
game. This memoryless winning strategy can be viewed as a family of
mappings {st : Q → 2Q×Π | t ∈ T} from states of the automaton to sets of
successor states and directions, one for each state. Since such a mapping
exists, we can require that st is explicitly represented in the label o(t).

Once the strategy is fixed, B behaves like a universal automaton. Thus we
obtain a universal automaton C = (Σ × (Q → 2Q×Π),Υ, Q, q0, δ, α) that
accepts, for every bounded transition system T accepted by B, a bounded
transition system T ′ with the same family of bounds, such that T is the
projection of T ′ to Σ.

• A universal parity automaton C = (Σ,Υ, Q, q0, δ, α) with odd colors
Co = α(Q) r 2N can be translated into an equivalent universal Co-Büchi
automaton U = (Σ,Υ, Q∪Q×C0, q0, δ

′, F) with F = {(q, c) | α(q) = c by
choosing

– δ′(q, σ) = bσ
q

(
{(qi, υi) ∧

∧
c∈Co

((qi, c), υi) | i ∈ Iσ
q }

)
, and

– δ′
(
(q, c), σ

)
= bσ

q

(
{ ∧

c′∈Co,c′≤c

((qi, c
′), υi) | i ∈ Iσ

q }
)
,

where bσ
q

(
{(qi, υi) | i ∈ I}

)
= δ(q, σ) is the positive Boolean function

defined by δ(q, σ). (Note that the empty conjunction is true.) Intuitively,
D can guess any point in the run, where the highest color occurring in the
future and infinitely often is some odd color c ∈ Co, and move to the c
copy at that point in the run.

U can, instead of the automaton constructed by Theorem 7.1, be used as
the starting point for the algorithm discussed in this chapter, and white-box
implementations can be explicitly represented.

7.9 Conclusions

Despite its obvious advantages, synthesis has been less popular than verification.
While the complexity of verification is determined by the size of the implementa-
tion under analysis, standard synthesis algorithms [PR90, KV01, MT01, WM03]
for distributed systems – including the synthesis algorithm introduced in Chap-
ter 6 – suffer from the daunting complexity determined by the theoretical upper

160 CHAPTER 7. BOUNDED SYNTHESIS

bound on the smallest implementation, which, as shown by Rosner [Ros92],
increases by an extra exponent with each additional process in the architecture.

By introducing a bound on the size of the implementation, we have leveled
the playing field for synthesis and verification. We have shown that the bounded
synthesis problem can be solved effectively with a reduction to SAT.

Our solution for the bounded synthesis problem can be extended to the
standard (unbounded) synthesis problem by iteratively increasing the bound.
The advantage of this approach is that the complexity is determined by the size
of the smallest implementation. Typically, this implementation is far smaller
than the exploding upper bound.

Chapter 8

Excursion: Probabilistic
Environments

Abstract

In synthesis, we construct finite state systems from their temporal specifications.
While this problem is well understood in the classical setting of non-probabilistic
synthesis, this chapter suggests an extension of open synthesis techniques to a
setting, where the environment chooses its actions randomized rather than non-
deterministically. Assuming a randomized environment inspires alternative se-
mantics both for linear-time and branching-time logics. For linear-time, natural
acceptance criteria are almost-sure and observable acceptance, where it suffices
if the probability measure of accepting paths is 1 and greater than 0, respec-
tively. Almost-sure and observable semantics for linear-time logic also suggest
an alternative interpretation of branching-time specifications, where existential
quantification is identified with observable acceptance and universal quantifica-
tion with almost-sure acceptance.

We distinguish 0-environments, which can freely assign probabilities to each
environment action, from ε-environments, where the probabilities assigned by
the environment are bounded from below by some ε > 0. While the results in
case of 0-environments are essentially the same as for nondeterministic envi-
ronments, the languages occurring in case of ε-environments are topologically
different from the results for nondeterministic and 0-environments (in case of
LTL, recognizable by weak alternating automata vs. recognizable by determin-

161

162 CHAPTER 8. EXCURSION: PROBABILISTIC ENVIRONMENTS

istic automata). The complexity of open synthesis is, in both cases, EXPTIME-
complete and 2EXPTIME-complete for CTL and LTL specifications, respec-
tively.

8.1 Introduction

In the view of the attractiveness of synthesis, it is alluring to extend its appli-
cability as far as possible. A particular interesting extension is the treatment of
probabilistic (or: randomized) systems. Randomization has, for example, suc-
cessfully been introduced into protocols (cf. [LR81]). In synthesis, we want to
construct systems which, under reasonable assumptions about the probabilistic
behavior of the environment, satisfy a linear-time specification with probability
1 (almost-surely) or with probability greater than 0 (observably).

System synthesis is harder than model-checking probabilistic systems
(Markov decision processes). There, a probabilistic measure is defined a pri-
ori on the set of computations, usually by assigning fixed probabilities to the
single transitions. In synthesis, on the other hand, we do not have a transition-
system to start with (this situation is comparable with the problem occurring
in the treatment of transition fairness in system synthesis, cf. [AM94]).

When restricting the scope to almost-sure and observable satisfaction of
linear-time properties, the concrete probabilities of single transitions play a mi-
nor role; in finite systems it is only of interest whether or not a probability is 0
or 1. It turns out that these properties are preserved when the probabilities of
the single transitions are uncertain, as long as an (arbitrary) lower bound ε > 0
on their probability is guaranteed. This allows for considering synthesis for envi-
ronments, which only guarantee the existence of some lower bound on the prob-
ability of each single action. We call such environments ε-environments. They
are closely related to probabilistic fair systems [dA99] (with the distinction that
systems discussed in this chapter necessarily have a predefined constant set of
environment actions) and inherit their semantic benefits: They provide a simple
way of representing probabilistic choices while abstracting from the numerical
value of probability. The LTL synthesis problem remains 2EXPTIME-complete
in almost-sure and observable semantics for ε-environments.

The decidability of almost-sure and observable acceptance gives rise to a
re-definition of the semantics for the branching-time logic CTL*. CTL* allows
for universal (Aπ) and existential (Eπ) path quantification. A natural analogy
is to interpret universal path quantification as the property that the probability
measure of the paths satisfying π is 1 (that is, that a path almost-surely satisfies

8.2. PRELIMINARIES 163

π), and existential path quantification as the property that the probability mea-
sure of the paths satisfying π is greater than 0 [HJ94]. This chapter provides a
constructive method to solve the synthesis problem for CTL* in 3EXPTIME in
the length of the specification, whereas a 2EXPTIME lower bound is inherited
from the LTL synthesis problem. While the exact complexity remains open for
CTL*, the synthesis problem is EXPTIME-complete for CTL.

Under the assumption of stronger environments, which can reduce the prob-
ability of each single event arbitrarily, synthesis for almost-sure/observable se-
mantics is essentially equivalent to synthesis for classical semantics.

8.2 Preliminaries

Synthesis algorithms automatically construct, for a given class of environments,
systems that are correct by construction from a given specification. The envi-
ronment is an external part of the system, which is not under the control of
the synthesis algorithm. Intuitively, the environment provides the system with
inputs from a finite input-alphabet Υ. The system reacts on each input by
emitting an output symbol from a finite output-alphabet Σ. When the speci-
fications are provided as temporal logics, the input- and output alphabet con-
sist of the possible valuations of Boolean input- and output-variables, respec-
tively [PR89a, KV97b, KV99], which also serve as atomic propositions in the
specification. A system is modeled as a finite transition-system, which defines
a mapping s : Υ∗ → Σ from histories of input-signals to output-signals. This
chapter addresses synthesis for linear- and branching-time specifications for en-
vironments with an uncertain probabilistic behavior.

8.2.1 Probabilistic Environments

In general, the concrete behavior of the environment is unknown or too com-
plex to represent. The uncertainty with respect to the concrete behavior of the
environment is expressed by the power of the environment to choose, in every
step, a probability distribution of its single input letters.

An environment is called an ε-environment if, in each step, the probability
p(υ) ∈ [ε, 1] that the environment chooses a particular input letter υ ∈ Υ is
bound from below by some ε > 0. It is called a 0-environment, if the probability
that the environment chooses a particular input letter υ ∈ Υ is not bound from
below (p(υ) ∈]0, 1] or p(υ) ∈ [0, 1]).

164 CHAPTER 8. EXCURSION: PROBABILISTIC ENVIRONMENTS

8.2.2 The Synthesis Problem

For trace languages, we distinguish almost-sure and observable acceptance of
transition-systems. A transition-system T satisfies a specification

• almost-surely if and only if the probability measure of the set of infinite
paths defined by T that satisfy the specification is 1, and

• observably if and only if the probability measure of the set of infinite paths
defined by T that satisfy the specification is greater than 0.

In case of temporal logics, the input-alphabet 2I and output-alphabet 2O

represent the possible assignments to Boolean input and output variables, which
also serve as atomic propositions in the specification.

For CTL* specifications, all subformulas of the form Aπ and Eπ are inter-
preted as state formulas with the semantics that the path formula π is satisfied
almost-surely and observably, respectively. The synthesis problem is to either
construct, for a given input-alphabet Υ, a given output-alphabet Σ and a speci-
fication ϕ, an input-preserving Υ×Σ-labeled Υ-transition-system which satisfies
the specification, or to prove that no such transition-system exists.

8.3 Synthesis for Trace Languages

Following an automata-theoretic approach to open synthesis, the synthesis prob-
lem is decomposed into two parts: Finding an automaton, which accepts a
transition-system if and only if it is input-preserving and satisfies the speci-
fication, and constructing a transition-system accepted by this automaton (or
demonstrating its emptiness). In this section, we consider synthesis for spec-
ifications provided as deterministic word automata under the assumption of
ε-environments.

8.3.1 Structural Acceptance Criteria

Testing whether a transition-system T almost-surely (observably) satisfies a
deterministic word automaton D can be reduced to a simple structural argument
over the composition of T and D. The result of their composition is a colored
graph, and it suffices to check if the highest color in all (some) reachable strongly
connected components of GT

D that are leaves in the SCC-graph of GT
D is even.

The composition GT
D = T ‖D of a transition-system T = (S, s0, τ, l)

and a deterministic word automaton D = (Σ, Q, q0, δ, α) is a colored graph

8.3. SYNTHESIS FOR TRACE LANGUAGES 165

GT
D = (S × Q, (s0, q0), τ

′, α′) with transition function τ ′ : ((s, q), υ) 7→
(τ(s, υ), δ(q, l(s))) and coloring function α′ : (s, q) 7→ α(q).

Lemma 8.1 An Υ-transition-system T almost-surely (observably) satisfies a
specification provided as a deterministic word automaton D if and only if the
highest color in all (some) reachable leaf-SCCs of GT

D = T ‖D is even.

Proof: For all ε-environments, the probability of every single transition is
bounded from below by some ε ∈]0, 1]. This implies the following attributes of
the computations:

• Almost-surely almost all states of a computation are in a single leaf of the
SCC-tree of GT

D , which is reachable from the initial state of GT
D :

If GT
D has n states, then, from every state of GT

D , the probability not to
reach some leaf-SCC within the next n steps is bounded from above by
ε′ = 1 − εn < 1, which implies a probability of 0 to stay forever out of
reachable leaf-SCCs.

• Every reachable leaf-SCC of GT
D is reached with some positive probability

(which is bounded from below by εn).

• For traces that eventually reach a leaf-SCC L, the highest color occurring
infinitely often is almost-surely the highest color of the states of L:
The probability not to reach some state s in L within the next n steps
is again bounded from above ε′ = 1 − εn < 1. This implies, for every
position in the trace, a probability of 0 that s occurs never again; this
holds in particular for a state s whose color is maximal in L.

Thus, the probability measure of the paths that satisfy the the specification
is 1 if and only if the highest color in all reachable leaf SCCs is even, and > 0
if and only if the highest color in at least one reachable leaf SCC is even. ¤

8.3.2 Game Construction

These structural criteria can be transformed into weak acceptance games de-
ciding almost-sure and observable acceptance, respectively. These games are
played on GT

D , starting in (s0, q0), and consist of three phases. For almost-sure
(observable) acceptance, the game is played according to the following rules:

• In the first phase, player reject (accept) either chooses to proceed to the
second phase or picks a transition in GT

D . Picking a transition means that,

166 CHAPTER 8. EXCURSION: PROBABILISTIC ENVIRONMENTS

in a state (s, q), she chooses a direction υ and the game proceeds in
τ ′((s, q), υ).
Intuitively, she can use this phase to move to a leaf-SCC of her choice.

• In the second phase, player accept (reject) either picks a transition in GT
D

or chooses to proceed to the third phase, but with the restriction that he
can only move to the third phase if the color of the current node is even
(odd). In case he moves to the third phase, the color c of the current node
is stored.
This phase is to prevent player reject (accept) from “cheating” by termi-
nating the first phase in a state of GT

D , which is not an element of any
leaf-SCC. Player accept could, in such a case, move on to a vertex with
highest color in a leaf-SCC of his choice (reachable from v), or even pick
any arbitrary state reachable from v.

• In the last phase, player reject (accept) again chooses the transitions. She
wins immediately upon reaching a state with an odd (even) color greater
than c.

Infinite plays of the game are won by player accept (reject) if the game
always stays in the first phase and if the game eventually stays forever in the
third phase, while player reject (accept) wins if the game eventually stays forever
in the second phase.

Lemma 8.2 The acceptance game on GT
D is won by player accept if and only

if T satisfies D almost-surely (observably).

Proof: To prove the claim for almost-sure acceptance, first assume that T does
not satisfies D almost-surely. In this case, the highest color in some reachable
leaf-SCC L of GT

D is odd by Lemma 8.1. Player reject can direct the game
towards such a leaf-SCC L and then let the game proceed to the second phase.

If player accept ever moves on to the third phase, he must do so from a
state in L. Since L is strongly connected, player reject can then move to a state
with maximal (odd) color and wins directly. If, on the other hand, player accept
never moves to the third phase, player reject wins since the third phase is never
reached.

To prove the “if” direction, recall that almost-sure satisfaction of D by T
entails that the highest color in all reachable leaf-SCCs of GT

D is even. If player
reject never leaves the first phase, player accept wins due to the winning con-
dition for infinite plays. If player reject eventually changes in some state v to

8.3. SYNTHESIS FOR TRACE LANGUAGES 167

the second phase, then player accept can move to some leaf-SCC L. Since L
is strongly connected by definition, he can reach a state v′ in L, whose (even)
color is maximal in L. After having moved on to v′, player accept changes to
the third phase (storing the color of v′). Since the color of v′ is maximal in L,
player reject cannot win directly in the third phase, and consequently loses by
the winning condition for infinite plays.

The proof for observable acceptance runs accordingly. ¤

From Acceptance Games to Automata. It is only a small step from the
acceptance games of the previous paragraph to weak alternating automata over
transition-systems. A given deterministic word automaton D can be turned into
weak alternating automata, which accept a transition-system if and only if it sat-
isfies D almost-surely or observably, respectively. The states of these automata
are constructed from the states and colors of D, and the transition function
reflects the transitions of the game introduced in the previous paragraph.

Theorem 8.3 Given a deterministic word automaton D = (Σ, Q, q0, δ, α), we
can construct weak alternating tree automata AD and OD which accept a Σ-
labeled Υ-transition-system if it almost-surely and observably satisfies D, re-
spectively. If D has n states and c colors, AD and OD have at most n · ⌈2 + c

2⌉
states.

Proof: AD = (Σ,Υ, Q′, q′0, δ
′, α′) is defined as follows:

• The set of states is set to Q′ = Q × ({f, s} ∪ Ce) and initial state q′0 =
(q0, f), where Ce denotes the set of even colors of D.

• The transition function is defined by:

– δ′ : ((q, f), σ) 7→ δ′((q, s), σ) ∧ ∧
υ∈Υ((δ(q, σ), f), υ),

– δ′ : ((q, s), σ) 7→ ∨
υ∈Υ((δ(q, σ), s), υ) if α(q) is odd and

– δ′ : ((q, s), σ) 7→ δ′((q, α(q)), σ)∨∨
υ∈Υ((δ(q, σ), s), υ) if α(q) is even,

– δ′ : ((q, c), σ) 7→ false if α(q) is an odd number greater then c, and

– δ′ : ((q, c), σ) 7→ ∧
υ∈Υ((δ(q, σ), c), υ) otherwise.

• The coloring function α′ maps Q × {f} to 0, Q × {s} to 1, and Q × Ce

to 2.

Likewise, OD = (Σ,Υ, Q′′, q′′0 , δ′′, α′′) is defined as follows:

168 CHAPTER 8. EXCURSION: PROBABILISTIC ENVIRONMENTS

• The set of states is set to Q′′ = Q × ({f, s} ∪ Co) and initial state q′′0 =
(q0, f), where Co denotes the set of odd colors of D.

• The transition function is defined by:

– δ′′ : ((q, f), σ) 7→ δ′′((q, s), σ) ∨ ∨
υ∈Υ((δ(q, σ), f), υ),

– δ′′ : ((q, s), σ) 7→ ∧
υ∈Υ((δ(q, σ), s), υ) if α(q) is even and

– δ′′ : ((q, s), σ) 7→ δ′′((q, α(q)), σ)∧∧
υ∈Υ((δ(q, σ), s), υ) if α(q) is odd,

– δ′′ : ((q, c), σ) 7→ true if α(q) is an even number greater then c, and

– δ′′ : ((q, c), σ) 7→ ∧
υ∈Υ((δ(q, σ), c), υ) otherwise.

• The coloring function α′′ maps Q × {f} to 1, Q × {s} to 2, and Q × Co

to 3.

The states Q×{f} refer to the first phase of the acceptance game, the states
Q×{s} to the second and the remaining states Q×Ce and Q×Co, respectively,
refer to the third phase of the acceptance game. A winning strategy for either
player in the acceptance game on GT

D can easily be transformed into a winning
strategy in the acceptance game of the respective alternating automaton. ¤

Efficient Nondeterminization. Weak alternating automata are well suited
for model-checking, but synthesis (or its non-constructive equivalent, check-
ing non-emptiness) usually contains an exponential blow-up due to a nonde-
terminization step. A closer look on the special weak alternating automata of
Theorem 8.3 reveals that this is not the case here: Most decisions can be guessed
by a nondeterministic automaton. The crucial point in the nondeterminization
is the single decision of player reject when to proceed from the first to the sec-
ond phase (in case of almost-sure acceptance) and from the second to the third
phase (in case of observable acceptance), respectively. It turns out that this
single decision can be left uncertain in the construction of a nondeterministic
automaton, avoiding the blow-up.

