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Abstract

We study time-bounded reachability in continuous-time Rdardeci-
sion processes for various scheduler classes. Such ré#ghaioblems
play a paramount role in dependability analysis and theetliodg of
manufacturing and queueing systems. Consequently, tfieieat anal-
ysis has been studied intensively, and techniques for tteafaproxi-
mation of optimal control are well understood. In this teesve study
the theoretical background of this problem and ask whetheyptimal
scheduler actually exists. We provide a positive answehigdguestion
for all commonly considered scheduler classes. We prowdsteuctive
proofs in which we use the fact that optimal schedulers pfat actions
over actions with low transition rates when time is shortti@pl sched-
ulers therefore have a simple structure, they converge tabéesstrategy
as time progresses. For the scheduler classes without diceess to
time, we provide a simple procedure to determine optimaédualers.
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Chapter 1

| ntroduction

Markov decision processes (MDPs) are a framework that parates both nondeter-
ministic and probabilistic choices. They are used in a waeé applications such as
the control of manufacturing processes [11, 5] or queueystems [14]. We study a
real time version of MDPs, continuous-time Markov decisiwacesses (CTMDPS),
which are a natural formalism for modelling in scheduling J4] and stochastic
control theory [5]. CTMDPs can also be seen as a unified frasriefor different
stochastic model types used in dependability analysisl133, 6, 9].

The analysis of CTMDPs usually concerns the different figss to resolve
the nondeterminism by means of a scheduler (also calleggifa Typical questions
cover qualitative as well as quantitative properties, agcifCan the nondeterminism
be resolved by a scheduler such that a predefined properdg?olor respectively
“Which scheduler optimises a given objective function?”.

In this paper, we study thigme-bounded maximum reachability probléhi, 3,
16, 9, 10] for CTMDPs. Time-bounded reachability is the dead control prob-
lem to construct a scheduler that controls the Markov deciprocess such that the
likelihood of reaching a goal region within a given time bdus maximised, and
to determine the probability. For CTMDPs, the answer to lzpthstions naturally
depends on the power a scheduler has to observe the run gfstieens—in particular
if it can observe time—and on its ability to store and prodéss information. For
the common classes of schedulers, research has focusetialenefpproximation
techniques [3, 9, 10], while the existence of optimal sckezdihas remained open.

Overview.  Given its practical importance, the bounded reachabiliybjem for
Markov decision processes has been intensively studie8i, [, 9, 10]. However,
previous research focused approximatingthe optimal result [3, 10], leaving the
question aside whether optimal schedulers exist.

Unlike for discrete time MDPs, various classes of scheduler CTMDPs that
differ in terms of their power to observe the behaviour of $fistem have been dis-
cussed in the literature [9, 3]. Intuitively, the differescin these classes concern the
ability to store information, and to measure time.
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Figure 1.1 shows a comparison between the commonly coesidecheduler
classes, where schedulers that can store the historyngshleor nothing at all are
marked H (for history dependent), C (for hop-counting), & for positional), re-
spectively. Schedulers that can observe time are markddawit (timed), and with
TT (total time) if they have the power to revoke their deaisio

Revoking decisions is a concept first discussed
in [9] that extends schedulers on a different level
than on what they can observe: while traditional '
scheduler classes require the schedulers to fix their

TTP———— TTH

decisions as soon as they enter a location, TT TH

schedulers may change their decision for an action T

while residing in the location. H
The arrows in Figure 1.1 denote inclusions be- /

tween scheduler classes, which are direct implica-
tions of their definitions. The classes in the figure
are ordered top down by their maximal reachability
probabilities as known from the literature [3, 9]. P
_ _In principle, approximating optimal SChedUIer‘?:igure 1.1: Scheduler hierarchy
is simple for all scheduler classes. For schedulers
that can observe time, it suffices to discretise time anddease the sample rate [10],
and for time-abstract schedulers, it suffices to optimise rdmchability within a
bounded number of steps and to let this bound grow to infiily [

Efficient techniques to determine these rates have, for plearbeen discussed
for uniform CTMDPs—CTMDPs with a constant transition ratey-—Baier, Her-
manns, Katoen, and Haverkort [3].

C

Contribution.  This paper has contributions on two levels: The clean resuthe
technical level is a proof that optimal schedulers existdibcommonly considered
scheduler classes, but we deem the simple insights on tleegtal level that led to
these results to be of similar importance.