Theorem 8.4 For a given deterministic word automaton D = (Σ, Q, q0, δ, α)
we can construct nondeterministic Büchi tree automata AD

′ and OD
′ which

accept a Σ-labeled Υ-transition-system if it almost-surely and observably satisfies
D, respectively. If D has n states and c colors, AD

′ and OD
′ have at most

2n · ⌊1 + c
2⌋ + 1 and n · ⌊2 + c

2⌋ states, respectively.

8.3. SYNTHESIS FOR TRACE LANGUAGES 169

Proof: The starting points for our construction are the weak alternating au-
tomata AD and OD from the proof of Theorem 8.3. Recall that the states of
these automata consist of two elements, a state from D and an indicator for
the first, second or third phase (including a stored color for in case of the third
phase).

The nondeterministic Büchi tree automaton OD
′ = (Σ,Υ, Q′′, q′′0 , δ′′, α′′) for

testing observable acceptance is defined as follows:

• The set of states is set to Q′′ = Q ∪ Q × C−
o and the initial state q′′0 = q0

is the initial state from D. C−
o denotes the set of odd colors of D, plus

an additional color emin = omin − 1, where omin denotes the smallest odd
color of D.

• The transition function is defined by:

– δ′′ : (q, σ) 7→ ∨
υ∈Υ(δ(q, σ), υ) ∨ δ′′(q, emin), σ),

– δ′′ : ((q, c), σ) 7→ ∨
υ∈Υ

(
((δ(q, σ),max{c, α(q)}), υ)

∧ ∧
υ 6=υ′∈Υ((δ(q, σ), emin), υ)

)
if α(q) is odd,

– δ′′ : ((q, c), σ) 7→ ∧
υ∈Υ((δ(q, σ), emin), υ)

if α(q) > c is even and greater than c, and

– δ′′ : ((q, c), σ) 7→ ∨
υ∈Υ

(
((δ(q, σ), c), υ)∧∧

υ 6=υ′∈Υ((δ(q, σ), emin), υ)
)

if α(q) < c is even and smaller than c.

• The coloring function α′′ maps the states Q×{emin} to 2 and the remain-
ing states to 1.

The states in Q reflect the first phase of the acceptance game on GT
D : Player

accept moves to a position of her choice (
∨

υ∈Υ(δ(q, σ), υ)) and eventually moves
on to the second phase (δ′′(q, emin), σ)). The color 1 for the states in Q reflect
the winning condition on infinite plays (player accept looses if she stays for ever
in the first phase).

In the second phase, the situation is more involved, since rather than guessing
the action of player accept, the automaton needs to cover all possible actions of
player reject. Intuitively, the option of player reject to stay in the second phase
is covered by sending, from a state (q, c), a copy (q′, emin) (with q′ = δ(q, σ))
to each direction. Since player reject looses when staying in the second phase
indefinitely, the color of these states is 2. Additionally, if α(q) is odd, player
reject could move to the third phase, which could be reflected by sending a

170 CHAPTER 8. EXCURSION: PROBABILISTIC ENVIRONMENTS

copy (q, α(q)) to some direction (α(q) denotes the color to be stored). At the
same time, we must consider the possibility that the game is in the third phase.
If α(q) is even and greater than c, then player accept wins immediately (no
successor send), otherwise (q′, c) is sent to some successor. Since player accept
loses by staying in the third phase indefinitely, the color of a state (q, c) with
c 6= emin is 1. Since the situation of player reject becomes strictly better when
the stored color c increases, we can, instead of sending (q′, c) and (q′, c′) into the
same direction, send only (q′,max{c, c′}). This results in the nondeterministic
automaton OD

′.

The nondeterministic Büchi tree automaton AD
′ = (Σ,Υ, Q′, q′0, δ

′, α′) for
testing almost-sure acceptance is defined as follows:

• The set of states is set to Q′ = Q × B × C+
e ∪ {⊥} with initial state

q′0 = (q0, true, emax), where C+
e denotes the set of even colors of D, plus,

if the highest color of D is an odd number omax , omax + 1. emax denotes
the highest number in C+

e .

• The transition function is defined by:

– δ′ : ((q, ∗, c), σ) 7→ ∨
υ∈Υ

(
((δ(q, σ), true, c), υ)

∧ ∧
υ 6=υ′∈Υ((δ(q, σ), false, c), υ)

)

∨∧
υ∈Υ(δ(q, σ), false,min{c, α(q)}), υ) if α(q) is even,

– δ′ : ((q, ∗, c), σ) 7→ ∧
υ∈Υ(⊥, υ) if α(q) > c is odd and greater than c,

– δ′ : ((q, ∗, c), σ) 7→ ∨
υ∈Υ

(
((δ(q, σ), true, c), υ)

∧ ∧
υ 6=υ′∈Υ((δ(q, σ), false, c), υ)

)
otherwise, and

– δ′ : (⊥, σ) 7→ ∧
υ∈Υ(⊥, υ).

• The coloring function α′ maps Q × {true} × C+
e and the error state ⊥ to

1 and Q × {false} × C+
e to 2.

In almost-sure acceptance, the situation is slightly more involved. The states
keep three pieces of information: The state of the deterministic word automa-
ton, the information, if the game could be in the second phase, and a color,
which reflects that the third phase could have been entered from a state in
this color. The color is initialized to emax , which is greater than all odd col-
ors. From every point of the computation tree, one or no successor can refer
to the second phase: No successor, if player accept would move to the third

8.3. SYNTHESIS FOR TRACE LANGUAGES 171

phase, and one successor otherwise. Player accept loses if and only if there is
a trace where he eventually stays indefinitely in the second phase, or if there
is a trace where he eventually moves to the third phase in a state (q, ∗, ∗) and
then reaches a state (q′, ∗, ∗) with odd color α(q′) > α(q). The latter is mod-
eled by moving to the designated error state ⊥. The remaining information can
be handled by storing the (even) color α(q) every time player accept would
move to the third phase (

∧
υ∈Υ((δ(q, σ), false,min{c, α(q)}), υ)) or by mark-

ing the direction player accept would choose when staying in the second phase
(
∨

υ∈Υ((δ(q, σ), true, c), υ) ∧ ∧
υ 6=υ′∈Υ((δ(q, σ), false, c), υ)).

Obviously, a transition-system is rejected by AG
′ if and only if the acceptance

game on GT
D is won by player reject. ¤

These automata additionally have the pleasant property that their transition
tables are short (at most |Υ| + 1 entries for each state/input-letter pair).

The step to input-preserving transition-systems is a small one. The respective
automaton can be multiplied with a deterministic safety automaton that checks
if the label always agrees with the direction. The small transition table property
is preserved by this transformation.

Theorem 8.5 Given an alternating tree automaton A over Υ × Σ-labeled Υ-
transition-systems, we can construct an alternating tree automaton A′ over Υ×
Σ-labeled Υ-transition-systems that accepts a transition-system T if and only
if it is input-preserving and accepted by A. If A has n states, A′ has at most
n · |Υ| states. If A is a nondeterministic, universal, weak, Büchi, or Co-Büchi
automaton, so is A′.

Proof: The deterministic safety automaton S = (Υ × Σ,Υ,Υ, υ0, δs) with
transition function

• δ :
(
q, (υ, σ)

)
7→ ∧

υ′∈Υ(υ′, υ′) if q = υ, and

• δ :
(
q, (υ, σ)

)
7→ false) otherwise

accepts a transition system if and only if it is input preserving.

To construct A′ it suffices to intersect A and S, resulting in an automaton
with n · |υ| states for (non)deterministic automata (product construction), and
in an automaton with n + |Υ| + 1 states for alternating automata (by adding
a fresh initial state q′0 with δ′

(
q′0, (υ, σ)

)
7→ δ

(
q0, (υ, σ)

)
∧ δs

(
υ0, (υ, σ)

)
, and

reusing the transition functions δ and δ′ on their respective co-domain). ¤

172 CHAPTER 8. EXCURSION: PROBABILISTIC ENVIRONMENTS

8.4 Temporal Logics

The basic techniques for trace languages and ε-environments provided in Sec-
tion 8.3 are transferred to temporal logics in this section. For the linear-time
temporal logic LTL, the techniques from the previous section can easily be ap-
plied: It suffices to translate an LTL formula into an equivalent deterministic
word automaton, and then use the results of Section 8.3.

For probabilistic systems, the almost-sure/observable semantics for LTL in-
spire a redefinition of CTL* semantics [HJ94]: Universal path quantification
(Aπ) can be interpreted as the property that the probability measure of the
paths satisfying π is 1, and existential path quantification can be interpreted as
the property that the probability measure of the paths satisfying π is greater
than 0.

Liner-Time Logic. Converting LTL formulas to deterministic word au-
tomata is well established. Combining the Theorem 7.1 and 7.3 directly implies:

Theorem 8.6 Given an LTL specification ϕ, we can construct a deterministic
word automaton Dϕ that accepts exactly the models of ϕ. The number of states
of Dϕ is doubly exponential in the length of ϕ. ¤

Given an LTL specification ϕ, we can, by the Theorems 8.6, 8.4 and 8.5,
construct a nondeterministic Büchi tree automaton Nϕ that accepts an input-
preserving 2I × 2O-labeled 2I -transition-system if and only if it almost-surely
(observably) satisfies ϕ, such that the number of states of Nϕ is doubly expo-
nential in the length of ϕ. A constructive non-emptiness test for Nϕ can be
performed in time quadratic in the number of states of Nϕ (Theorem 4.7).

Corollary 8.7 Given an LTL specification ϕ we can, in time doubly-
exponential in the length of ϕ, construct an input-preserving 2I × 2O-labeled
2I-transition-system that almost-surely (observably) satisfies ϕ, or show that no
such transition-system exists, in time doubly-exponential in the length of ϕ. ¤

It turns out that this upper bound is sharp.

Theorem 8.8 The LTL synthesis problem is 2EXPTIME-complete.

Proof: The upper bound is established by Corollary 8.7. To establish a match-
ing lower bound, consider the ω-regular trace language

Ln = { {0, 1, 2, 3}∗ · 3 · {0, 1, 2}∗ · 2 · v · 2 · {0, 1, 2}∗ · 3 · v · {0, 1, 2}ω | v ∈ {0, 1}n}.

8.4. TEMPORAL LOGICS 173

While Ln can be expressed by an LTL formula with size quadratic in n, any
automaton accepting Ln necessarily has at least 2n states [KV95] (since it must
continuously update the set of subsets of {0, 1} words of length n that have
occurred between two 2 symbols since the last 3).

Consider a system with two Boolean input variables i1 and i2, and a single
output variable o. One can use i1 and i2 to encode the letters 0, 1, 2, 3, and
represent the language Ln by a formula ϕn (of length quadratic in n).

The specification ψn = ϕn ↔ FGo can only be satisfied by a transition-
system with at least O(2n) states, regardless if in classical, almost-sure or ob-
servable semantics, since the transition-system always needs to react on an ad-
ditional 3 (for example, by setting the value of the output variable to true or
false n steps after a 3 was read and keeping it constant otherwise). ¤

Branching-Time. In the branching-time case, one can use the fact that Eψ
and Aψ are state-formulas. We call the strict subformulas of a CTL* specifica-
tion ϕ of this special form the basic subformulas of ϕ, denoted basic(ϕ). Testing
if a transition-system T satisfies a CTL* formula ϕ can be reduced to test-
ing if the labels of T can be extended with suitable truth values for the basic
subformulas of ϕ. The correct labels can be guessed on the fly.

Theorem 8.9 Given a CTL* specification ϕ we can construct a weak alternat-
ing tree automaton A which accepts an 2I × 2O-labeled 2I-transition-system if
and only if it satisfies ϕ. The number of states of A is doubly-exponential in the
length of ϕ.

Proof: In our construction, the values of the basic formulas are guessed. Let
Aψ = (Σψ, 2I , Qψ, qψ

0 , δψ, αψ) denote the weak alternating tree automaton that
accepts the models of a basic formula ψ = Eψ′ or ψ = Aψ′ of ϕ (or of ϕ
itself), where the basic subformulas of ψ are provided as atomic propositions.
Aψ can be constructed by the method introduced in Theorem 8.3. The number
of states of Aψ is doubly exponential in the number of states of ψ. Let Aψ =

(Σψ, 2I , Qψ, qψ
0 , δψ, αψ) denote the weak alternating automaton dual to Aψ.

We assume without loss of generality that ϕ is basic (otherwise we can replace
the state formula ϕ by Aϕ or Eϕ without changing the semantics) and define
the weak alternating tree automaton A = (2I × 2O, , 2I , Q, q0, δ, α) as follows:

The states Q = Qϕ∪⋃
ψ∈basic(ϕ)(Q

ψ∪Qψ) are formed by the states of the single

weak alternating automata Aψ, and the initial state q0 = qϕ
0 is the initial state

174 CHAPTER 8. EXCURSION: PROBABILISTIC ENVIRONMENTS

of Aϕ. The transition function is defined such that

δ(qψ, σ) =
∨

Ψ⊆basic(ψ)

(
δψ(qψ, σ ∪ Ψ) ∧

∧

ψ′∈Ψ

δ(qψ′

0 , σ) ∧
∧

ψ′∈basic(ψ)rΨ

δ(qψ′

0 , σ)
)

holds true. The coloring function maps a state qψ with even (odd) color αψ(qψ)
in Aψ to an even (odd) color, such that the weakness criterion is preserved.

Intuitively, the truth of the single basic subformulas is guessed on the fly.
To demonstrate that guessing these values is safe, we show that player accept
has a winning strategy in the acceptance game if and only if he as a winning
strategy where he always guesses the validity of all basic subformulas correctly.
This can be demonstrated by induction along the structure of ϕ: Assume that
player accept has a winning strategy where the truth value of some subformula
is guessed incorrectly. Then there is a basic subformula ψ whose truth value is
eventually guessed incorrectly, but the truth values of the basic subformulas of ψ
are always guessed correctly. Then, for a state s in the transition-system T where
the truth of ψ was eventually guessed incorrectly (without loss of generality to

true), player accept has a winning strategy from (qψ
0 , s) in the acceptance game,

such that all values of basic subformulas of ψ are guessed correctly. Then player
accept has a winning strategy in Aψ when the labeling of T are enriched by
the correct values for the basic subformulas of ψ (the winning strategy is the
winning strategy from A, with the simplification that the correct values need
not be guessed). But in this case ψ is valid in s. Ã ¤

The automaton Aϕ constructed by Theorem 8.9 can, by Corollary 4.6, be
turned into an equivalent nondeterministic Büchi tree automaton Nϕ with ex-
ponentially more states than Aϕ. The language of Nϕ can be restricted to input-
preserving transition-systems (Theorem 8.5). A transition-system accepted by
Aϕ can be constructed by solving the emptiness game for the resulting automa-
ton (Theorem 4.7).

Corollary 8.10 Given a CTL* specification ϕ we can construct an input-
preserving 2I × 2O-labeled 2I-transition-system, or proof that no such system
exists, in time triply exponential in the length of ϕ.

Theorem 8.8 provides a 2EXPTIME lower bound, which leaves the exact
characterization of the complexity of the CTL* synthesis problem open. For its
important sub-logic CTL, the complexity coincides with the synthesis complex-
ity for classical semantics.

Theorem 8.11 The CTL synthesis problem is EXPTIME-complete.

8.4. TEMPORAL LOGICS 175

Proof: In CTL, each path quantifier refers to a path formula of the form
ψ1Uψ2, Gψ1, or Xψ1, where ψ1 and ψ2 are propositional (when basic formu-
las are viewed as propositions). For such path formulas (and their negations)
acceptance of a path can be tested by a deterministic word automaton with
three, two, or three states, respectively. The alternating automaton constructed
by Theorem 8.9 is therefore only linear in the length of the specification, and
emptiness can be checked in time exponential in the length of the specification
by first nondeterminizing this automaton (Corollary 4.6) and then performing
a constructive non-emptiness test for the resulting automaton (Theorem 4.7).

To demonstrate EXPTIME-hardness, we reduce solving the two player game
PEEK-G4 [SC79] to CTL synthesis. An instance of this game is a four-tuple
〈X,Y,Z, ϕ〉, where X and Y are disjoint sets of Boolean variables with the
intuition that X is under the control of the system and Y is under the control
of the environment. Z ⊆ X ∪ Y denotes the variables which initially hold true
and ϕ is a propositional formula over the variables X ∪ Y . The game is played
in rounds where first the system can change the value of at most one variable
in X, followed by a decision of the environment to change the value of at most
one variable in Y . The system wins the game if and only if ϕ is eventually
satisfied (after the move of the system). To determine the winner of such games
is EXPTIME-hard [SC79].

An instance of this game can be reduced to the synthesis problem for a
system with one input-variable i, two output variables o1 and o2, and a CTL
specification ψ quadratic in |X|+ |Y | and linear in ϕ. ψ = ψ0∧ψ1∧ψ2∧ψ3∧ψϕ

is a conjunction of the following five CTL formulas:

• ψ0 requires that the first |X| values of o1 reflect (on every path) the initial
truth value of the variables in X (defined by X ∩Z) and the following |Y |
values of o1 reflect the initial truth value of the variables in Y .

• ψ1 requires that o2 is true exactly every |X|+ |Y | steps (and initially) on
every path.

• ψ2 requires that at most one value of the variables o1 within |X| − 1 steps
after o2 was last set to true (including the current step) differs from the
value of o1 |X| + |Y | steps earlier.

• ψ3 states that within |X| to |X| + |Y | − 1 steps after o2 was set true, the
value of the variable o1 is different from its value |X|+ |Y | steps earlier if
and only if

– the value of the input variable is true, and

176 CHAPTER 8. EXCURSION: PROBABILISTIC ENVIRONMENTS

– the values of the previous input variables since |X| steps after o2 was
last set to true were all false.

• ψϕ requires that, for all paths, there is eventually a position where o2 is
true and along the path where i is false for the following |X| + |Y | steps,
the following |X|+ |Y | values of o1 (including the current value) satisfy ϕ
(when interpreted as predicates for ϕ).

ψ2 and ψ3 refer to the changing of at most one assignment for the variables
of X and Y by the system and the environment, respectively, ψ0 initializes
the game and ψ1 guarantees that o2 can be used as a flag, indicating that a
round starts. ψϕ reflects the winning condition of the game. An input-preserving
transition-system that satisfies ψ (in classical semantics as well as in almost-
sure/observable semantics) defines a winning strategy for 〈X,Y,Z, ϕ〉 and vice
versa. ¤

8.5 0-Environments

0-environments can “emphasize” each single path by assigning a probability
measure of 1 (if the probability of each single action can be chosen from [0, 1])
or arbitrarily close to 1 (if the probability of each single action can be chosen
from]0, 1]). For the latter case, consider an assignment of the probability 1−2i ·ε
for staying on the path desired by the environment in the i-th step for some
ε > 01.

Consequently, the LTL synthesis problem coincides for almost-sure and ob-
servable semantics with the LTL synthesis problem for classical semantics, which
is 2EXPTIME-complete [PR89a].

For almost-sure/observable CTL* semantics this implies that existential and
universal path quantifiers coincide. Consequently, a transition-system T is a
model of a CTL* specification ϕ if and only if T is a model of a specification
ϕ′ in classical semantics, where ϕ′ is obtained from ϕ by replacing all existen-
tial path quantifiers by universal path quantifiers. This implies EXPTIME and
2EXPTIME upper bounds for the CTL and CTL* synthesis problem [KV99],
respectively.

On the other hand, in classical semantics each specification ψ can be trans-
lated to an equivalent specification ψ′ by replacing each occurrence of an exis-
tential path quantifier E by the sequence ¬A¬. Since the length of ψ′ is linear

1The probability measure of the path is, in this case, greater than 1− ε, and can therefore
be chosen arbitrarily close to 1 by the 0-environment.

8.6. CONCLUSIONS 177

in the length of ψ and the classical semantics for ψ′ coincides with the almost-
sure/observable semantics, the matching lower bounds for the CTL and CTL*
synthesis problem [KV99] are preserved as well.

8.6 Conclusions

In this chapter, constructive decision procedures for the LTL, CTL and CTL*
synthesis problems under the assumption of 0-environments and ε-environments
have been introduced. While the semantics for 0-environments essentially reflect
the classical semantics and practically all established results trivially carry over,
the results for ε-environments provide interesting new insights.

The results of this chapter show that the complexity of synthesizing
transition-systems that satisfy an LTL or CTL specification ϕ in almost-
sure/observable semantics is, under the assumption of ε-environments, equiva-
lent to the complexity in classical semantics. While the complexity coincides,
the language classes for LTL are at the same time simpler and more involved
than for classical semantics: They are simpler in the sense that the languages
are recognizable by weak alternating automata, and more involved in the sense
that they cannot be recognized by deterministic automata.

Two interesting questions deserve further study: The exact complexity of
CTL* synthesis in almost-sure/observable semantics, and the influence of in-
complete information on the complexity of the LTL2 synthesis problem. These
problems may be closely interrelated: In classical semantics, both problems can
be solved through the existence of alternating automata that are only exponen-
tial in the length of a CTL* formula ϕ, which recognizes the models of ϕ. It
does not seem unlikely that similar solutions exist for almost-sure/observable
semantics, taking into account that model-checking remains PSPACE-complete
(Courcoubetis and Yannakakis PSPACE result for LTL model-checking [CY95]
trivially extends to CTL*).

An interesting side effect of using an automata-based synthesis algorithm
is the possibility to extend the results for single-process synthesis directly to
distributed synthesis.

2For CTL and CTL* synthesis, incomplete information can be handled using established
automata-based techniques [KV97b] (cf. Lemma 6.7).

Chapter 9

Semi-Automatic Synthesis

Abstract

In this chapter, a sound and complete compositional proof rule for distributed
synthesis is proposed. Applying this proof rule only requires the manual
strengthening of the specification into a conjunction of formulas that can be
guaranteed by individual black-box processes. All premises of the proof rule can
be checked automatically.

For this purpose, we give an automata-theoretic synthesis algorithm for sin-
gle processes in distributed architectures. Different to the setting of distributed
synthesis, the local environment of a process is unknown in the process of syn-
thesis and must be assumed to be hostile. We therefore consider reactive envi-
ronments that have the power to disable some of their own actions, and provide
methods for synthesis (and realizability checking) in this setting. We estab-
lish upper bounds for CTL (2EXPTIME) and CTL* (3EXPTIME) synthesis
with incomplete information, matching the known lower bounds for these prob-
lems, and provide matching upper and lower bounds for µ-calculus synthesis
(2EXPTIME) with complete or incomplete information. Synthesis in reactive
environments is harder than synthesis in maximal environments, where CTL,
CTL* and µ-calculus synthesis are EXPTIME-complete, 2EXPTIME-complete
and EXPTIME-complete, respectively.

178

9.1. INTRODUCTION 179

9.1 Introduction

In the synthesis of distributed systems, we transform a given specification into a
collection of finite-state programs that are guaranteed to satisfy the specification
when combined according to a given architecture. In the Chapter 6, we have seen
that distributed synthesis can be done automatically for fork-free architectures.
However, as soon as the architecture contains an information fork, the problem
becomes undecidable.

In this chapter, we investigate a semi-automatic approach, where we syn-
thesize one process at a time. It turns out that the synthesis of a single process
can be done automatically and it is always possible to decompose a realizable
specification into a conjunction of properties that can be guaranteed by sin-
gle processes. This approach therefore works for all distributed architectures,
including those with information forks.

The main difference between the classic synthesis problems and the problem
studied in this chapter is that the environment of the process now consists of
multiple constituents. In addition to the external environment, the process may
interact with the white-box processes and with the other black-box processes in
the system. Both the behavior of the external environment and the behavior of
the white-box processes are known a priori : In our setting, we assume that the
behavior of the external environment is maximal and that the behavior of each
white-box process is given as a (possibly nondeterministic) finite-state automa-
ton. (Technically, the environment is treated as an ordinary white-box process.)
By contrast, the strategies of the other black-box processes are unknown. From
the point of view of the considered process, their behavior therefore appears
reactive: At any point, they may disable some (but not all) of their possible
responses.

We call a process implementation resilient if the specification is satisfied in-
dependently of how the other black-box processes are implemented. (And even if
they get access to the complete system state.) We demonstrate that the resilient
synthesis problem is 2EXPTIME-complete for CTL and µ-calculus specifications
and 3EXPTIME-complete for specifications in CTL*. Our proof is constructive:
We introduce an automata-theoretic algorithm that determines for a temporal
specification and a process in a distributed architecture whether there exists
a resilient implementation and, if yes, computes one such implementation. We
establish 2EXPTIME and 3EXPTIME upper bounds for synthesis with incom-
plete information in case of µ-calculus and CTL* specifications, respectively.
These upper bounds match the lower bounds for checking resilient realizability

180 CHAPTER 9. SEMI-AUTOMATIC SYNTHESIS

for CTL and CTL* specifications, respectively, under the assumption of com-
plete information and a monolithic environment [KMTV00].

We propose to use the new synthesis algorithm in a compositional synthesis
rule for distributed synthesis. Applying our synthesis rule requires the strength-
ening of the specification into a conjunction of formulas for which resilient im-
plementations exist. The rule is complete: If a specification can be implemented,
then there also exists a strengthening for which that implementation is resilient.
Since the synthesis of resilient implementations is automatic, the strengthening
is the only manual step in the application of the rule.

The remainder of the chapter is structured as follows. In Section 9.2, we
formally introduce the synthesis problem studied in this chapter. We introduce
the compositional synthesis rule in Section 9.3 and illustrate its application on
a simple example in Section 9.4. In Section 9.5, we prove the completeness of
the rule. The synthesis algorithm is presented in Section 9.6.

9.2 Resilient Realizability

A set of strategies {pb : (2Ib)∗ → Ob}b∈Q of a set Q ⊆ B of black-box processes is
called a resilient realization of a specification ϕ if the computation tree satisfies ϕ
independently of the other black-box processes: That is, for every OBrQ-labeled
2Π-tree 〈(2Π)∗, pBrQ〉, representing the behavior of the black-box processes in
B r Q, the computation tree 〈‖p‖, dir〉 with p = pQ ⊕ pBrQ ⊕ pW is a model
of ϕ.

A specification ϕ is resiliently realizable by a set Q ⊆ B of black-box pro-
cesses, denoted by (A, Q) ² ϕ, if there exists a set of finite-state strategies for
the processes in Q that are a resilient realization of ϕ:

(A, Q) ² ϕ :⇔ ∃{pb : (2Ib)∗ → Ob | b ∈ Q}.∀{pBrQ : (2Π)∗ → OBrQ.
〈‖ ⊕

b∈Q

pb ⊕ pBrQ ⊕ pW ‖, dir〉 ² ϕ

For the complete set of black-box processes (Q = B) realizability and re-
silient realizability coincide: A specification ϕ is realizable if it is (resiliently)
realizable by the entire set B of black-box processes.

9.3 The Compositional Synthesis Rule

Building on the definition of resilient realizability, we now introduce a semi-
automatic approach to distributed synthesis. We define a compositional synthe-

9.3. THE COMPOSITIONAL SYNTHESIS RULE 181

sis rule that establishes the realizability of a specification by showing that the
specification can be strengthened into a conjunction of local specifications for
the individual processes, such that each local specification is resiliently realized
by its process. While the strengthening of the specification must be done man-
ually, we will show in Section 9.6 that all premises of the synthesis rule can be
checked automatically.

For a distributed architecture A with a set of black-
box processes B = {b1, · · · , bn}, and CTL* or
µ-calculus formulas ψ,ϕb1 , . . . ϕbn

,

(R1) (A, {b1}) ² ϕb1

...
...

(Rn) (A, {bn}) ² ϕbn

(S) (A, ∅) ²
∧

b∈B

ϕb → ψ

(A, B) ² ψ

Theorem 9.1 The compositional synthesis rule is sound.

Proof: Premises (R1) through (Rn) prove that each local specification ϕbi
is

resiliently realized by the respective black-box process bi:

(A, {bi}) ² ϕbi
⇔ ∃pbi

: (2Ibi)∗ → Obi
.∀pBr{bi} : (2V)∗ → OBr{bi}.

〈‖pbi
⊕ pBr{bi} ⊕ pW ‖, dir〉 ² ϕbi

.

Consequently, such strategies pbi
can be fixed independently. The resulting im-

plementation {pbi
}bi∈B satisfies ϕbi

for all bi ∈ B. Hence, (A, B) ²
∧

bi∈B ϕbi

holds true:

∃{pbi
:(2Ibi)∗ → Obi

| bi ∈ B}. 〈‖
⊕

bi∈B

pbi
⊕ pW ‖, dir〉 ²

∧

bi∈B

ϕbi
.

Premise (S) shows that the conjunction of the local specifications
∧

bi∈B ϕbi

implies the system specification ψ. Therefore, every implementation that satis-
fies all local specifications must also satisfy ψ:

182 CHAPTER 9. SEMI-AUTOMATIC SYNTHESIS

(A, ∅) ²
∧

bi∈B

ϕbi
→ψ

⇔ ∀pB :(2V)∗ → OB .〈‖pB ⊕ pW ‖, dir〉 ²
∧

bi∈B

ϕbi
→ψ

⇔ ∀pB : (2V)∗ → OB .〈‖pB ⊕ pW ‖, dir〉² ∧
bi∈B

ϕbi
⇒ 〈‖pB ⊕ pW ‖, dir〉²ψ.

In particular, the computation tree defined by {pbi
}bi∈B must satisfy ψ.

Hence, the compositional synthesis rule is sound.

9.4 Example

We illustrate the compositional synthesis rule with a simple distributed shared-
resource application. The system architecture is shown in Figure 9.1a. The ex-
ternal environment env is depicted as a circle, the two black-box processes p1

and p2 as filled rectangles, and the white-box “Arbiter” process as an empty
rectangle.

env can request access to the resource by setting the request variable of one of
the two black-box processes p1 and p2. The unconstrained external environment
is modeled as a white-box process that shows every possible behavior, that is,
penv is the constant function that maps every input history to 2{request1,request2}.
The white-box process Arbiter, whose deterministic implementation is shown in
Figure 9.1b, ensures mutual exclusion by passing a grant back and forth between
p1 and p2, such that each process retains the grant until the respective release
variable is set.

We specify the expected behavior of the shared-resource system as a con-
junction ψ = ψ1 ∧ψ2 ∧ψ3 of three CTL* formulas, where the first two formulas
specify that there is a way for both processes to use the resource infinitely of-
ten (ψi = EGF accessi for i ∈ {1, 2}) and the third formula specifies mutual
exclusion (ψ3 = AG ¬(access1 ∧ access2)).

Obviously, neither p1 nor p2 can guarantee ψ for all possible implementations
of the other process (for example, if p1 constantly sets its access1 variable to
true, p2 cannot avoid violating mutual exclusion if it is to obtain access along
some branch).

Using the proof rule, we need to strengthen ψ into two separate properties
ϕp1

and ϕp2
that can be resiliently realized by p1 and p2, respectively. A natural

assumption to be made by process p3−i about process pi is that there is a path
such that process pi infinitely often releases the grant (αpi

1 = EGF releasei)
and that, on every path, pi only accesses the resource when permitted by the
arbiter (αpi

2 = AG accessi → grant i). By adding these assumptions, we obtain

9.4. EXAMPLE 183

env

p1

Arbiter

p2

(a)

request1

request2

access1

access2

release1

release2

grant1

grant2

(b)

grant1 := true
grant2 := false

release1

grant2 := true

release2

grant1 := true

¬release1 ¬release2

Figure 9.1: A simple distributed shared-resource application. (a) The system
architecture. An edge between two process nodes p and q labeled with variable
v indicates that v is an output variable of process p and an input variable of
process q. (b) The implementation of the white-box process Arbiter, represented
as a finite-state Mealy machine. The edges are labeled with the value of the input
variables and with new assignments to the output variables (if the value of the
output variables changes).

a strengthened specification ϕ = ϕp1
∧ ϕp2

where

ϕpi
= αpi

1 ∧ αpi

2 ∧ (α
p3−i

1 ∧ α
p3−i

2 → ψ).

Once the auxiliary formulas ϕp1
and ϕp2

have been defined, a resilient im-
plementation can be found for both processes. For example, process pi can
guarantee ϕpi

by setting accessi after each request i as soon as grant i becomes
true and by setting releasei in the immediately following state.

In terms of the traditional system development process, the strengthening
in our proof rule can be understood as the definition of an abstract interface
or contract between the processes. Typically, the user can choose from multiple
correct contracts. In the shared-resource application, the user might, for exam-
ple, alternatively specify strict turn-taking by strengthening ψ to ϕ′

p1
and ϕ′

p2
,

where ϕ′
p1

requires that p1 accesses the resource exactly after every odd number
of steps and ϕ′

p2
requires that p2 accesses the resource exactly after every even

number of steps. The resilient implementations of this strengthening are slightly
unorthodox (the arbiter is ignored), but are also guaranteed to satisfy ψ.

184 CHAPTER 9. SEMI-AUTOMATIC SYNTHESIS

As a final remark about this example, let us convince ourselves that it is
really necessary to consider resilient implementations. Suppose that, in a hypo-
thetical alternative proof rule, we require only the (cheaper) realizability in a
maximal local environment. It is now possible to strengthen ψ into two formulas
ϕ′′

p1
and ϕ′′

p2
that can, in a maximal local environment, be guaranteed by p1 and

p2, respectively, but whose conjunction is equivalent to false. For example, p1

can easily guarantee AG¬release1, while any implementation of p2 guarantees
EF release1 in a maximal local environment.

9.5 Completeness

To demonstrate the completeness of the compositional synthesis rule, we show
that the auxiliary formulas ϕb1 , . . . , ϕbn

required in the rule can be derived from
a distributed implementation {pbi

}bi∈B that satisfies the specification ψ. Given
an implementation pb of a black-box process b, we define a CTL formula ϕb that
is a strict characterization of the behavior of b and the white-box processes.
Strict characterization means that

1. pb is a resilient implementation of ϕb, and

2. for all other implementations {p′bi
}bi∈B that realize ϕb, the implementa-

tions pb and p′b have the same computation trees:

∀pBr{b} : (2V)∗ → OBr{b}. ‖pb⊕pBr{b}⊕pW⊕penv‖ = ‖p′b⊕pBr{b}⊕pW⊕penv‖.
Condition (1) guarantees that premise (Ri) of the proof rule is satisfied for

each black-box process bi, and Condition (2) guarantees that premise (S) is
satisfied.

The arbiter depicted in Figure 9.1(b) has the following strict characteriza-
tion:

ϕarbiter = ϕ0 ∧ AG(ϕ0 ∨ ϕ1), with

ϕ0 = grant1 ∧ ¬grant2 ∧ (release1 → AX(¬grant1 ∧ grant2))
∧(¬release1 → AX(grant1 ∧ ¬grant2)), and

ϕ1 = ¬grant1 ∧ grant2 ∧ (release2 → AX(grant1 ∧ ¬grant2))
∧(¬release2 → AX(¬grant1 ∧ grant2)).

Let the implementation for the processes b ∈ B and for the white-box pro-
cesses be given as finite-state transducers, which we combine into a single trans-
ducer TB with a set SB of states and an initial state sB

0 ∈ SB . Additionally, we

9.6. SYNTHESIS OF RESILIENT IMPLEMENTATIONS 185

construct a finite-state transducer Tb with a set Sb of states and initial state sb
0

for the product of each single black-box process b and the white-box processes.

We define a CTL formula ϕb such that the models of ϕb are the trees obtained
by unraveling Tb. To construct ϕb, we give a formula ϕs for each state s ∈ Sb

which ensures that, for the next max{|SB |, |Sb|}+ 1 steps, the tree corresponds
to the unraveling of T starting in state s. Since the other black-box processes
are unknown, ϕs does not require that all branches of the unraveling exist, but
rather that, provided they do exist, the reaction is in accordance with Tb. The
specification ϕb = ϕsb

0
∧AG

∨
s∈Sb

ϕs requires that ϕs0
holds initially, and that

always some ϕs holds true.

The formula ϕb is a strict characterization of the behavior of b and the white-
box processes. As required by Condition (1), pb is a resilient implementation of
ϕb. For Condition (2), note that resilient realization includes realization in a
maximal environment as a special case: Hence, p′b ⊕

⊕
w∈W pw must react to

any input from the other black-box processes exactly like pb ⊕
⊕

w∈W pw.