Markov + Time= Markov. Markov processes are mathematical models for the ran-
dom evolution ofmemorylessystems, that is, systems for which the likelihood of
future events, at any given moment, depends only on thesepiestate, and not on
the past. We observe thabntinuous-time Markov chains and decision processes
remain Markovian if we add the time that has passed to the Sja&ce.

We use this observation in Chapter 4 to introdticee-extende€€ TMDPs, which
contain the time that has passed as part of their state sgddg.approach has an
immediate implication for all time-dependent schedulessks: It implies without
further ado that the scheduler classes TP and TH as well @éatgses TTP and TTH
coincide, because optimal scheduler decisions in a Maakosystem (with simple
objectives like time-bounded reachability) cannot depemdhe history. As a result,
the description of optimal time-dependent schedulers iapddr 4 is simple.



Reasoning about time-abstract scheduler classes islgligiore involved, be-
cause time-abstract schedulers do not have access to ttiseptine that remains
for reaching the goal region. Phrased in terms of time-el¢dnCTMDPs, these
schedulers do not know precisely in which state of the timpethdent CTMDP they
are, but they can infer a distribution over the states in twhiney could potentially
be. While this argument is not used explicitly in Chaptert 3vas the driving factor
in our research that led to the construction of optimal tabetract schedulers. It
also provides quick and intuitive alternative proofs foe thaditional result [3] that
counting and history dependent schedulers provide the samadounded reachabil-
ity probability for uniform CTMDPSs, but different ones foon-uniform CTMDPs:
while the distribution over the states of the time-exten@ddVDP coincides in the
first case, it differs in the latter.

Optimal Schedulers. The technical contribution are simple constructive prdofs
the existence of optimal time-abstract (Chapter 3) and-tley@endent (Chapter 4)
schedulers.

For time-abstract schedulers we build on the observatiat) iitime has almost
run out, we can use greedy strategyhat optimises our chances to reach our goal
in a single step. Reaching it in more steps is then used asbaet#k criterion with
decreasing power for increasing distance. We show thataascheduler exists and is
indeed optimal after a certain step bound. For the timeratistase we also provide
an algorithmic solution (Section 3.4).

As a small side-result, we also extended the result thavalipfor randomisation
does not increase the time-bounded reachability prolalfar any scheduler class.

A joint publication with Sven Schewe of these results is umag [12].
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Chapter 2

Continuous-Time M arkov
Decision Processes

A continuous-time Markov decision procetsis a tuple(L, Act, R, v, B) with a finite
set of locationd., a finite set of actionéct, a rate matrixR : (L x Actx L) — Ry,
an initial distributionv € Dist(L), and a goal regioB C L. We define the total exit
rate for a locationl and an actiora asR(l,a,L) = ¥ R(l,a1"). For a CTMDP
we require that for all location§ € L there must be an actioa € Act such that
R(l,a,L) > 0, and we call such actiorenabled We defineAct(l) to be the set of
enabled actions in locatioh If there is only one enabled action per location, a
CTMDP A is a continuous-time Markov chain [7]. If multiple action®available,
we need to resolve the nondeterminism by means of a sche@lder called strat-
egy or policy). As usual, we assume the goal region to be bBbgprand we use
P(l,a,l") = 2828 to denote the time-abstract transition probability.

Note, that we explicitly distinguish betweéscationsandstates We consider a
state to be a location at a certain point of time. This notidhwove to be helpful
when considering time-dependent schedulers in Chapter 4.

Uniform CTMDPs.  We call a CTMDP uniform with raté if for each location

| and actiona € Act(l) the total exit rateR(l,a,L) is A. In this case the probabil-
ity pat(n) that there are exactlyg discrete events (transitions) in tinhés Poisson

distributed: py; (n) = e *t. (A%

We define theuniformisation ¢ of a CTMDP M as the uniform CTMDP ob-
tained by creating copidsg; for all locationsl. We call the new copies unobserv-
able, and the old copies observable locations. Abe the maximal total exit rate
in M. The new rate matriR extendsR by first adding the rat®Rq(l,a,1¢) =
A —R(l,a,L) for every locationl € L and actiora € Act of M, and by then copying
the outgoing transitions from every observable locatida its unobservable coun-
terpartl¢;, while the other components remain untouched. The intuitiehind this

uniformisation technique is that it enables us to distisguivhether a step would

5



6 Chapter 2. Continuous-Time Markov Decision Processes

have occurred in the original automaton or not.