An unraveling of height |Sb| + 1 suffices for strict characterizations, and an
unraveling of height |SB |+ 1 suffices to guarantee that the formula

∧
b∈B ϕB is

a strict characterization of the overall system.

Theorem 9.2 The compositional synthesis rule is complete.

Proof: Assume that ψ is realizable and let {pbi
: (2Ibi)∗ → Obi

}bi∈B be a
realization of ψ. For each black-box process bi, we can infer a formula ϕbi

, which
is a strict characterization of the behavior of bi and the white-box processes, that
is, of pbi

⊕ pW . Premises (Ri) of the compositional synthesis rule are satisfied
because for each ϕbi

, the given pbi
is a resilient realization.

The conjunction of the single strict characterizations define a strict specifi-
cation of the overall system. Consequently, each implementation that satisfies∧

bi∈B ϕbi
also satisfies ψ, and Premise (S) holds true. ¤

9.6 Synthesis of Resilient Implementations

We now develop a procedure that checks if a specification is resiliently realizable
by a single black-process b, (A, {b}) ² ϕ, as required for Premises (R1) through
(Rn), and a procedure that checks if a specification is resiliently realized by the
empty set of black-box processes, (A, ∅) ² ϕ, as required for Premise (S).

186 CHAPTER 9. SEMI-AUTOMATIC SYNTHESIS

9.6.1 Overview

The synthesis algorithm is a generalization of the synthesis algorithm for
1-black-box architectures (Subsection 6.5.1). We consider the resilient realiz-
ability problem (A, {b}) ² ϕ for an architecture with a black-box process b.
Given such an architecture A = (A,B,D,Π, {Ia}a∈A, {Oa}a∈A), an ATµC spec-
ification ϕ, and a set PW = {pw}w∈W of implementations for the white-box
processes, the following algorithm constructs a nondeterministic automaton G,
which accepts an implementation pb of the black-box process b if and only if it
resiliently realizes ϕ, that is, if

∀pBrQ : (2Π)∗ → OBrQ. 〈‖pb ⊕ pBrQ ⊕ pW ‖, dir〉 ² ϕ.

Realizability can then be checked by solving the emptiness game for F . The
synthesis algorithm uses the following automata operations:

• From specification to automata. First, a specification ϕ is turned into
an ε-free ACG A that accepts exactly the models of ϕ (Theorem 4.1 and
Lemma 4.2).

• From models to implementations. We then transform A into an
alternating tree automaton B that accepts a relaxed implementation
〈(2Π)∗, l × ⊕

a∈A p′a〉 (extended by atomic propositions; l : (2Π)∗ → 2Π)
with input Π if and only if 〈‖p′A‖, l〉 is a model of ϕ (Lemma 6.4).

• Quantification over black-box implementations. In a third step, we
construct an alternating automaton C that accepts a 2Π×Ob×OW -labeled
2Π-tree 〈(2Π)∗, l×p′b⊕p′W 〉 if and only if, for all pBr{b} : (2Π)∗ → OBr{b},
the 2Π ×Ob ×OW ×OBrb-labeled 2Π-trees 〈(2Π)∗, l × p′b ⊕ p′W ⊕ pBr{b}〉
is accepted by B (Corollary 9.4).

• Adjusting for white-box processes. In the following step, we con-
struct an alternating automaton D that accepts a 2Π × Ob-labeled 2Π-
tree 〈(2Π)∗, l × pb〉 if and only if the 2Π × Ob ⊕ OW -labeled 2Π-tree
〈(2Π)∗, l × pb ⊕ ⊕

w∈W pw〉 obtained by composing pb with the imple-
mentations PW = {pw}w∈W of the white-box processes is accepted by C
(Lemma 6.5).

• Pruning the directions from the label. We then construct an alter-
nating automaton E that accepts an Ob-labeled 2Π-tree 〈(2Π)∗, pb〉 if and
only if the 2Π × Ob-labeled 2Π-tree 〈(2Π)∗, dir × pb〉 obtained by adding
the directions to the label is accepted by D (Lemma 6.6).

9.6. SYNTHESIS OF RESILIENT IMPLEMENTATIONS 187

• Incomplete information. In a sixth step, we transform E into an al-
ternating automaton F that accepts an Ob-labeled 2Ib -tree 〈(2Ib)∗, pb〉 if
and only if its suitable widening 〈(2Π)∗, pb ◦ hide2ΠrIb 〉 is accepted by E
(Lemma 6.7).

• Emptiness test. In the last step, we test the emptiness of F by first con-
structing a nondeterministic tree automaton G with L(G) = L(F) (Corol-
lary 4.6), and then performing a constructive non-emptiness test for F
(Theorem 4.7).

Quantification is the only step of this synthesis algorithm that is not covered
by the construction from Subsection 6.5.1.

9.6.2 Quantification

The central automata construction of this chapter covers the quantification over
all possible relaxed implementations of the black-boxes Br{b}. That is, we build
an automaton C that accepts a 2Π × Ob ⊗ OW -labeled 2Π-tree if all OBr{b}
extensions are accepted by B:

L(C) = {〈(2Π)∗, l × l′〉 | l : (2Π)∗ → 2Π, l′ : (2Π)∗ → Ob ⊗OW and
∀l′′ : (2Π)∗ → OBr{b}. 〈(2Π)∗, l × (l′ ⊕ l′′)〉 ∈ L(B)}.

Intuitively, the automaton guesses the most hostile behavior of the re-
maining black-box processes. Note that for universal specifications the most
hostile behavior of the remaining black-box processes is the maximal behav-
ior, where each process b′ ∈ B r {b} continuously enables all successors
(pb′(y) = {2Ob′ } ∀y ∈ (2Π)∗). The quantification step can therefore be avoided
for universal specifications, provided such a maximal behavior exists (cf. Sub-
section 9.6.5).

To construct Cϕ, we interpose a language projection between two language
complementations:

• We complement Bϕ, that is, we construct an alternating automaton Bd
ϕ

with L(Bd
ϕ) = L(Bϕ) (Lemma 9.3).

• Next, we build a nondeterministic automaton Nϕ with the same language
L(Nϕ) = L(Bd

ϕ) (Corollary 4.6).

• Then, we construct a nondeterministic automaton Pϕ that accepts a 2Π×
Ob ⊗OW -labeled 2Π-tree if it is the OBr{b}-projection of a tree accepted
by Nϕ (Lemma 6.8).

188 CHAPTER 9. SEMI-AUTOMATIC SYNTHESIS

• Finally, we complement Pϕ, that is, we build an alternating automaton

Cϕ with L(Cϕ) = L(Pϕ) (Lemma 9.3).

An alternating automaton B = (Σ,Υ, Q, q0, δ, α) can be complemented by
dualizing its transition function (that is, replacing each occurrence of ∧, ∨, true
and false by ∨, ∧, false and true, respectively) and increasing the color of each
state by one (dualizing the acceptance condition). Dualization of alternating
automata was introduced by Muller and Schupp [MS87].

Lemma 9.3 [MS87] Given an alternating automaton B = (Σ,Υ, Q, q0, δ, α),
the dual automaton Bd = (Σ,Υ, Q, q0, δ, α + 1), where δ is the function dual
to δ, accepts a tree 〈Υ∗, l〉 if and only if 〈Υ∗, l〉 is not accepted by B. ¤

For a given tree 〈Υ∗, l〉 in the language of B and a given winning strategy
of player accept in the acceptance game for 〈Υ∗, l〉 (with associated run tree
〈R, r〉) we can infer a winning strategy for player reject for the dual automaton
and the same input tree: If, for B, player accept chooses a set of atoms upon a
given history, than, for the automaton Bd dual to B, player rejectdual commits
herself to choose one of these atoms before player acceptdual makes his choice
(Since the transition functions are dual, the choice of player acceptdual cannot
be disjoint with the commitment of player rejectdual). Player acceptdual can now
enforce only paths of the run tree 〈R, r〉 of 〈Υ∗, l〉. Since the strategy of player
accept is winning (for B), all paths in 〈R, r〉 satisfy the parity condition for the
coloring function α. Consequently, they do not satisfy the parity condition for
the dual coloring function α + 1.

Since dualizing an automaton twice results in the original automaton (with
the exception that α is replaced by α + 2), each tree accepted by Bd is rejected
by B. Thus, Bd accepts exactly the trees rejected by B.

Neither the dualization of an automaton (Lemma 9.3), nor language projec-
tion (Lemma 6.8) change the set of automata states. The only expensive opera-
tion in the construction of C from B is the transformation of general alternating
tree automata to nondeterministic automata (Corollary 4.6).

Corollary 9.4 Given an alternating automaton B = (Σ×Ξ,Υ, Q, q0, δ, α) with
n states and c colors that runs on Σ × Ξ-labeled Υ-trees, we can construct an
alternating automaton C = (Σ,Υ, Q′, q′0, δ

′, α′) with nO(c n) states and O(c n)
colors that accepts a Σ-labeled Υ-tree 〈Υ∗, lΣ〉 if and only if all Σ × Ξ-labeled
Υ-trees 〈Υ∗, lΣ × lΞ〉 with 〈Υ∗, l〉 = projΣ(〈Υ∗, lΞ〉) are accepted by B. ¤

9.6. SYNTHESIS OF RESILIENT IMPLEMENTATIONS 189

9.6.3 Upper Bounds

Our construction establishes 2EXPTIME upper bounds for ATL, CTL, clas-
sic µ-calculus and ATµC specifications, a 3EXPTIME upper bound for CTL*
specifications, and a 4EXPTIME upper bound for ATL* specifications.

Theorem 9.5 Checking the resilient realizability (A, {b}) ² ϕ can, for a given
architecture A, a given specification ϕ and a given implementation for the white-
box processes, be performed in time doubly exponential in the length of ϕ if ϕ is
a CTL, ATL, µ-calculus or ATµC specification, and in time triply exponential
in the length of ϕ if ϕ is a CTL* specification.

If applicable, a resilient realization pb : (2Ib)∗ → Ob can be constructed within
the same complexity bounds.

Proof: Following the construction described in Section 9.6.1, we build a nonde-
terministic automaton Gϕ, which accepts exactly the resilient implementations
of ϕ by b. If n = |ϕ| denotes the length of the specification ϕ, then Gϕ has

• 2nO(n)

states and nO(n) colors if ϕ is an ATL (or CTL) specification,

• 2nO(n3)

states and nO(n3) colors if ϕ is an alternating-time (or classic)
µ-calculus specification.

• 222O(n)

states and 22O(n)

colors if ϕ is a CTL* specification, and with

By Theorem 4.7 we can check the emptiness of Gϕ and, if Gϕ is non-empty,
construct a regular tree accepted by Gϕ in time polynomial in the number of
states and exponential in the number of colors of Gϕ. ¤

9.6.4 Lower Bounds

To demonstrate that the upper bounds are sharp, we give a reduction from the
synthesis problem in reactive environments with complete information, which
is known to be 2EXPTIME and 3EXPTIME hard for CTL and CTL*, re-
spectively [KMTV00]. In synthesis with reactive environments and complete
information, we have only one process b, for which a (deterministic) strategy
pb : (2Oenv)∗ → Ob is sought. The environment can react to the input by re-
stricting its actions to a non-empty subset of its output variables Oenv , which

can be viewed as a non-deterministic strategy penv : (2Oenv∪Ob)∗ → 22Oenv
r{∅}).

In our terms, a strategy pb : (2Oenv)∗ → Ob implements a specification ϕ if, for all

190 CHAPTER 9. SEMI-AUTOMATIC SYNTHESIS

strategies penv : (2Oenv∪Ob)∗ → 22Oenv
r{∅} of the environment, 〈‖pb⊕penv‖, dir〉

is a model of ϕ.
Synthesis in reactive environments can therefore be viewed as the special case

of checking (A, {b}) ² ϕ for an architecture A = (A,B,D,Π, {Ia}a∈A, {Oa}a∈A)
with A = B = {b, env}, D = {b}, and Ib = Ienv = Π.

Note that the determinacy of pb can, as an alternative to guarantee determi-
nacy by construction, be ensure by strengthening the specification ϕ such that
only deterministic strategies are allowed: We solve the realizability problem for
ϕ′ = ϕ ∧ ψ, with ψ =

∧
o∈Ob

AG (EXo ↔ AXo), which is linear in ϕ.

Theorem 9.6 The realizability problem (A, {b}) ² ϕ is 3EXPTIME-complete
for CTL* and 2EXPTIME-complete for CTL, ATL and for classic and
alternating-time µ-calculus specifications in the length |ϕ| of the specification.

Proof: The lower bounds for CTL and CTL* follow from the equal lower
bounds for the synthesis problem with reactive environments [KMTV00]. The
lower bound for the µ-calculus is established by the lower bound for CTL. The
lower bounds for ATµC and ATL follow immediately. The upper bounds are
established by Theorem 9.5. ¤

9.6.5 Universal Specifications

For universal specifications and nondeterministic black-boxes Br{b}, the quan-
tification step of Subsection 9.6.2 can be simplified, resulting in an exponential
improvement in the complexity. A specification is universal if its models are rec-
ognized by a universal ACG. The universal specifications include in particular
the formulas of the following logics:

• the syntactic subsets ACTL* and ACTL of CTL* and CTL, respectively,
which do not contain the existential path quantifier (and allow negation
only for atomic propositions),

• the syntactic subset of the modal µ-calculus that does not contain the
existential successor operator ♦, and

• trace languages like LTL.

Intuitively, the quantification step is used to guess, for a given implementa-
tion pb : (2Π)∗ → Ob of a process b, an implementation pBr{b} : (2Π)∗ → OBr{b}
for the remaining black-box processes B r {b} for which ϕb does not hold, that
is, 〈‖pb ⊕pW ⊕pBr{b}‖, dir〉 2 ϕb. If ϕb is a universal specification, the strategy
can be set to the constant value

⊕
b 6=b′∈B{2Ob′ }.

9.6. SYNTHESIS OF RESILIENT IMPLEMENTATIONS 191

Theorem 9.7 If ϕ is a universal specification over a set AP of atomic proposi-
tions, 〈Y, l : Y → 2AP 〉 2 ϕ is no model of ϕ, and 〈Y ′, l′ : Y ′ → 2AP 〉 is a 2AP -
labeled tree with Y ⊆ Y ′ and l(y) = l′(y) for all y ∈ Y , than 〈Y ′, l′ : Y ′ → 2AP 〉
is no model of ϕ.

Proof: Let Uϕ be a universal ACG recognizing the models of ϕ, and let r be a
winning strategy for player reject in the acceptance game of 〈Y, l : Y → 2AP 〉.
(Such a strategy exists, since 〈Y, l : Y → 2AP 〉 2 ϕ is no model of ϕ.) Then
r is also a winning strategy for 〈Y ′, l′ : Y ′ → 2AP 〉. (r always picks the same
atom and the same direction for 〈Y ′, l′〉 as for 〈Y, l〉, so intuitively 〈Y, l〉 is never
left.) ¤

Consequently, we can assume without loss of generality that the strategies
pb′ of all remaining black-box processes b′ ∈ B r {b} are the constant strategies
that constantly enable all directions.

Corollary 9.8 If ϕ is a universal specification and, for all b 6= b′ ∈ B, Ob′ has a
maximal element db′ ∈ Ob′ (∀d ∈ Ob′ . d ⊆ db′), than 〈‖pb⊕pW ⊕pBr{b}‖, dir〉 ²

ϕ is a model of ϕ for all pBr{b} : (2Π)∗ → OBr{b} if and only if 〈‖pb ⊕ pW ⊕
pBr{b}‖, dir〉 ² ϕ is a model of ϕ for pBr{b} : (2Π)∗ → {⊕b 6=b′∈B db′}. ¤

For trace languages, it is safe to extend Ob′ by a maximal element db′ =⋃
d∈Ob′

d for every b′ ∈ B r b, since no new traces are introduced by this

extension. That is, for pBr{b} : (2Π)∗ → {⊕b′∈Br{b} db′}, each trace in

‖pb ⊕ pW ⊕ pBr{b}‖ is a trace in ‖pb ⊕ pW ⊕ pBr{b}‖ for some {pb′ : (2Π)∗ →
Ob′ | b′ ∈ B r {b}}.

This is, however, not true for general universal specifications: If the set of
black-box processes B = {b, b′} consists of two processes b and b′ and we al-
low only for deterministic implementations of b′, then b can resiliently realize
(AXp) ∨ (AX¬p). Obviously, this is no longer true if we add a maximal ele-
ment to Ob′ , which simultaneously allows for successors where p holds and for
successors where p does not hold.

9.6.6 Premise (S)

The correctness of Premise (S) can be checked along the same lines: We check
whether the empty strategy of a shadow process (without in- or output variables)
resiliently realizes

∧
b∈B ϕb → ψ. Since O∅ = {∅} and I∅ = ∅, the automaton F

(with n states and c colors) is an alternating word automaton over the single-
letter alphabet, whose emptiness can be checked in nO(c) time.

192 CHAPTER 9. SEMI-AUTOMATIC SYNTHESIS

Theorem 9.9 Checking Premise (S) is 2EXPTIME-complete for CTL* speci-
fications, and EXPTIME-complete for CTL, ATL, and classic and alternating-
time µ-calculus specifications ϕ =

∧
b∈B

ϕb → ψ in the length of ϕ.

Proof: To be able to argue independent from the structure of the transition
function of F , we can check Premise (S) by an adjusted algorithm that postpones
the quantification over the relaxed strategies of the black-box processes till after
pruning the directions and white-box implementations from the label. Then F
is empty if and only if E is empty, and E is now dual to a nondeterministic
automaton P that is exponential in the size of A.

With Theorem 4.7 and the complexity of translating temporal specifications
to ATµC [AHK02, BC96], we get EXPTIME upper bounds for CTL, ATL, and
classic and alternating-time µ-calculus specifications, and a 2EXPTIME bound
for CTL* specifications, respectively.

Fitting lower bounds can be obtained by reduction from module check-
ing [KV97a]. ¤

9.7 Conclusions

We have introduced a sound and complete proof rule for distributed synthesis,
which reduces the distributed synthesis problem to the simpler task of deciding
the resilient realizability of local process specifications.

Synthesizing resilient implementations generalizes the synthesis of open sys-
tems. Open synthesis assumes an environment with maximal behavior. For re-
silient implementations, this environment model is extended in two aspects:
(1) The other black-box processes add a reactive component to the environment,
and (2) the process only has incomplete information about the environment be-
havior.

Extension (1) is expensive. Adding the reactive component increases
the complexity for CTL specifications from EXPTIME [KV99] to 2EXP-
TIME [KMTV00], and for CTL* specifications from 2EXPTIME [KV99] to
3EXPTIME [KMTV00]. As shown in Section 9.6, extension (2) has no extra
cost. This settles an open question of [KMTV00]: The complexity of synthesiz-
ing a single process in a distributed architecture is still 2EXPTIME-complete
and 3EXPTIME-complete, respectively.

The semi-automatic compositional approach is an efficient alternative to
fully automatic distributed synthesis. Distributed synthesis is only decidable for

9.7. CONCLUSIONS 193

a restricted class of architectures. For this class of architectures, the complexity
is nonelementary [PR90, KV01] (cf. Chapter 6).

The situation is similar to the verification of distributed systems, where
the compositional approach is well-established [dRLP98]. Our proof rule is a
first example of a compositional synthesis technique. The rule is complete and
therefore sufficient to decompose any realizable specification. The rule may,
however, be less convenient to use than some compositional verification rules
that, for example, apply circular assume-guarantee reasoning [Mai03]. Defining
such rules for the synthesis problem is an interesting topic of future research.

Chapter 10

Asynchronous Systems

10.1 Introduction

Synthesis automatically transforms a specification into an implementation that
is guaranteed to satisfy the specification. For synchronous systems, the syn-
thesis problem is well-understood. Synthesizing single-process implementations
is EXPTIME-complete for the µ-calculus [Koz83, KV00], and 2EXPTIME-
complete for linear-time temporal logic (LTL) and computation-tree logic
(CTL*) [KV97b, KV00, KMTV00]. Multi-process synthesis, the problem of find-
ing implementations for the processes in a given distributed architecture, has
been solved for pipelines [PR90], rings [KV01], and in general for all architec-
tures without information forks (cf. Chapter 6).

By contrast, the problem of synthesizing asynchronous systems has so far re-
ceived very little attention: The synthesis algorithms in the literature are limited
to LTL specifications and single-process implementations. The first solution for
asynchronous synthesis with specifications in LTL, but without fairness condi-
tions, is due to Pnueli and Rosner [PR89b]. Anuchitanukul and Manna [AM94]
later showed that fairness conditions can be included in a deductive approach;
Vardi [Var95] provided an automata-based algorithm for the same problem.

The question arises if the lack of synthesis algorithms for asynchronous sys-
tems is a coincidence or rather an indication of an inherent hardness of the
synthesis problem for asynchronous systems. In this chapter, we systematically
study the challenges in extending synthesis to the asynchronous case and, in
doing so, give a comprehensive answer to this question.

194

10.1. INTRODUCTION 195

Challenge 1: Synthesizing asynchronous processes for branching-time

specifications. We begin by generalizing the synthesis of single-process im-
plementations from linear-time to branching-time1 specifications. The behavior
of an asynchronous process depends on the scheduler: While synchronous pro-
cesses are aware of each change to their inputs, asynchronous processes may
fail to see certain changes (when the writing process is scheduled more often
than the reading process) and may see duplicate input values (when the reading
process is scheduled multiple times between two writes). For linear-time spec-
ifications, asynchronous processes are typically analyzed in combination with
a full scheduler, which allows every possible scheduling to occur along some
path of the computation tree. In our first algorithm, we adapt this setting to
branching-time specifications and synthesize an asynchronous process imple-
mentation such that the computation tree that results from the combination
with a full scheduler satisfies the branching-time specification. The algorithm
runs in exponential time for µ-calculus specifications and in double exponential
time for CTL*. We thus obtain the result that under full scheduling, the cost
of synthesizing single-process implementations is the same for synchronous and
asynchronous systems.

Challenge 2: Synthesizing scheduler-independent implementations.

Dropping the assumption of a full scheduler leads to the problem of synthesiz-
ing scheduler-independent implementations: We require that the implementation
must satisfy the specification for every scheduler. For LTL (and, more generally,
for universal specifications), the two synthesis problems coincide. For branching-
time specifications, scheduler-independent synthesis is the strictly more general
problem. Consider the existential specification “there is a path where the output
of the process changes in every second step.” This specification can trivially be
satisfied under the assumption of a full scheduler, but there is no implementa-
tion that guarantees this specification for all schedulers. Scheduler-independent
synthesis allows us to explicitly state the assumptions on the scheduler as part
of the specification. An interesting example for such an assumption is fairness.
While synthesis under full scheduling allows us to find implementations that
perform correctly on fair paths (“there is a fair scheduling where the output
of the process changes in every second step”), scheduler-independent synthesis
allows us to find implementations that perform correctly whenever the scheduler

1The presented techniques extend to alternating-time specification language. The restric-
tion to branching-time logic is chosen to avoid a discussion on the appropriated semantics, in
particular the question if the scheduler is to be treated like an ordinary process, and if it can
form coalitions.

196 CHAPTER 10. ASYNCHRONOUS SYSTEMS

is fair (“if the scheduler is fair on all paths then there is a path where the out-
put of the process changes in every second step”). In our second algorithm, we
synthesize an asynchronous process implementation such that any computation
tree that results from the combination of the process with some scheduler satis-
fies the branching-time specification. The algorithm runs in double exponential
time for CTL and µ-calculus specifications, and in triple exponential time for
CTL*. We provide matching lower bounds for these logics, obtaining the re-
sult that scheduler-independent synthesis is exponentially harder than synthesis
under full scheduling.

Challenge 3: Synthesizing asynchronous distributed systems. We con-
sider the multi-process synthesis problem, where the distributed architecture is,
as usual, given as a directed graph. In the synchronous case, the distributed
synthesis problem is decidable if and only if the architecture does not contain
an information fork (cf. Chapter 6). We show that in the asynchronous case, the
distributed synthesis problem is decidable if and only if the architecture contains
only a single black-box process.

Our results thus demonstrate that, except for the case of single-process im-
plementations and full scheduling, the synthesis of asynchronous systems is in-
deed harder than the synthesis of synchronous systems. Our algorithms solve
the distributed synthesis problem for architectures with a single black-box pro-
cess. Since the synthesis problem is undecidable for all architectures with two or
more black-box processes, it is impossible to extend our algorithms to a larger
set of architectures.

Challenge 4: Synthesizing globally asynchronous but locally syn-

chronous systems. We finally consider systems that are composed globally
asynchronously, but that have local islands of synchronized processes (GALS
systems [Gup03]). We combine the decision procedure for systems of asyn-
chronously composed components with a single black-box with the decision
procedure for synchronous systems of Chapter 6 to a decision procedure for
GALS systems that covers all GALS systems that satisfy two constraints:

• all black-box components belong to the same synchronized component
(that is, they are always scheduled together), and

• this synchronized area does not contain an information fork.

10.2. THE SYNTHESIS PROBLEM 197

It is then simple to combine the respective completeness results to show that
any GALS system that violates either requirement immediately becomes unde-
cidable.

10.2 The Synthesis Problem

We study the synthesis problem in the general setting of distributed systems.
The synthesis problem is to decide for the triple (A, ϕ, {pw}w∈W), consisting of
an architecture A, a specification ϕ, and a set of white-box strategies {pw}w∈W ,
whether there exists an implementation {pb}b∈B for each black-box process in A,
such that their computation tree 〈‖pA ⊕ sched‖, dir〉 satisfies ϕ. The scheduler
sched is a special process that selects, in each turn, the subset of scheduled
processes of A. Processes that are not scheduled are not aware of this fact.
That is, the scheduler adds an additional source of incomplete information to
the distributed synthesis problem.

10.2.1 The Scheduler

In every step, the scheduler makes a (possibly nondeterministic) choice which
processes are scheduled. In a full scheduler, all choices are possible in each step.
In general, some choices may be disabled, and the set of choices may depend on
the history of states.

We formalize the scheduler as a function from (2A∪Π)∗ to the set of poten-

tial scheduling decisions Osched = 22A

, which consists of the set of subsets of
the set of processes. We represent the function as an Osched -labeled 2A∪Π-tree
〈(2A∪Π)∗, sched〉, where the label refers to the nondeterministic choice of the
scheduler.

The scheduler can be viewed as a fully informed process that has access to
the complete history of decisions. It is better informed than all other processes,
because even if a process a ∈ A has access to all system variables, a cannot
observe their values unless it is scheduled.

10.2.2 Computations

The computation tree identifies the system state (that is, the values of the sys-
tem variables and the currently scheduled processes) for every possible history
of input assignments and scheduling decisions. As an intermediate construction,
we define, for each process a ∈ A, the function visa : (2A∪Π)∗ → (2Ia)∗ that

198 CHAPTER 10. ASYNCHRONOUS SYSTEMS

maps a global history of system states to the input history available to a. We
set

• visa(ε) = ε,

• visa(x · (A′, π)) = visa(x) · (π ∩ Ia) if a ∈ A′ and

• visa(x · (A′, π)) = visa(x) if a /∈ A′.

For asynchronous systems, we define the computation tree for an implemen-
tation P = {pa}a∈A and a scheduler sched as the greatest total 2A∪Π-labeled
2A∪Π-tree 〈Yct, dir〉 such that y · (A′, π) ∈ Yct implies

• A′ ∈ c(y) – the scheduling decision is possible,

• ∀a /∈ A′. Oa ∩ π = Oa ∩ dir(y) – the output variables of non-scheduled
processes remains unchanged, and

• ∀a ∈ A′. Oa ∩ π ∈ pa(visa(y)) – the output of the scheduled processes is
in accordance with their implementation.

As in the synchronous setting, it is technically convenient to use a relaxed
implementation pa : (2A∪Π)∗ → Oa that has access to the system state in
intermediate steps of the synthesis algorithm.

10.2.3 The Synthesis Problem

A triple (A, ϕ, {pw}w∈W), consisting of an architecture A, a specification ϕ,
and a set of white-box implementations PW = {pw}w∈W , is called

• realizable under full scheduling if there exists an implementation PB =
{pb}b∈B of the black-box processes such that, for the full scheduler that
maps every input history to 2A, the resulting computation tree 〈Yct, dir〉
is a model of ϕ; and

• scheduler-independently realizable if there exists an implementation
PB = {pb}b∈B of the black-box processes such that, for all schedulers
〈(2A∪Π)∗, sched〉, the resulting computation tree 〈Yct, dir〉 is a model of ϕ.

We call an architecture A (scheduler-independently) decidable if an algo-
rithm exists that decides for all specifications ϕ and all sets of finite-state white-
box implementation {pw}w∈W if (A, ϕ, {pw}w∈W) is (scheduler-independently)
realizable.

10.3. SINGLE-PROCESS SYNTHESIS UNDER FULL SCHEDULING 199

10.3 Single-Process Synthesis under Full
Scheduling

In this section, we show that, under the assumption of full scheduling, the cost
of synthesizing single-process implementations is the same for synchronous and
asynchronous systems. We develop an automata-theoretic synthesis algorithm
for asynchronous systems with a single black-box process. The algorithm runs
in time exponential in the length of a CTL or µ-calculus specification, and in
time doubly exponential in the length of a CTL* specification, respectively.

10.3.1 Overview

The algorithm assumes an architecture A with a single black-box process b. It
starts by representing a specification ϕ as a symmetric alternating automaton
Aϕ, which is transformed into a nondeterministic automaton Fϕ that accepts a
tree 〈(2Ib)∗, pb〉 if and only if pb is an implementation of ϕ. The solution of the
emptiness game for Fϕ then provides such an implementation.

The algorithm consists of the following automata constructions:

• From formulas to automata. First, we construct the symmetric alter-
nating automaton2 Aϕ that accepts exactly the models of ϕ (Theorem 4.1
and Lemma 4.2).

• From models to relaxed implementations. In a second step, we
build an alternating automaton Bϕ that accepts a relaxed implementation
(including the scheduler) 〈(2A∪Π)∗, l×sched ⊕⊕

a∈A pr
a〉 if the tree 〈Yct, l〉

defined by a labeling function l : (2A∪Π)∗ → 2A∪Π, the scheduler sched and
the relaxed implementation P = {pr

a}a∈A is accepted by Aϕ (Lemma 6.4).

• Pruning the scheduler. We then construct an alternating automa-
ton Cϕ that accepts a relaxed implementation 〈(2A∪Π)∗, l × ⊕

a∈A pr
a〉 if

its extension 〈(2A∪Π)∗, l × sched ⊕ ⊕
a∈A pr

a〉 by the decisions of the full
scheduler3 sched : (2A∪Π)∗ → Osched is accepted by Bϕ (Lemma 6.5).

• Adjusting for white-box processes. We then build an alternating au-
tomaton Dϕ that accepts a relaxed implementation 〈(2A∪Π)∗, l×pr

b〉 of b if
its extension 〈(2A∪Π)∗, l ×⊕

a∈A pr
a〉 with the relaxed implementations of

2Symmetric alternating automata [Wil01] are a simpler variant of automata over concurrent
game structures that only branch to all or to some successor.

3We can use any known scheduler instead of the full scheduler.

200 CHAPTER 10. ASYNCHRONOUS SYSTEMS

the white-box processes is accepted by Cϕ. This is done by first translat-
ing implementations to relaxed implementations (Lemma 10.1), and then
pruning the white-box decisions from the label (Lemma 6.5).

• From relaxed implementations to implementations. We then con-
struct the alternating automaton Eϕ that accepts an implementation
〈(2Ib)∗, pb〉 if and only if 〈(2A∪Π)∗, dir × pr

b〉 is, for the related relaxed im-
plementation pr

a of pb = pr
b◦visb, accepted by Dϕ (Lemmata 10.2 and 10.3).

• Strategy construction. Finally, we build a nondeterministic automaton
Fϕ, with L(Fϕ) = L(Eϕ) (Corollary 4.6), and construct a strategy for the
black-box process such that the induced computation tree is a model of ϕ
(or demonstrate that no such strategy exists) by solving the emptiness
game for Fϕ (Theorem 4.7).

10.3.2 Adjusting for white-box processes

Eliminating the white-box decisions from the label consists of two steps: First,
the implementations are translated into relaxed implementations (Lemma 10.1),
and then the white-box implementations are eliminated using the construction
from Chapter 6 (Lemma 6.5).

Translating known implementations to relaxed implementations is simple.
We assume that the implementations are given as a family of deterministic
finite-state Moore machines {Mw = (2Iw , Sw, sw

0 , dw, ow)}w∈W with

• input alphabet 2Iw ,

• a finite set Sw of states with initial state sw
0 ,

• transition function dw : 2Iw × S → S, and

• output function ow : Sw → Ow that maps each state s ∈ Sw of Mw to the
(possibly nondeterministic) choice of the process w in s

that capture the behavior of the respective white-box process w.

Lemma 10.1 Given a deterministic finite-state Moore machine {Mw =
(2Iw , Sw, sw

0 , dw, ow)}w∈W that captures the behavior of w on the visible in-
put, we can construct a deterministic finite-state Moore machine {M′

w =
(2A∪Π, Sw, sw

0 , d′w, ow)}w∈W that captures the behavior of w on the relaxed input.

Proof: It suffices to ignore inputs that are not visible to w, and to use only
the Ib part of inputs from rounds where w is scheduled; that is, to set

10.3. SINGLE-PROCESS SYNTHESIS UNDER FULL SCHEDULING 201

• d′w :
(
(A′, π), s

)
7→ dw(π ∩ Ib, s) if w ∈ A′, and

• d′w :
(
(A′, π), s

)
7→ s otherwise.

By construction, M′
w reaches a state s upon the input sequence I1I2I3 . . . ∈

(2A∪Π)∗ if and only if Mw reaches s upon the input sequence visw(I1I2I3 . . .) ∈
(2Iw)∗. ¤

10.3.3 From Relaxed Implementations to Implementa-
tions

The central automata transformation for asynchronous synthesis is the transfor-
mation of an alternating automaton Dϕ that accepts a relaxed implementation
pr

b for a black-box process b into an automaton Eϕ that accepts an implementa-
tion pb if and only if pb ◦ visb is accepted by D.

Comparable to Lemma 6.7, this transformation reduces the information
available to b. However, the reduction is more involved, because we face two
sources of incompleteness at the same time: The incompleteness through the
limited input alphabet (b sees only the variables in Ib), and the incompleteness
caused by the scheduler.

As an intermediate step, we construct an alternating ε-automaton Eε
ϕ, which

extends the alternating automata introduced in Subsection 4.2.3 by ε-transitions
(cf. Section 4.3). For technical convenience, the pruning of directions from the
label is moved to this construction.

Lemma 10.2 For a given alternating automaton D = (2A∪Π ×Ob, 2
A∪Π, Q, q0,

δ, α), we can construct an alternating ε-automaton Eε = (Ob, 2
A∪Π, Q × 2A∪Π,

(q0, υ0), γ, α′) that accepts a tree 〈(2Ib)∗, pb〉 if and only if 〈(2A∪Π)∗, dir×pb◦visb〉
is accepted by D.

Proof: In a first step, we move the directions from the label to the states
(Lemma 6.6), resulting in the alternating automaton D′ = (Ob, 2

A∪Π, Q×2A∪Π,
(q0, υ0), δ

′, α′). Note that the 2A∪Π component of the state now always reflects
the direction of the current node of the input tree.

We then use the function β : 2A∪Π → Ib ∪ {ε} with

• β : (A′, π) → π ∩ Ib if b ∈ A′, and

• β : (A′, π) → {ε} if b /∈ A′

202 CHAPTER 10. ASYNCHRONOUS SYSTEMS

as the central auxiliary function for the construction. β can be used to stepwise
transform the input to the relaxed implementation to the input visible to b: For
I1I2I3 . . . ∈ (2A∪Π)∗, visb(I1I2I3 . . .) = β(I1)β(I2)β(I3) . . . ∈ (2Ib)∗ holds true.