Paths. A timed pathrtin CTMDP 9/ is a finite sequence ifL x Actx R>o)* x L=
Pathg /). We write

lo ap,to Iy at an-1,tn-1 I,
for a sequencet, and we requird;_; < t; for all i < n. Thet; denote the system’s
time when the events happen. The correspondimg-abstract pathis defined as
lo B, PR B, Ih. We usePathspg( M) to denote the set of all such projections
and| - | to count the number of actions in a path. Concatenation dispatt will be
written astio 11 if the last state oftis the first state oft.

Schedulers. The system’s behaviour is not defined only by the CTMDP, bsw al
by a scheduler that resolves the nondeterminism. When singlyproperties of a
CTMDP, such as the reachability probability, we usually jifg over a class of
schedulers. We restrict all scheduler classes to thosésiehe creating a measurable
probability space (cf. [15]), and we consider the followicgmmon classes, which
differ in their power to observe events and to revoke thetigiens:

o Total time history-depende(T TH) schedulersPath§ ) x R>o — D
that map timed paths and the elapsed time to decisions.

o Total time positiona(TTP) schedulers LxRso—D
that map locations and the elapsed time to decisions.

o Timed history(TH) schedulers Paths ) — D
that map timed paths to decisions.

o Timed positionalTP) schedulers LxRso—D
that map locations and the time until the last state chandedisions.

o Time-abstract history-dependefti) schedulers  Pathgp(M) — D
that map time-abstract paths to decisions.

o Time-abstract hop-countin@C) schedulers LxN—D
that map locations and the number of hops (length of the patticisions.

o Positional(P) or memoryless schedulers L—D
that map locations to decisions.

DecisionsD are either randomised (R), in which cae= Dist(Act) is the set of
distributions over enabled actions, or are restricted terdgnistic (D) choices, that
is D = Act. Wherever necessary to distinguish randomised and detistioiversions
we will add a postfix to the scheduler class, for example HDHRd



Induced Probability Space.  We build our probability space in the natural way:
we first define the probability measure for cylindric sets athg that start with

ao,to ar,t1 an—1,tn-1
lp 22 1g 22 . In,
with tj € I for all j < n, and for non-overlapping open intervagsly,...,l,-1, to be
the usual probability that a path starts with these actiona fandomised schedulér

that may not revoke its decisions, and such $&s 2ob, | Sl l;) is equivalent

for all (to,...,ti—1) €lox ... xli_1:

n—-1 o
/ |—L§(|O 2ol B @) - R(l, g, i) - e ROE D)
to€lo,t1€ly,....th-1€ln-1 j—

assuming_; =0.

From this basic building block, we build our probability nsese for measur-
able sets of paths and measurable sets of schedulers inubeway [15]. The
similar space for TT schedulers, which may revoke their sieas, is described in
Section 4.2.

Time-Bounded Reachability Probability. For a given CTMDP M =
(L,Act R,v,B) and a given measurable schedufethat resolves the nondetermin-
ism, we use the following notations for the probabilities:

o Prg‘{(l ,t) is the probability of reaching the goal regiBnn timet when starting
in locationl,

o Prg‘{(t) = ZGLV(I)Prg‘{(I,t) denotes the probability of reaching the goal re-
gionBin timet,

) k—Pr@”(t) denotes the probability of reaching the goal regibim timet and
with at mostk discrete steps, and

o PR?f(n,t) is the probability to traverse the time-abstract pathithin timet,
if Ttdoes not visit the goal regids, and O ifrtcontains a location iB.

As usual, the supremum of the time-bounded reachabilitpaiviity over a par-
ticular scheduler class is called the time-bounded realiyatf 2/ for this scheduler
class, and we use ‘max’ instead of ‘sup’ to indicate that taisie is taken for some
optimal schedules of this class.

Step Probability Vector.  Given a schedules and a locatior fora CTMDP M,
we define thestep probability vector @ of infinite dimension. An entry s]i] for
i > 0 denotes the probability to reach goal reg®im up toi steps from locatior
(not considering any time constraints).