Let bOb

(q;A′,π)

(
{(qi;A

′
i, πi), (A

′
i, πi)}i∈I

)
= δ′

(
(q;A′, π),Ob

)
be the positive

Boolean function defined by δ′
(
(q;A′, π),Ob

)
. Using β, we can construct

Eε such that Eε simulates the behavior of D′ on the relaxed implementa-
tion 〈(2A×Π)

∗
, pb ◦ visb〉 when Eε

ϕ reads an input tree 〈(2Ib)
∗
, pb〉 by setting

γ
(
(q;A′, π),Oa

)
= bOb

(q;A′,π)

(
{(qi;A

′
i, πi), β(A′

i, πi)}i∈I

)
. ¤

Eε
ϕ can be transformed into an ordinary (ε-free) alternating automaton Eϕ by

a construction similar to the ε-elimination for automata over concurrent game
structures (Lemma 4.2).

Lemma 10.3 [Wil99, KV00] Given an alternating ε-automaton Eε with n
states and c colors, we can construct an ε-free alternating automaton E with
at most O(c n) states and c colors. ¤

10.3.4 Complexity

The construction described in Subsection 10.3.1 provides EXPTIME and 2EX-
PTIME upper bounds for the synthesis problem under full scheduling in case of
µ-calculus and CTL* specifications, respectively. Matching lower bounds can be
inferred from the known lower bounds for the synthesis problems for CTL and
CTL* in synchronous systems by applying linear specification transformations.

Theorem 10.4 The distributed synthesis problem under full scheduling for ar-
chitectures with a single black-box process is EXPTIME-complete for specifica-
tions in CTL and the µ-calculus, and 2EXPTIME-complete for CTL* specifica-
tions.

Proof: The upper bounds follow from the construction suggested in Subsec-
tion 10.3.1.

For the lower bounds, we consider again the simpler setting of en-
vironment synthesis, that is, we only allow for architectures A =
(A,B,D,Π, {Ia}a∈A, {Oa}a∈A) with A = {env , b}, B = D = {b} and Ib = Oenv ,
and fix the implementation of the environment process env to be unconstrained;
that is, penv maps every input history to 2Oenv .

We reduce the synthesis problem for this case from the synthesis problem for
the synchronous setting, which is EXPTIME-hard for CTL and 2EXPTIME-
hard for CTL* [KV99]. The reduction is by a linear transformation of each CTL

10.4. SCHEDULER-INDEPENDENT IMPLEMENTATIONS 203

or CTL* formula ϕsync that reasons only over the communication variables Π, to
a CTL or CTL* specification ϕasync , respectively, such that ϕasync is realizable
if and only if ϕsync if realizable in the synchronous setting.

For CTL specifications, we replace every occurrence of AϕUψ, EϕUψ, AXψ,
and EXψ by AϕU(ψ∨¬b∨¬env), E(ϕ∧b∧env)U(ψ∧b∧env), AX(b∧env → ψ),
and EX(b ∧ env ∧ ψ), respectively.

For CTL* specifications, we replace every occurrence of Aπ by A(G(b ∧
env) → π) and every occurrence of Eπ by E(G(b ∧ env) ∧ π).

A strategy pb for the black-box process is obviously a realization for the
transformed specification if and only if pb realizes the original specification in
the synchronous setting.

Finally, the EXPTIME hardness for CTL implies EXPTIME hardness for
the µ-calculus, and the EXPTIME upper bound for the µ-calculus establishes
a matching upper bound for CTL. ¤

10.4 Synthesis of Scheduler-Independent Imple-
mentations

We now present an algorithm for scheduler-independent synthesis, where we
only consider implementations that satisfy the specification for all schedulers.
Scheduler-independent synthesis can also be used to find implementations that
satisfy their specification if the scheduler satisfies assumptions that are explicitly
stated in the specification.

10.4.1 Overview

We again begin with an overview over the main steps of the construction. The
algorithm runs in 2EXPTIME and 3EXPTIME in the length of a µ-calculus
and CTL* specification, respectively.

• From formulas to automata. First, we construct the symmetric alter-
nating automaton Aϕ that accepts exactly the models of ϕ (Theorem 4.1
and Lemma 4.2).

• From models to relaxed implementations. In a second step, we
construct an alternating automaton Bϕ that accepts a relaxed implemen-
tation (including the scheduler) 〈(2A∪Π)∗, l× sched ⊕⊕

a∈A pr
a〉 if the tree

〈Yct, l〉 defined by a labeling function l : (2A∪Π)∗ → 2A∪Π, the scheduler

204 CHAPTER 10. ASYNCHRONOUS SYSTEMS

sched and the relaxed implementation P = {pr
a}a∈A is accepted by Aϕ

(Lemma 6.4).

• Considering all schedulers. We then build an alternating automa-
ton Cϕ that accepts a relaxed implementation 〈(2A∪Π)∗, l × ⊕

a∈A pr
a〉 if,

for all schedulers sched : (2A∪Π)∗ → Osched , its extension 〈(2A∪Π)∗, l ×
sched ⊕ ⊕

a∈A pr
a〉 by the decisions of the scheduler is accepted by Bϕ

(Corollary 9.4).

• Adjusting for white-box processes. We then construct an alternating
automaton Dϕ that accepts a relaxed implementation 〈(2A∪Π)∗, l × pr

b〉 if
its extension 〈(2A∪Π)∗, l ×⊕

a∈A pr
a〉 with the relaxed implementations of

the white-box processes is accepted by Bϕ (Lemmata 10.1 and 6.5).

• From relaxed implementations to implementations. We then build
the alternating automaton Eϕ that accepts an implementation 〈(2Ib)∗, pb〉
if and only if 〈(2A∪Π)∗, dir ×pr

b〉 is, for the related relaxed implementation
pr

a of pb = pr
b ◦ visb, accepted by Dϕ (Lemmata 10.2 and 10.3).

• Strategy construction. Finally, we construct a nondeterministic au-
tomaton Fϕ, with L(Fϕ) = L(Eϕ) (Corollary 4.6), and construct a strat-
egy for the black-box process such that the induced computation tree is a
model of ϕ (or demonstrate that no such strategy exists) by solving the
emptiness game for Fϕ (Theorem 4.7).

10.4.2 Complexity

The construction provides 2EXPTIME, 3EXPTIME, and 2EXPTIME upper
bounds in the length of a specification for the scheduler-independent synthesis
problem for CTL, CTL*, and µ-calculus specifications, respectively.

The 2EXPTIME and 3EXPTIME hardness, respectively, of scheduler-
independent realizability checking for CTL and CTL* specifications, respec-
tively, can be obtained by a reduction from the CTL and CTL* synthesis prob-
lem, respectively, for synchronous systems in reactive environments [KMTV00].

Theorem 10.5 The scheduler-independent realizability and synthesis prob-
lem is 2EXPTIME-complete for CTL and µ-calculus specifications, and
3EXPTIME-complete for specifications in CTL*.

Proof: The upper bounds follow from the construction suggested in this
section. For the lower bounds, we consider again the simpler setting of en-
vironment synthesis, that is, we again allow only for architectures A =

10.4. SCHEDULER-INDEPENDENT IMPLEMENTATIONS 205

(A,B,D,Π, {Ia}a∈A, {Oa}a∈A) with A = {env , b}, B = D = {b} and Ib = Oenv ,
and fix the implementation of the environment process env to be unconstrained;
that is, penv maps every input history to 2Oenv .

To establish the lower bound for CTL* specifications, we transform a CTL*
specification ϕ, which reasons only over the communication variables Π, into a
CTL* specification ψϕ, which is scheduler-independent realizable if and only
if ϕ is realizable in a synchronous setting with a reactive environment. An
environment is called reactive [KMTV00] if it can disable a subset (but not
all) of its responses in each turn. A full 2Ob∪Ib -labeled 2Ib -tree 〈(2Ib)∗, l〉 is a
realization of ϕ in a reactive environment if and only if every total subtree of
〈(2Ib)∗, l〉 is a model of ϕ and the 2Ib -projection of 〈(2Ib)∗, l〉 is a tree, where
every node is labeled with its direction (proj 2Ib (〈(2Ib)∗, l〉) = 〈(2Ib)∗, dir〉).

Our transformation puts three assumptions on the scheduler: First, we as-
sume that the environment is always scheduled (α1 = AGpenv). Then, we
assume that the process b is scheduled initially and, once it is not sched-
uled, is never scheduled again (α2 = b ∧ AbU AG¬b). And finally, we as-
sume that if b is scheduled, then there is a path where b as always scheduled
(α3 = AG (b → EGb)).

There is a natural bijection between total 2Ib -trees and schedulers that sat-
isfy these assumptions: We simply map a total 2Ib -tree Y to the scheduler
〈(2A∪Π)∗, schedY 〉 that always schedules the environment, and that schedules
b if and only if the 2Ib projection of the input sequence is in Y :

b ∈ schedY (y) ⇔ hide2(A∪Π)rIb (y) ∈ Y.

This choice of the scheduler results in a computation tree Yct that is isomor-
phic to Y . Consequently, if we transform a CTL* specification ϕ to a specifica-
tion ϕ′ by replacing all quantifications over all paths/some path by quantifica-
tions over all paths/some path, where b is constantly scheduled, an implemen-
tation 〈(2Ib)∗, pb〉 realizes ϕ for a given total tree Y in the synchronous setting
if and only if it realizes ϕ′ for the scheduler schedY . 〈(2Ib)∗, pb〉 is therefore a
realization of ϕ in a synchronous setting with a reactive environment if and
only if it is a realization of ϕ′ for all schedulers that satisfy the assumptions
α1, α2 and α3. This is equivalent to realizing ψϕ = (α1 ∧ α2 ∧ α3) → ϕ′ for all
schedulers.

Since ϕ′ can be obtained from ϕ by replacing each occurrence of Aπ and Eπ
in ϕ by A(Gb → π) and E(Gb∧π), respectively, the length of ψϕ is linear in the
length of ϕ. The 3EXPTIME hardness of scheduler-independent realizability
checking for CTL* specifications therefore follows from the 3EXPTIME hard-

206 CHAPTER 10. ASYNCHRONOUS SYSTEMS

ness of realizability checking for CTL* specifications in a synchronous setting
with a reactive environment [KMTV00].

To also obtain 2EXPTIME-hardness for CTL specifications, we can translate
ϕ to ϕ′ by replacing

• each occurrence of AXψ by AX (b → ψ),

• each occurrence of EXψ by EX (b ∧ ψ),

• each occurrence of Aψ1 U ψ2 by Aψ1 U (b → ψ2), and

• each occurrence of E ψ1 U ψ2 by E (b ∧ ψ1)U (b ∧ ψ2).

Finally, the 2EXPTIME hardness of realizability checking for CTL specifi-
cations implies the 2EXPTIME hardness of realizability checking for µ-calculus
specifications. ¤

10.4.3 Synthesis with Explicit Assumptions on the Sched-
uler

We close the discussion of scheduler-independent synthesis with the remark that
this type of synthesis can also be used to find implementations that satisfy a
specification ϕ as long as the scheduler satisfies an explicitly stated assump-
tion α: We simply weaken the specification ϕ to ϕ′ = α → ϕ.

The assumption α might, for example, specifically specify a round-robin
scheduler. The most common assumption on schedulers, however, is fairness: A
scheduling is considered impartial towards a process p if p is scheduled infinitely
often, just if p is infinitely often disabled or scheduled, and compassionate if p
being enabled infinitely often implies that p is scheduled infinitely often. The
enabledness enabled(p) of a process p ∈ A can be expressed using new output
variables for the respective processes (without changing the input). Quantifying
over all fair schedulers for a specification ϕ is equivalent to quantifying over all
schedulers for a modified specification ϕ′ that is satisfied both if ϕ is satisfied
or if the scheduler is not fair. With the fairness condition expressed as a path
formula (for example, justice is expressed by πp = GF¬enabled(p) ∨ GFp), we
obtain the fairness constraint π =

∧
p∈A πp. The modified specification ϕ′ is the

implication ϕ′ = (Aπ) → ϕ.
Synthesis under full scheduling and scheduler-independent synthesis thus

give us two different approaches to deal with fairness assumptions. While syn-
thesis under full scheduling allows us to require that a property shall hold for

10.5. MULTI-PROCESS SYNTHESIS 207

all fair schedules (by replacing all occurrences of Aψ and Eψ in CTL* specifica-
tions by A(π → ψ) and E(π∧ψ), respectively), scheduler-independent synthesis
allows us to require that a property hold for all fair schedulers.

10.5 Multi-Process Synthesis

The algorithms from Sections 10.3 and 10.4 solve the synthesis problem for all
architectures with a single black-box process. We now show that the synthe-
sis problem is undecidable for all architectures with more than one black-box
process. Our synthesis algorithms thus cover all decidable asynchronous archi-
tectures.

The following theorem states the undecidability result for synthesis under
full scheduling; the undecidability of scheduler-independent synthesis follows as
a corollary.

Theorem 10.6 The synthesis problem is undecidable for all architectures with
at least two black-box processes and CTL or LTL as specification language.

Proof: We prove undecidability by a reduction from Post’s Correspondence
Problem (PCP). For a given alphabet A, an instance of PCP consists of an
indexed set of pairs of words (ui, vi), ui, vi ∈ A+, i ∈ I = {1, . . . , n}, over an
alphabet A. A solution of PCP is a sequence of indices i1, i2, . . . , im ∈ I+ such
that ui1 · ui2 · . . . · uim

= vi1 · vi2 · . . . · vim
.

For simplification, we consider architectures A = (A,B,D,Π, {Ia}a∈A,
{Oa}a∈A) with A = B = D = {p, q} that contain only two deterministic black-
box processes p and q.

The basic idea of the reduction is to let process p compute the sequence of
indices i1, i2, . . . , im, and to let q produce the corresponding word ui1 · ui2 · . . . ·
uim

= vi1 ·vi2 · . . . ·vim
. To check that the word produced by q corresponds to the

sequence produced by p, we consider two different schedulings, one in which p
produces the indices along the u-words, and one in which p produces the indices
along the v-words.

We ensure that the two processes always see the constant input 0 along both
paths, and must therefore produce the same output on them.

Each index produced by process p is preceded and followed by the con-
stant 0, and the sequence of indices is terminated by the special symbol ⊥:
0, i1, 0, 0, i2, 0, . . . , 0, im, 0, ⊥.

To each letter l that is produced by process q, we add a flag fu that indicates
if this particular letter is the first letter of the u-word in the sequence, and a

208 CHAPTER 10. ASYNCHRONOUS SYSTEMS

flag fv that indicates if it is the first letter of the v-word. Each letter is again
preceded and followed by the constant 0, and the sequence is terminated by ⊥:
0, l1, fu1, fv1, 0, 0, l2, fu2, fv2, 0, . . . , 0, lk, fuk, fvk, 0, ⊥.

We assume that the encoding of the indices and letters with flags have equal
length N . Each encoding of 0, i, 0 and 0, l, wi, wj , 0 starts with a sequence (say,
0111) that will occur nowhere else in any sequence encoding some sequence of
indices or letters with flags, which allows us to identify where the output of an
index or letter with flags starts.

LTL. We set ϕu = α → (γ ∧ (αu → γu)) for the following path assumptions
α and αu, and guarantees γ and γu:

α: Globally, the concurrent scheduling of p and q is succeeded by a sequence
of N − 1 times where only p is scheduled, which is succeeded by a fi-
nite sequence where only q is scheduled, which is succeeded by a further
concurrent scheduling of p and q.

γ: Globally, the concurrent scheduling of p and q initializes the output of an
index i ∈ I ∪ {⊥} by process p.

αu: Globally, an output sequence of an index i ∈ I ∪ {⊥} that is started by a
concurrent scheduling of p and q is succeeded by |ui| · N − 1 (where |ui|
denotes the length of the word ui) positions in which only q is scheduled,
which is succeeded by a concurrent scheduling of p and q.

γu: The concurrent scheduling of p and q initializes the output of an index
i ∈ I, followed by the output of ui, until the concurrent scheduling of p
and q initializes the emission of ⊥ by p, followed by the emission of ⊥ by q.

If ϕv is defined correspondingly, and γ⊥ denotes the guarantee that ⊥ is not
immediately emitted, then ψ = γ⊥ ∧ p ∧ q ∧ ϕu ∧ ϕv is realizable if and only if
the correspondence problem has a solution.

CTL. We define a couple of auxiliary functions. First, let ϕp and ϕq be
specifications, which require that the “close” output of p and q is independent
of their intermediate visible input, where “close” means long enough to cover
the output of a few indices and words, respectively. p and q are additionally
required to output sequences of indices and words, respectively.

We then define ϕu = E ϕU ϕ⊥, where ϕ⊥ denotes a formula which requires
that p and q would start to emit ⊥, and ϕ is the conjunction of the following
assertions:

10.5. MULTI-PROCESS SYNTHESIS 209

• If p would start to emit an index i ∈ I ∪ {⊥}, and q would start to emit
uj , than i = j and p and q are both scheduled concurrently.

• If q would start to emit a word ui minus the leading 0 and p would not
start to emit an index i ∈ I ∪ {⊥}, than only p is scheduled.

• And in all other cases, only q is scheduled.

Finally, we define ϕv correspondingly, and let γ0 denote the assertion that the
output variables of p and q are set to 0. Then

ψ = γ0 ∧ p ∧ q ∧ ϕp ∧ ϕq ∧ ϕu ∧ ϕv ∧ ¬ϕ⊥

is realizable if and only if the correspondence problem has a solution.

The extension to all architectures with two or more black-box processes is
straight forward:

• For the white-box processes (if any), we fix strategies that map any input
history to true.

• For all black-box processes except p and q (if any), we specify that their
output variables are globally set to true.

• For specifications in LTL, the existence of an arbitrary nondeterministic
implementation for p and q implies the existence of deterministic imple-
mentations (cf. Subsection 9.6.5).

• And for a nondeterministic process p or q and CTL as specification lan-
guage, we can specify that the implementation of p or q, respectively, is
deterministic. ¤

The assumption α = AG
∧

A′⊆A EX(
∧

p∈A′ p∧∧
p∈ArA′ ¬p) of a full sched-

uler can be expressed in CTL, and realizability of a CTL specification ϕ under
full scheduling coincides with the scheduler-independent realizability of α → ϕ.

For LTL specifications, the undecidability of scheduler-independent synthe-
sis follows, because realizability under full scheduling and scheduler-independent
realizability coincide for trace languages: For every LTL specification ϕ,
〈Yct, dir〉 |= ϕ for the full scheduler implies 〈Yct, dir〉 |= ϕ for all schedulers,
because the computation tree Yct is, for every scheduler, a subtree of the com-
putation tree for the full scheduler (cf. Theorem 9.7).

Corollary 10.7 The distributed scheduler-independent synthesis problem is un-
decidable for all architectures with at least two black-box processes and CTL or
LTL specifications. ¤

210 CHAPTER 10. ASYNCHRONOUS SYSTEMS

10.6 Globally Asynchronous and Locally Syn-
chronous Systems

Putting together the results of the previous sections and the results of Chapter 6,
it is only a small step to the treatment of mixed systems that are globally com-
posed synchronously, but have local islands of synchronized processes [Gup03]
(GALS systems).

A GALS system can be described as a pair (A, C) that consists of an archi-
tecture A = (A,B,D,Π, {Ia}a∈A, {Oa}a∈A) and a disintegration C = {Ai}i∈I

of the set A =
⊎

i∈I Ai of processes. To cover GALS systems, it suffices to
restrict the considered schedulers to such schedulers that always schedule the
processes in the same quotient at the same time (GALS scheduler). Formally,
the disintegration C replaces the set of processes A in our constructions, that

is, GALS scheduler are Ogals
sched -labeled 2C∪Π-trees with Ogals

sched = 22C

, the full
GALS scheduler maps every input history to 2C , and the computation tree
〈Yct, dir〉 is a total 2C∪Π-labeled 2C∪Π-tree.

If all black-box processes of A are in the same quotient Ab ∈ C of the disinte-
gration, then Ab = (Ab ⊎ {env}, B,D ∩Ab,Π, {Ia}a∈Ab⊎{env}, {Oa}a∈Ab⊎{env})
with Oenv = Πr

⋃
a∈Ab

Oa and Ienv = Π is called the local subarchitecture of A.
A synthesis procedure for GALS systems can be obtained by simply com-

posing the synthesis algorithms from Section 10.3 (for the full scheduler) or
Section 10.4 (for an unknown scheduler), respectively, with the algorithm from
Section 6.4 for fork-free architectures.

Theorem 10.8 A GALS system (A, C) is decidable if and only if all black-
box processes are in one quotient Ab ∈ C of C and the local subarchitecture is
fork-free.

Proof: For the ‘if’ direction, let us first consider a simplified problem. Let A′ =
feedback(Ab) be the feedback architecture of the local subarchitecture of A, let,
for every black-box process b ∈ B, I ′b ⊇ Ib be the input to the best informed
black-box process in A′, and let I ′w = Iw be the (unchanged) input to white-box
processes. We consider the slightly simpler problem to construct an implemen-
tation for the GALS system (A1, C) for A1 = (A,B,D,Π, {I ′a}a∈A, {Oa}a∈A).

Since all black-box processes are in the same quotient, they are always sched-
uled together, and they have access to the same input; we can therefore easily
adapt the decision procedure from Section 10.3 (for full GALS scheduler) or
Section 10.4 (for unknown GALS scheduler) to construct an automaton D that
accepts all suitable implementations PB = {pb}b∈B of the black-box processes.

10.7. CONCLUSIONS 211

To check if D accepts an implementation that can be distributed (such that
every process uses only its input in A′) can then be checked by the algorithm
from Subsection 6.5.2. If no such implementation exists, the original synthesis
problem is not realizable. If such an implementation exists, we can construct a
distributable finite state implementation and distribute it to the processes in B
(with the input they have in A), using the algorithm from Subsection 6.5.3.

For the ‘only if’ direction, the undecidability results for architectures that
do contain an information fork from Section 6.6 carry over to systems where
Ab contains an information fork, and the undecidability result for asynchronous
systems with two or more black-box processes (Theorem 10.6) directly applies
to GALS systems with black-box processes in two or more quotients. ¤

10.7 Conclusions

The first open synthesis algorithms for trace languages have been introduced
almost simultaneously for synchronous [PR89a] and asynchronous [PR89b] sys-
tems in the late 1980’s. In the synchronous paradigm, synthesis has received
great attention ever since, whereas results for the asynchronous setting have
been few and far between. The introduction to this chapter raised the question
whether this is due to an inherent undecidability or hardness of the problem.

The results of this chapter show that the cost of synthesizing asynchronous
systems depends on the treatment of the scheduler. Synthesizing asynchronous
systems is computationally no more expensive than synthesizing synchronous
systems, when we use the most most widespread semantics and presume a full
scheduler. Asynchronous synthesis without assumptions on the scheduler, on
the other hand, is exponentially harder.

The undecidability of the multi-process synthesis problem underlines that
the synthesis of asynchronous systems is indeed more difficult than the synthe-
sis of synchronous systems: While it is possible to solve the distributed synthesis
problem for all fork-free architectures – which contain several architectures with
multiple black-box processes like pipelines [PR90] and rings [KV01] – in the syn-
chronous paradigm, distributed synthesis for asynchronous systems is restricted
to architectures that contain only a single black-box process.

However, the solution of the distributed synthesis problem is, even when
restricted to only a single black-box process, a significant step forward. Model
checking (which can be viewed as the special case of the distributed synthe-
sis problem where all processes are white-box) has brought formal methods
to industrial practice in the test and verification phase. Distributed synthesis

212 CHAPTER 10. ASYNCHRONOUS SYSTEMS

allows the application of formal methods in a much earlier design phase. An in-
completely implemented system defines an architecture with a single black-box
process (representing the unfinished part of the system) in addition to the com-
pleted white-box processes. By checking the realizability of the specification for
this architecture, we can recognize design errors as soon as they are introduced
into the implementation.

Finally, the treatment of GALS systems connects the decidability results as
well as the synthesis procedures for synchronous and asynchronous systems.

Part IV

Summary & Conclusions

213

Chapter 11

Summary

There are two ways to summarize this thesis: One way is to list and connect the
individual results, and the second way is to outline the power and the beauty
of automata-theoretic approaches. Let us abuse the lack of space restrictions to
cover both perspectives.

11.1 Results

The main results of this thesis are

• an improved complexity bound and a performant strategy improvement
algorithm for solving parity games,

• the decidability proof for alternating-time logics, and the determination of
the complexity for the satisfiability and synthesis problem for ATµC and
ATL* specifications,

• the characterization of architectures with decidable realizability and syn-
thesis problems for synchronous, asynchronous, and GALS systems,

• the introduction of bounded synthesis, and

• the integration of probabilistic and reactive environments into our
toolchain.

214

11.1. RESULTS 215

Parity Games. Parity games are an integral part of the automata-theoretic
approaches to satisfiability checking and synthesis of Parts II and III, because
testing the non-emptiness of parity tree automata reduces to solving parity
games. The first part of the thesis has therefore been dedicated to the develop-
ment of efficient algorithms for solving them.

In Chapter 2, we have improved the known complexity bound for solving
parity games with n positions and m edges from O(mn⌈0.5 c⌉) for parity games
with c colors to O(mnγ(c)) with γ(c) = 1

3c + 1
2 − 1

⌊0.5 c⌋⌈0.5 c⌉ if the number of

colors is even, and γ(c) = 1
3c + 1

2 − 1
3c

− 1
⌊0.5 c⌋⌈0.5 c⌉ if it is odd.

Chapter 3 contributes a strategy improvement algorithm that can, in ev-
ery step, pick the optimal combination of all local strategy improvements. This
seems to be a major algorithmic breakthrough – our experimental results indi-
cate that usually a linear part of the edges are local improvement edges, which
leads to a concurrent consideration of exponentially many strategies in the size
of the parity game, and thus to much faster termination.

Alternating-Time Logics. In Part II, we demonstrated the decidability and
finite model property of alternating-time logics, and determined the complexity
of the satisfiability and synthesis problem for ATµC (Chapter 4) as well as for
ATL* (Chapter 5). The complexity results for ATL* are particularly surprising:
Satisfiability checking and synthesis for ATL* is not only no more expensive
than satisfiability checking and synthesis for CTL+, it is also no more expensive
than ATL* model checking.

While parity games are needed at the end of our automata-theoretic con-
structions, automata over concurrent game structures, which we introduced for
the representation of ATµC specifications, are the entry point for the construc-
tions of Part III.

Distributed Synthesis. We have shown that it is surprisingly simple to dis-
tinguish architectures with a decidable realizability and synthesis problem from
those, for which realizability is undecidable. Our information fork criterion pro-
vides a simple algorithm that can check decidability for synchronous and GALS
systems in time quadratic in the size of the architecture, and for asynchronous
systems it even suffices to check if there is only a single black-box process.

While checking decidability is cheap, deciding realizability and, if applica-
ble, constructing a distributed implementation is expensive: It is, even for the
decidable fragment, nonelementary in the size of the specification. For the proof
of decidability, we provided a uniform automata-theoretic approach, which also

216 CHAPTER 11. SUMMARY

allows for a simple incorporation of the automata-based synthesis techniques for
probabilistic (Chapter 8) and reactive (Chapter 9) environments.

For synthesizing distributed implementations, this approach seems to be be-
yond price. The intuition that synthesis is therefore infeasible in practice is,
however, misleading: The inherently high complexity is caused by the maximal
size of a minimal solution. From a more applied point of view, too large solu-
tions are of limited interest, because they are bound to violate implicit design
constraints like the available memory. We have therefore introduced bounded
synthesis, which renders the synthesis problem decidable by making this de-
sign constraint explicit, and showed that bounded synthesis is nondeterministic
quasi-linear in the size of the smallest solution.

11.2 Automata-Theoretic Perspective

Reading this thesis from a technical point of view exemplifies the power and
beauty of automata-theoretic constructions. For most constructions, a very basic
toolset of automata transformation – comprising tools for language projection,
automata dualization, nondeterminization, and intersection, a “narrowing” op-
eration to withdraw information, and non-emptiness testing – suffices for most
constructions. This basic toolset is of great service when attacking synthesis and
satisfiability questions: It allows us to identify the particularities of a problem,
and to approach them isolated from routine transformations.

For the satisfiability problem for ATµC specifications in Chapter 4, the par-
ticularity is the representation of the specification in a dedicated automata type
– automata over concurrent game structures – and the proof of the bounded
branching property for these automata.

The particularity of the satisfiability problem for ATL* specifications (Chap-
ter 5) is the concise representation of witness strategies in a tree model.

The particularity of distributed synthesis (Chapter 6) is the order of in-
formedness, which can be treated in isolation by applying a cheap preprocessing
step, in which we check if the architecture contains an information fork, and
transform a fork-free architecture into a hierarchical architecture. It is then
simple to assemble an automata-based synthesis algorithm for architectures of
this type from our basic toolset.

The particularities in Chapter 7 are the construction of safety automata
which are, for bounded structures with a predefined bound, acceptance equiva-
lent to parity automata.

11.2. AUTOMATA-THEORETIC PERSPECTIVE 217

The particularities in Chapter 8 are the construction of an acceptance game
for trace languages under the assumption of ε-environments, its translation to
weak alternating automata, and the utilization of the structure of these au-
tomata for efficient nondeterminization.

And, finally, the particularity in Chapter 10 is the treatment of two different
kinds of incomplete information by a single automata transformation – by sim-
ulating the run of an automaton on a relaxed implementation by an automaton
that reads an ordinary implementation as input.

This technical perspective allows us to appreciate the contributions of a gen-
eration of researchers that lead to the rich collection of tools available today.
From this perspective, this thesis offers some modest extensions to this toolset
to the scientific community: We added automata that recognize the models of
alternating-time specifications, we decoupled the complexity bound for testing
the emptiness of alternating automata from the branching degree, we added a
technique for the concise representation of witness strategies, we can now trans-
late acceptance under the assumption of ε-environments to standard automata,
and we added a tool for the treatment of asynchronicity in various forms.

Chapter 12

Conclusions

We have identified the fundamental parameters of the distributed synthesis
problem – system architecture, process cooperation, process composition, and
environment model – and analyzed the synthesis problem along these dimen-
sions.

While studying distributed synthesis from different angles provides more and
more details, it also provides a general insight into the conceptual differences
between decidable and undecidable classes of synthesis problems. This insight
can be phrased as the decidability rule of thumb:

Realizability is decidable if and only if the knowledge of the black-
box processes is pairwise comparable.

System Architecture. The system architecture is the natural starting point
for studying distributed synthesis. For synchronous systems, the information
fork criterion is an instance of the decidability rule of thumb. In the widespread
setting of deterministic processes with a dedicated nondeterministic environ-
ment, realizability and synthesis become undecidable if there are pathways for
the transmission of a secret (a stream of bits that can be generated nondeter-
ministically by the environment) to two processes such that the respective other
process cannot intercept the transmission of the secret.

Process Cooperation. Traditionally, we assume a setting for open and dis-
tributed synthesis where all processes but a dedicated environment are deter-
ministic. Allowing for alternating-time specification languages, however, requires

218

219

the consideration of nondeterministic system processes, which raises the ques-
tion of the influence of this nondeterminism on the decidability of the synthesis
problem.

Alternating-time specification languages cause a division of the processes by
assigning them different objectives. We showed that objective driven distribution
has no impact on the decidability of the satisfiability problem of temporal and
fixed-point logics. This is in accordance with the decidability rule of thumb,
because all processes have complete information in this setting.

The influence of nondeterminism on architecture driven distribution is in-
direct. While the decidability rule of thumb remains valid, the informedness
hierarchy needs to be explicit for nondeterministic processes – that is, the set
of input variables needs to be pairwise comparable – whereas it can be im-
plicit for deterministic processes. Pipelines – the classic example of decidable
architectures that have already been studied by Pnueli and Rosner – become
undecidable if we allow for nondeterministic implementations, even if we restrict
the specification language to CTL. This effect is caused by the fact that every
process becomes a source of nondeterminism – and thus of secrets – in this
setting.

Process Composition. For asynchronous systems, the decidability rule of
thumb explains why an architecture becomes undecidable as soon as it contains
two black-box processes: The incomparableness of their level of informedness is
a consequence of the fact that the scheduler has means to provide them with
incomparable information, even if they see the same input variables.

This power of the scheduler is restricted when we consider GALS systems:
Here, it cannot interfere with the relative informedness of different processes
within the same locally synchronous area. Applying the decidability rule of
thumb, we see that GALS systems are decidable if and only if all black-box
processes reside in a single fork-free synchronized area.

Environment Model. While the other three parameters have a significant
impact on the decidability of the realizability and synthesis problems, changing
the environment model from maximal to probabilistic or reactive models has
no impact on the decidability of distributed synthesis – technically, the change
of the environment model only effects the initial automaton for the synthesis
procedure. This is in accordance with our decidability rule of thumb: The envi-
ronment model has no impact on the relative informedness of different black-box
processes.

Bibliography

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-time temporal logic. Journal of the ACM, 49(5):672–
713, 2002.

[AHM+98] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz
Qadeer, Sriram K. Rajamani, and Serdar Tasiran. Mocha: Mod-
ularity in model checking. In Proceedings of the 10th Interna-
tional Conference on Computer Aided Verification (CAV 1998), 28
June – 2 July, Vancouver, British Columbia, Canada, volume 1427
of Lecture Notes in Computer Science, pages 521–525. Springer-
Verlag, 1998.

[AM94] Anuchit Anuchitanukul and Zohar Manna. Realizability and syn-
thesis of reactive modules. In Proceedings of the 6th International
Conference on Computer Aided Verification (CAV 1994), 21–23
June, Stanford, California, USA, volume 818 of Lecture Notes in
Computer Science, pages 156–168. Springer-Verlag, 1994.

[BC96] Girish Bhat and Rance Cleaveland. Efficient model checking via
the equational µ-calculus. In Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science (LICS 1996), 27–30
July, New Brunswick, New Jersey, USA, pages 304–312. IEEE
Computer Society Press, 1996.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strich-
man, and Yunshan Zhu. Bounded model checking. Advances in
Computers, 58:118–149, 2003.

I

II BIBLIOGRAPHY

[BCJ+97] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. Marrero.
An improved algorithm for the evaluation of fixpoint expressions.
Theoretical Computer Science, 178(1–2):237–255, 1997.

[BDHK06] Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan
Kreutzer. Dag-width and parity games. In Proceedings of the 23rd
Annual Symposium on Theoretical Aspects of Computer Science
(STACS 2006), 23–25 February, Marseille, France, volume 3884
of Lecture Notes in Computer Science, pages 524–436. Springer-
Verlag, 2006.

[BL69a] J. Richard Büchi and Lawrence H. Landweber. Definability in the
monadic second-order theory of successor. Journal of Symbolic
Logic, 34(2):166–170, 1969.

[BL69b] J. Richard Büchi and Lawrence H. Landweber. Solving sequential
conditions by finite-state strategies. Transactions of the American
Mathematical Society, 138:295–311, 1969.

[Bra96] Julian C. Bradfield. The modal mu-calculus alternation hierarchy
is strict. In Proceedings of the 7th International Conference on
Concurrency Theory (CONCUR 1996), 26–29 August, Pisa, Italy,
volume 1119 of Lecture Notes in Computer Science, pages 233–246.
Springer, 1996.

[Büc62] J. Richard Büchi. On a decision method in restricted second order
arithmetic. In Proceedings of the International Congress on Logic,
Methodology, and Philosophy of Science, 1960, Berkeley, Califor-
nia, USA, pages 1–11. Stanford University Press, 1962.

[BV07] Henrik Björklund and Sergei Vorobyov. A combinatorial strongly
subexponential strategy improvement algorithm for mean payoff
games. Discrete Applied Mathematics, 155(2):210–229, 2007.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis
of synchronization skeletons using branching time temporal logic.
In Proceedings, IBM Workshop on Logics of Programs, May 1981,
New York, New York, USA, volume 131 of Lecture Notes in Com-
puter Science, pages 52–71. Springer-Verlag, 1982.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using temporal logic

BIBLIOGRAPHY III

specifications. Transactions On Programming Languages and Sys-
tems, 8(2):244–263, 1986.

[CFG+01] F. Copty, L. Fix, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M. Vardi. Benefits of bounded model checking at an industrial set-
ting. In Proceedings of 13th International Conference on Computer
Aided Verification (CAV 2001), 18–22 July, Paris, France, volume
2102 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

[Chu63] Alonzo Church. Logic, arithmetic and automata. In Proceedings
of the International Congress of Mathematicians, 15–22 August,
pages 23–35, Institut Mittag-Leffler, Djursholm, Sweden, 1962,
Stockholm 1963.