Chapter 2. Continuous-Time Markov Decision Processes



Chapter 3

Time-abstract Scheduling

In this chapter, we show thafptimal schedulers exist for all natural time-abstract
classes, that is, for CD, CR, HD, and HR. Moreover, we showttiexe are optimal
schedulers that become positional after a small numberepgstvhich we compute
with a simple algorithm. We also show that randomisationsdoet yield any ad-
vantage: deterministic schedulers are as good as randbmises. Our proofs are
constructive, and thus allow for the construction of optisehedulers. This also
provides the first procedure to precisely determine the-tiomended reachability
probability, because we can now reduce this problem to splthe time-bounded
reachability problem of Markov chains [2].

Our proof consists of two parts. We first consider the clagmdbrm CTMDPs,
which are much simpler to treat in the time-abstract cassguse we can use Poisson
distributions to describe the number of steps taken withgivan time bound. For
uniform CTMDPs it is already known that the supremum overlibended reacha-
bility collapses for all time-abstract scheduler classesfCD to HR [3]. It therefore
suffices to show that there is a CD scheduler which takes #higey

We then show that a similar claim holds for CD and HD scheduléhe general
class of not necessarily uniform CTMDPs. In this case, ib dislds that there are
simple optimal schedulers that converge against a poaltecheduler after a finite
number of steps, and that randomisation does not improventigebounded reacha-
bility probability. However, in the non-uniform case then&-abstract path contains
more information about the remaining time than its lengtly,cand bounded reach-
ability of history dependent and counting schedulers Uguaiglviate [3].

We start this section with the introduction gfeedy scheduleyddD schedulers
that favour reachability in a small number of steps over mahadity with a larger
number of steps; the positional schedulers against whglCth and HD schedulers
converge are such greedy schedulers.
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3.1 Greedy Schedulers

The natural objective when seeking optimal schedulersisawimise time-bounded
reachabilityPr?{(I ,t) for every locatiorl with respect to a particular scheduler class
such as HD. Unfortunately, this optimisation problem is panably complex.

However, when the remaining tinmés close to 0, then increasing the likelihood
of reaching the goal region in few steps dominates the impaotaching it later.
While we have no direct access to the remaining time in the-tpstract case, we
can infer the distribution over the remaining time from tmeg-abstract history (or
its length). Since the expected remaining time convergdswden the number of
transitions goes to infinity, we can argue in a way similahetime-dependent case.

This motivates the introduction of greedy schedulers: WeamaHD sched-
uler greedy if it maximises the step probability vector of every locatib with
respect to the lexicographic order (e.¢0,0.2,0.3,...) >ex (0,0.1,0.4,...)). To
prove the existence of greedy schedulers, we draw from tttdtiat the supremum
d| = supscyp di s obviously exists, where the supremum is to be read as a suprem
with respect to the lexicographic order. An actiar Act(l) is calledgreedyfor a
location| ¢ B if it satisfiesshift(d) = 5. P(l,a,1")dy, whereshift(d,) shifts the
vector by one position (that ishift(d|)[i] = di[i + 1] Vi € N). For locationd in the
goal regionB, all enabled actiona € Act(l) are greedy.

Lemmal Greedy schedulers exist, and they can be described as tbe alached-
ulers that choose a greedy action upon every reachable déibstract path.

Proof. lItis plain that, for every non-goal locatidrg B, shift(d;) > 5. P(I,a,1")dy
holds for every actiom, and that equality must hold for some.

For a schedules that always chooses greedy actions, a simple inductive- argu
ment shows thad [i] = d, s[i] holds for alli € N, while it is easy to show thak > d ¢
holds if § deviates from greedy decisions upon a path that is possitalertts own
scheduling policy. O

This allows in particular to fix a positionatandard greedy scheduley fixing a
greedy action for every location.

So far, we have only shown the existence of a greedy scheduienot argued
how to determine the set of greedy actions. If a sched§lstarts in a location
with a non-greedy actios, thenshift(d, 5) < S P(l,a,1")d holds true. The sum
SreL P(l,a1")di corresponds to the scheduler choosing the non-greedynaatio
location| and acting greedy in all further steps. Ldgt denote the step probability
vector of such schedulers.

We know thatd) s <d 5 < d. Hence, there is not only a difference betwegg
andd, this difference will not occur at a higher index as the fiiffiedence between
the newly defined , andd,. The finite number of locations and actions thus implies

1Thek-greedy schedulers introduced in [3] are greedy with respexdifferent goal: they maximise
the partial sumz};Od| sli] - pat(i) for a givenk. They correspond to theoptimal schedulers used in
this paper.
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the existence of a bouridon the occurrence of this first difference betweegnandd,
as well ag s andd,. While the existence of suchkesuffices to show the existence of
optimal schedulers, we need an upper boundkforactually identify greedy actions.
In Appendix 4.2 we show that this constdnt: |L| is smaller than the CTMDP itself.
Having established such a boukdit suffices to compare schedulers up to this
bound. This provides us with the greedy actions, and alsl thi# initial sequence
di a[0],d a[1],...,d a[k] for all locations| and actionsa. Finally, we determine a
positive lower boundt > O for the first non-zero entry of the vectads— d, . We
call this lower boundu the discriminator of the CTMDP. The intuition behind the
discriminator is that it represents the minimal advantaigga® greedy strategy over
all other strategies.

3.2 Uniform CTMDPs

In this subsection, we show that every CD or HD scheduler foniform CTMDP
can be transformed into a scheduler that converges to thigopas standard greedy
scheduler.

In the quest for an optimal CD scheduler, it is useful to coesithe fact that
the maximum reachability probability can be computed udhey step probability
vector, because the likelihood that a particular numbetegshappen in timeis
independent of the scheduler:

Prif(t) = I}{V(')_idm [i]- pae(i)- (3.1)

Moreover, the Poisson distributiqey; has the useful property that the probability
of taking k steps is falling very fast. We define tigeeed bound g, to be a natural
number, for which

Hpu(n) > _;pm(rwi) VN> Ny, (3.2)

holds true. It suffices to choosg, > % since itimpliequpy (n) > 2py (N+1), VN>
Ny, (Which yields (3.2) by simple induction). Such a greed bounglies that the
decrease in likelihood of reaching the goal region in fevpsteaused by making a
non-greedy decision after the greed bound dwarfs any patdater gain. We use
this observation to improve any given CD or HD schedylénat makes a non-greedy
decision after>n,, steps by replacing the behaviour after this history by adyee
scheduler. Finally, we use the interchangeability of gyesthedulers to introduce
a schedulers that makes the same decisionssasn short histories and follows the
standard greedy scheduling policy once the length of theryiseaches the greed
bound. For this scheduler, we show tRa’ (t)>Pr{! (t) holds true.

Theorem 1 For uniform CTMDPs, there is an optimal scheduler for thesskes CD
and HD that converges to the standard greedy scheduler affesteps.
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Proof. Letus consider any HD schedulgthat makes a non-greedy decision after a
time-abstract patitof length|m] > n,, with last locationl. If the path ends in, or has
previously passed, the goal region, or if the probabilityhef historyrtis 0, that is, if
it cannot occur with the scheduling policy 6f then we can change the decision of
S on every path starting witht arbitrarily—and in particular to the standard greedy
scheduler—without altering the reachability probability

If PR?/[(TLt) > 0, then we change the decisions of the scheddldor paths
with prefix Ttsuch that they comply with the standard greedy schedulercaléghe
resulting HD schedules’ and analyse the change in reachability probability using
Equation (3.1):

[o0]

Prif(t) — Pri‘(t) = PRY(TLt) - > (@l —chs,[1) - pu((rd +),
i=
whereSy: 0 — S(1o 1) is the HD scheduler which prefixes its input with the path
and then calls the schedulgér The greedy criterion implieg > d, s, with respect to
the lexicographic order, and we can apply Equation 3.2 taicedhat the difference
Prif(t) — Pri(t) is non-negative.

Likewise, we can concurrently change the scheduling pdiicghe standard
greedy scheduler for all paths of lengthn,, for which the schedules makes
non-greedy decisions. In this way, we obtain a schedsflethat makes non-greedy
decisions only in the first,, steps, and yields a (not necessarily strictly) better time-
bounded reachability probability thah

Since all greedy schedulers are interchangeable witharngihg the bounded
reachability probability (and even without altering thepsiprobability vector), we
can modify §” such that, after> n,, steps, it does not only follow any greedy
scheduling policy, but complies with the standard greedhedaler, resulting in an-
other schedules with the same time-bounded reachability probabilitys4s Note
that.$ is counting if$s is counting.