[CMT99] Ilaria Castellani, Madhavan Mukund, and P. S. Thiagarajan. Syn-
thesizing distributed transition systems from global specification.
In Proceedings of Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS 1999), pages 219–231, 1999.

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity
of probabilistic verification. Journal of the ACM, 42(4):857–907,
1995.

[dA99] L. de Alfaro. From fairness to chance. Electronic Notes in Theoret-
ical Computer Science (ENTCS), Proceedings of the First Interna-
tional Workshop on Probabilistic Methods in Verification (PROB-
MIV 1998), 19–20 June, Indianapolis, Indiana, USA, 1999.

[dAHM01] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar.
From verification to control: Dynamic programs for omega-regular
objectives. In Proceedings of the 16th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS 2001), 16–19 June,
Boston, Massachusetts, USA, pages 279–290. IEEE Computer So-
ciety Press, 2001.

[dRLP98] Willem-Paul de Roever, Hans Langmaack, and Amir Pnueli,
editors. Compositionality: The Significant Difference. (COM-
POS 1997), volume 1536 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

IV BIBLIOGRAPHY

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, µ-
calculus and determinacy. In Proceedings of the 32nd Annual Sym-
posium on Foundations of Computer Science (FOCS 1991), 1–4
October, San Juan, Puerto Rico, pages 368–377. IEEE Computer
Society Press, October 1991.

[EJS93] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On
model-checking for fragments of µ-calculus. In Proceedings of
the 15th International Conference on Computer Aided Verification
(CAV 1993), 8–12 July, Boulder, Colorado, USA, volume 2725
of Lecture Notes in Computer Science, pages 385–396. Springer-
Verlag, 1993.

[EL86] E. Allen Emerson and C. Lei. Efcient model checking in frag-
ments of the propositional µ-calculus. In Proceedings of the Sym-
posium on Logic in Computer Science (LICS 1986), June 16–18,
Cambridge, Massachusetts, USA, pages 267–278. IEEE Computer
Society Press, 1986.

[Eme90] E. Allen Emerson. Temporal and modal logic. In Handbook of theo-
retical computer science (volume B): formal models and semantics,
pages 995–1072. MIT Press, 1990.

[EY80] Shimon Even and Yacov Yacobi. Relations among public key signa-
ture systems. Technical Report 175, Technion, Haifa, Israel, March
1980.

[FS05a] Bernd Finkbeiner and Sven Schewe. Semi-automatic distributed
synthesis. In Proceedings of the 3rd International Symposium on
Automated Technology for Verification and Analysis (ATVA 2005),
4–7 October, Taipei, Taiwan, volume 3707 of Lecture Notes in
Computer Science, pages 263–277. Springer-Verlag, 2005.

[FS05b] Bernd Finkbeiner and Sven Schewe. Uniform distributed synthe-
sis. In Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science (LICS 2005), 26–29 June, Chicago, Illinois,
USA, pages 321–330. IEEE Computer Society Press, 2005.

[FS07] Bernd Finkbeiner and Sven Schewe. SMT-based synthesis of dis-
tributed systems. In Proceedings of the 2nd Workshop for Auto-
mated Formal Methods (AFM 2007), 6 November, Atlanta, Geor-
gia, USA, pages 69–76. ACM Press, 2007.

BIBLIOGRAPHY V

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata trans-
lation. In Proceedings of 13th International Conference on Com-
puter Aided Verification (CAV 2001), 18–22 July, Paris, France,
volume 2102 of Lecture Notes in Computer Science, pages 53–65.
Springer-Verlag, 2001.

[GPFW97] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah.
Algorithms for the satisfiability (SAT) Problem: A survey. In Ding-
Zhu Du, Jun Gu, and Panos Pardalos, editors, Satisfiability Prob-
lem: Theory and applications, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, pages 19–152. American
Mathematical Society, 1997.

[Gup03] Rajesh Gupta, editor. First International Workshop on Formal
Methods for Globally Asynchronous Locally Synchronous Architec-
tures (FMGALS), September 2003.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about time
and reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[JPZ06] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subex-
ponential algorithm for solving parity games. In Proceedings of
the Seventeenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2006), 22–26 January, Miami, Florida, USA, pages
117–123. ACM Press, 2006.

[Jur98] Marcin Jurdziński. Deciding the winner in parity games is in
UP ∩ co-UP. Information Processing Letters, 68(3):119–124,
November 1998.

[Jur00] Marcin Jurdziński. Small progress measures for solving parity
games. In Proceedings of the 17th Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS 2000), February, Lille,
France, volume 1770 of Lecture Notes in Computer Science, pages
290–301. Springer-Verlag, 2000.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. In Proceedings of the 16th Annual ACM Symposium on
Theory of Computing (STOC 1984), 30 April – 2 May, Washing-
ton, DC, USA, pages 302–311. ACM Press, 1984.

VI BIBLIOGRAPHY

[Kha79] L. G. Khachian. A polynomial algorithm in linear programming.
Doklady Akademii Nauk SSSR, 244:1093–1096, 1979.

[KM72] F Klee and G J Minty. How good is the simplex algorithm? In-
equalities III, pages 159–175, 1972.

[KMTV00] Orna Kupferman, P. Madhusudan, P.S. Thiagarajan, and Moshe Y.
Vardi. Open systems in reactive environments: Control and syn-
thesis. In Proceedings of the 11th International Conference on
Concurrency Theory (CONCUR 2000), 22–25 August, University
Park, PA, USA, volume 1877 of Lecture Notes in Computer Sci-
ence, pages 92–107. Springer-Verlag, 2000.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27(3):333–354, 1983.

[KR03] Steve Kremer and Jean-François Raskin. A game-based verifica-
tion of non-repudiation and fair exchange protocols. Journal of
Computer Security, 11(3):399–430, 2003.

[KV95] O. Kupferman and M.Y. Vardi. Freedom, weakness, and deter-
minism: From linear-time to branching-time. In Proceedings of
the 10th Annual IEEE Symposium on Logic in Computer Science
(LICS 1995), 26-29 June, San Diego, California, USA, 1995.

[KV97a] O. Kupferman and M.Y. Vardi. Module checking revisited. In Pro-
ceedings of the 9th International Conference on Computer Aided
Verification (CAV 1997), 22–25 June, Haifa, Israel, volume 1254 of
Lecture Notes in Computer Science, pages 36–47. Springer-Verlag,
1997.

[KV97b] Orna Kupferman and Moshe Y. Vardi. Synthesis with incomplete
informatio. In Proceedings of the 2nd International Conference on
Temporal Logic (ICTL 1997), 14–18 July, Manchester, UK, pages
91–106, 1997.

[KV99] Orna Kupferman and Moshe Y. Vardi. Church’s problem revisited.
The Bulletin of Symbolic Logic, 5(2):245–263, June 1999.

[KV00] Orna Kupferman and Moshe Y. Vardi. µ-calculus synthesis. In
Proceedings of the 25th International Symposium on Mathemati-
cal Foundations of Computer Science (MFCS 2000), 28 August–1

BIBLIOGRAPHY VII

September, Bratislava, Slovakia, volume 1893 of Lecture Notes in
Computer Science, pages 497–507. Springer-Verlag, 2000.

[KV01] Orna Kupferman and Moshe Y. Vardi. Synthesizing distributed
systems. In Proceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science (LICS 2001), 16–19 June, Boston,
Massachusetts, USA, pages 389–398. IEEE Computer Society
Press, 2001.

[KV05] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In
Proceedings 46th IEEE Symposium on Foundations of Computer
Science (FOCS 2005), 23–25 October, Pittsburgh, PA, USA, pages
531–540, 2005.

[KVW00] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An
automata-theoretic approach to branching-time model checking.
Journal of the ACM, 47(2):312–360, March 2000.

[Lan05] M. Lange. Solving parity games by a reduction to SAT. In Pro-
ceedings of the 2nd International Workshop on Games in Design
and Verification (GDV 05), 12 July, Edinburgh, UK, 2005.

[LR81] Daniel Lehmann and Michael O. Rabin. On the advantages of
free choice: a symmetric and fully distributed solution to the
dining philosophers problem. In Proceedings of the 8th Annual
ACM Symposium on Principles of Programming Languages (POPL
1981), January, Williamsburg, Virginia, USA, pages 133–138.
ACM Press, 1981.

[Lud95] Walter Ludwig. A subexponential randomized algorithm for the
simple stochastic game problem. Information and Computation,
117(1):151–155, 1995.

[Mai03] Patrick Maier. A Lattice-Theoretic Framework For Circular
Assume-Guarantee Reasoning. PhD thesis, Universität des Saar-
landes, Saarbrücken, Germany, July 2003.

[McN66] Robert McNaughton. Testing and generating infinite sequences
by a finite automaton. Information and Control, 9(5):521–530,
October 1966.

VIII BIBLIOGRAPHY

[McN93] Robert McNaughton. Infinite games played on finite graphs. An-
nals of Pure and Applied Logic, 65(2):149–184, 1993.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th Design Automation Conference
(DAC 2001), June, 2001.

[MS87] David E. Muller and Paul E. Schupp. Alternating automata on in-
finite trees. Theoretical Computer Science, 54(2-3):267–276, 1987.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating
tree automata by nondeterministic automata: new results and new
proofs of the theorems of Rabin, McNaughton and Safra. Theoret-
ical Computer Science, 141(1-2):69–107, 1995.

[MT01] P. Madhusudan and P. S. Thiagarajan. Distributed controller syn-
thesis for local specifications. In Proceedings of the 28th Inter-
national Colloquium on Automata, Languages and Programming
(ICALP 2001), 8–12 July, Heraklion, Greece, volume 2076 of Lec-
ture Notes in Computer Science, pages 396–407. Springer-Verlag,
2001.

[Obd03] J. Obdržálek. Fast µ-calculus model checking when tree-width is
bounded. In Proceedings of the 15th International Conference on
Computer Aided Verification (CAV 2003), 8–12 July, Boulder, Col-
orado, USA, volume 2725 of Lecture Notes in Computer Science,
pages 80–92. Springer-Verlag, 2003.

[Pit06] Nir Piterman. From nondeterministic Büchi and Streett automata
to deterministic parity automata. In Proceedings of the 21st An-
nual IEEE Symposium on Logic in Computer Science (LICS 2006),
12–15 August, Seattle, Washington, USA, pages 255–264. IEEE
Computer Society, 2006.

[PR89a] Amir Pnueli and Roni Rosner. On the synthesis of a reactive mod-
ule. In Proceedings of the 16th Annual ACM Symposium on Prin-
ciples of Programming Languages (POPL 1989), January, Austin,
Texas, USA, pages 179–190. ACM Press, 1989.

BIBLIOGRAPHY IX

[PR89b] Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous
reactive module. In Proceeding of the 16th International Collo-
quium on Automata, Languages and Programming (ICALP 1989),
11–15 July, Stresa, Italy, volume 372 of Lecture Notes in Computer
Science, pages 652–671. Springer-Verlag, 1989.

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are
hard to synthesize. In Proceedings of the 31st Annual Symposium
on Foundations of Computer Science (FOCS 1990), 22–24 Octo-
ber, St. Louis, Missouri, USA, pages 746–757. IEEE Computer
Society Press, 1990.

[PT87] Robert Paige and Robert Endre Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing (SICOMP), 16(6):973–
989, 1987.

[Pur95] Anuj Puri. Theory of hybrid systems and discrete event systems.
PhD thesis, Computer Science Department, University of Califor-
nia, Berkeley, 1995.

[Rab69] Michael O. Rabin. Decidability of second order theories and au-
tomata on infinite trees. Transaction of the American Mathemati-
cal Society, 141:1–35, 1969.

[Rab72] Michael O. Rabin. Automata on Infinite Objects and Church’s
Problem, volume 13 of Regional Conference Series in Mathematics.
American Mathematical Society, 1972.

[Ros92] Roni Rosner. Modular Synthesis of Reactive Systems. PhD thesis,
Weizmann Institute of Sceince, Rehovot, Israel, 1992.

[Saf88] Shmuel Safra. On the complexity of ω-automata. In Proceedings of
the 29th Annual Symposium on Foundations of Computer Science
(FOCS 1988), 24–26 October, pages 319–327, White Plains, New
York, USA, 1988. IEEE Computer Society Press.

[SC79] Larry J. Stockmeyer and Ashok K. Chandra. Provably difficult
combinatorial games. SIAM Journal on Computing (SICOMP),
8(2):151–174, 1979.

[Sch06] Sven Schewe. Synthesis for probabilistic environments. In Proceed-
ings of the 4th International Symposium on Automated Technology

X BIBLIOGRAPHY

for Verification and Analysis (ATVA 2006), 23–26 October, Bei-
jing, China, volume 4218 of Lecture Notes in Computer Science,
pages 245–259. Springer-Verlag, 2006.

[Sch07] Sven Schewe. Solving parity games in big steps. In Proceedings of
the 27th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2007), 12–14 December,
New Delhi, India, volume 4805 of Lecture Notes in Computer Sci-
ence, pages 449–460. Springer-Verlag, 2007.

[Sch08a] Sven Schewe. ATL* satisfiability is 2ExpTime-complete. In Pro-
ceedings of the 35th International Colloquium on Automata, Lan-
guages and Programming, Part II (ICALP 2008), 6–13 July, Reyk-
javik, Iceland, volume 5126 of Lecture Notes in Computer Science,
pages 373–385. Springer-Verlag, 2008.

[Sch08b] Sven Schewe. An optimal strategy improvement algorithm for
solving parity and payoff games. In Proceedings of the 17th An-
nual Conference of the European Association for Computer Science
Logic (CSL 2008), 15–19 September, Bertinoro, Italy, volume 5213
of Lecture Notes in Computer Science, pages 368–383. Springer-
Verlag, 2008.

[SF06a] Sven Schewe and Bernd Finkbeiner. The alternating-time µ-
calculus and automata over concurrent game structures. In Pro-
ceedings of the 15th Annual Conference of the European Associ-
ation for Computer Science Logic (CSL 2006), 25–29 September,
Szeged, Hungary, volume 4207 of Lecture Notes in Computer Sci-
ence, pages 591–605. Springer-Verlag, 2006.

[SF06b] Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous sys-
tems. In Proceedings of the 16th International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR 2006),
12–14 July, Venice, Italy, volume 4407 of Lecture Notes in Com-
puter Science, pages 127–142. Springer-Verlag, 2006.

[SF07a] Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In Pro-
ceedings of the 5th International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA 2007), 22–25 October,
Tokyo, Japan, volume 4762 of Lecture Notes in Computer Science,
pages 474–488. Springer-Verlag, 2007.

BIBLIOGRAPHY XI

[SF07b] Sven Schewe and Bernd Finkbeiner. Distributed synthesis for
alternating-time logics. In Proceedings of the 5th International
Symposium on Automated Technology for Verification and Analysis
(ATVA 2007), 22–25 October, Tokyo, Japan, volume 4762 of Lec-
ture Notes in Computer Science, pages 268–283. Springer-Verlag,
2007.

[SF07c] Sven Schewe and Bernd Finkbeiner. Semi-automatic distributed
synthesis. International Journal of Foundations of Computer Sci-
ence, 18(1):113–138, 2007.

[Sma83] Steve Smale. On the average number of steps of the simplex method
of linear programming. Mathematical Programming, 27(3):241–262,
October 1983.

[Tak99] Tadao Takaoka. Theory of 2-3 heaps. In Proceedings of the 5th An-
nual International Conference on Computing and Combinatorics
(COCOON 1999), 26–28 July, Tokyo, Japan, volume 1627 of Lec-
ture Notes in Computer Science, pages 41–50. Springer-Verlag,
1999.

[Var95] Moshe Y. Vardi. An automata-theoretic approach to fair realiz-
ability and synthesis. In Proceedings of the 7th International Con-
ference On Computer Aided Verification (CAV 1995), 3–5 July,
Liege, Belgium, volume 939 of Lecture Notes in Computer Science,
pages 267–278. Springer-Verlag, 1995.

[Var98] Moshe Y. Vardi. Reasoning about the past with two-way automata.
In Proceedings of the 25th International Colloquium on Automata,
Languages and Programming (ICALP 1998), 13–17 July, Aalborg,
Denmark, volume 1443 of Lecture Notes in Computer Science,
pages 628–641. Springer-Verlag, 1998.

[vD03] Govert van Drimmelen. Satisfiability in alternating-time temporal
logic. In Proceedings of the 18th Annual IEEE Symposium on Logic
in Computer Science (LICS 2003), 22–25 June, Ottawa, Ontario,
Canada, pages 208–217. IEEE Computer Society Press, 2003.

[VJ00] Jens Vöge and Marcin Jurdziński. A discrete strategy improvement
algorithm for solving parity games. In Proceedings of the 12th
International Conference on Computer Aided Verification (CAV

XII BIBLIOGRAPHY

2000), 15–19 July, Chicago, Illinois, USA, volume 1855 of Lecture
Notes in Computer Science, pages 202–215. Springer-Verlag, July
2000.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite com-
putations. Journal of Information and Computation, 115(1):1–37,
May 1994.

[Wil99] Thomas Wilke. CTL+ is exponentially more succinct than CTL.
In Proceedings of the 19th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 1999),
13–15 December, Chennai, India, volume 1738 of Lecture Notes
in Computer Science, pages 110–121. Springer-Verlag, 1999.

[Wil01] Thomas Wilke. Alternating tree automata, parity games, and
modal µ-calculus. Bulletin of the Belgian Mathematical Society,
8(2), May 2001.

[WLWW06] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfia-
bility is indeed ExpTime-complete. Journal of Logic and Compu-
tation, 16(6):765–787, 2006.

[WM03] Igor Walukiewicz and Swarup Mohalik. Distributed games. In Pro-
ceedings of the 23rd Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2003), 15–17
December, Bombay, Mumbai, India, volume 2914 of Lecture Notes
in Computer Science, pages 338–351. Springer-Verlag, 2003.

[Wol82] Pierre Wolper. Synthesis of Communicating Processes from
Temporal-Logic Specifications. PhD thesis, Stanford University,
1982.

[Zie98] WiesÃlaw Zielonka. Infinite games on finitely coloured graphs with
applications to automata on infinite trees. Theoretical Computer
Science, 200(1-2):135–183, 1998.

[ZP96] Uri Zwick and Mike S. Paterson. The complexity of mean payoff
games on graphs. Theoretical Computer Science, 158(1–2):343–359,
1996.