Hence, the supremum over the bounded reachability of alHCDgchedulers
is equivalent to the supremum over the bounded reachabiliyD/HD schedulers
that deviate from the standard greedy scheduler only in tsenfj, steps. This class
is finite, and the supremum over the bounded reachabilithaeefore the maximal
bounded reachability obtained by one of its representtive O

Hence, we have shown the existence of a—simple—optimal-tioueded CD
scheduler. Using the fact that the suprema over the timedex reachability prob-
ability coincide for CD, CR, HD, and HR scheduler [3], we caifier that such a
scheduler is optimal for all of these classes.

Corollary 1 maxPr?(t) = maxPr¥(t) = maxPr? (t) = maxPr?(t) holds for
y .SGCI)D( 0 5ec)F§ s .SeHI)D( s .SeH)Fg s©
all uniform CTMDPsM . O

The existential proof above does not directly lead to a cansbn though. In
Section 3.4 we present a method to obtain the optimal sceedul
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3.3 Non-uniform CTMDPs

Reasoning over non-uniform CTMDPs is harder than reasoousg uniform CT-
MDPs, because the likelihood of seeing exa&tteps does not adhere to the simple
Poisson distribution, but depends on the precise histovent two paths have the
same length, they may refer to different probability disitions over the time passed
so far. Knowing the time-abstract history therefore presgié scheduler with more
information about the system’s state than merely its lengiha result, it is simple
to construct example CTMDPs, for which history dependedt@unting schedulers
can obtain different time-bounded reachability probé&bsi [3].

In this subsection, we extend the results from the previabsexction to general
CTMDPs. We show that simple optimal CD/HD scheduler exist #hat randomi-
sation does not yield an advantage:

grgg)D(Pr?{(t) :EgéPrg‘{(t) and 521H%)Pr?{(t) :Q%Pr?(t).
To obtain this result, we work on the uniformisati@hof 4 instead of working
on M itself. We argue that the behaviour of a general CTMIZRcan be viewed as
the observable behaviour of its uniformisatioh using a scheduler that does e
the new transitions and locations. Schedulers from thissatan then be replaced by
(or viewed as) schedulers that do msethe additional information. And finally, we
can approximate schedulers that do not use the additioftahmation by schedulers
that do not use it initially, where initially means until thember of visible steps—
and hence in particular the number of steps—exceeds the tr@endng; of the
uniformisation ¢ of M. Comparable to the argument from the proof of Theorem
1, we show that we can restrict our attention to the standesddy scheduler after
this initial phase, which leads again to a situation wheresering a finite class of
schedulers suffices to obtain the optimum.

Lemma?2 The greedy decisions and the step probability vector cdaéor the ob-
servable and unobservable copy of each location in the mmiiation U of any
CTMDP M.

Proof.  The observable and unobservable copy of each location thackame
successors under the same actions with the same transitean r O

We can therefore choose a positiogandard greedy schedulerhose decisions
coincide for the observable and unobservable copy of eaxttitm.

For the uniformisation ¢ of a CTMDP M, we define the functiorvis :
Pathsps(U) — Pathspg( M) that maps a patht of U to the corresponding path in
M, thevisible path by deleting all unobservable locations and their preapttian-
sitions fromtt. (Note that all paths irt/ start in an observable location.) We call a
schedulem-visibleif its decisions only depend on the visible path and coindate
the observable and unobservable copy of every locationifpaths containing up to
nvisible steps. We call a schedulgsibleif it is n-visible for alln € N.
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We call a HD/HR scheduler am<{)visible HD/HR scheduler if it isr§-)visible,
and we call anrg)visible HD/HR scheduler a visible CD/CR scheduler if itscd
sions depend only on the length of the visible path, and-aisible CD/CR scheduler
if its decisions depend only on the length of the visible dattall paths containing
up ton visible steps. The respective classes are denoted witmdinggrefixes, for
examplen-vCD. Note that §-)visible counting schedulers are not counting.

It is a simple observation that we can study visible CD, CR, Hiid HR sched-
ulers on the uniformisatiofil of a CTMDP M instead of studying CD, CR, HD, and
HR schedulers ofif.

Lemma3 S — Sovis is a bijection from visible CD, CR, HD, or HR sched-
ulers for the uniformisationt of a CTMDP M onto CD, CR, HD, or HR sched-
ulers, respectively, fofil that preserves the time-bounded reachability probability
Pr.%l(t) = Pr%vis(t)- U

At the same time, copying the argument from the proof of Taeod, anng-
visible CD or HD schedules can be adjusted to the;-visible CD or HD scheduler
S that deviates frong only in that it complies with the standard greedy schedwer f
U afterng visible steps, without decreasing the time-bounded rdalitygorobabil-
ity. These schedulers are visible schedulers from a finitectass, and hence some
representative of this class takes the optimal value.

Lemma4 The following equations hold for the uniformisati@hof a CTMDPM :

semBieoP1s (0= MEPO and o na P = magPrsi)
Proof. We have shown in Theorem 1 that turning to the standard greefusduling
policy afterng; or more steps can only increase the time-bounded readiygtmtib-
ability. This implies in particular that we can turn to tharsilard greedy scheduler
afternq, visible steps.

The scheduler resulting from this adjustment does not @yainng;-visible, it
becomes a visible CD and HD scheduler, respectively. Maeadvis a scheduler
from the finite subset of CD or HD schedulers, respectivelypse behaviour may
only deviate from the standard scheduler within the firgivisible steps. 0

We can therefore construct optimal CD and HD scheduler fenneCTMDP A .
To prove that optimal CD and HD scheduler are also optimal G@RHR scheduler,
respectively, we first prove the simpler lemma that this fdtd k-bounded reacha-
bility.

Lemma5 k-optimal CD or HD schedulers are also k-optimal CR or HR slthers,
respectively.

Proof. For a CTMDPM we can turn an arbitrary CR or HR schedulginto a
CD or HD schedules” with a time andk-bounded reachability probability that is at
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least as good as the one ®by first determinising the scheduler decisions from the
k+ 1st step onwards—this has obviously no impackdmunded reachability—and
then determinising the remaining randomised choices.

Replacing a single randomised decision on a pgfor history dependent sched-
ulers) or on a set of pathe (for counting schedulers) that end(s) on a location
| is safe, because the time akéounded reachability probability of a scheduler
is an affine combination—the affine combination defined S4yr) and S(|m,1),
respectively—of theAct(l)| schedulers resulting from determinising this single de-
cision. Hence, we can pick one of them whose time k#mbunded reachability
probability is at least as high as the onesof

As the number of these randomised decisions is firit&|(| for CR, and< kl
for HR schedulers), this results in a deterministic schedafter a finite number of
improvements. 0

Theorem 2 Optimal CD schedulers are also optimal CR schedulers.

Proof. First, the probability that the goal regidhis reached in more thansteps
converges to 0, independent of the scheduler. Togetherwitima 5, this implies

supPrif(t) = lim supn—Pri(t) = lim supn—Pr¥(t) < maxPr¥(t),
SECR N—=%scCR N—=%seCD seCb

while > is implied byCD C CR O
Analogously, we can prove the similar theorem for historgetelent schedulers:

Theorem 3 Optimal HD schedulers are also optimal HR schedulers. O

3.4 A Practical Approach

In this section we present a procedure to construct an opsiaheduler in the time-
abstract case. For the sake of simplicity we assume a uni@rviDP 2/ .

There is an obvious method how to construct an optimal sdbedCompute
and compare the reachability probabilities for all finitehany history dependent
schedulers that may choose freely until stgp and act greedy afterwards. In order
to compute these values, we construct a continuos time Matkain (CTMC)—a
CTMDP without nondeterminism—for each schedw{eand compute its reachability
probability.

As we know that in uniform CTMDPs the classes of counting dalers and
history dependent schedulers yield the same reachabitiyapilities, it suffices to
consider the CTMDP which encodes the step number in its spaige (up to ste,,)
in the natural way and fix the decisions according o order to obtain a CTMC.

It is plain that this CTMC yields the same reachability probty as the original
CTMDP M under schedules: Prg‘{(t). These probabilities can be computed and
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Figure 3.1: A simple CTMDP

compared by means of the methods of Aziz et al. [2]. Unfortielgyathe complexity
of this result is unknown which prevents us from assessiisgniethod.

We can, however, determine a lower bound by reducing thequagstion of CSL
(continuous stochastic logic, cf. [2, 3]) model checkingCiiMCs to the comparison
of actions in CTMDPs:

Theorem 4 The search for an optimal scheduler is at least as hard askihgadhe
formula?-5(0°'B) a CTMC for a rational number p.

Proof. Given a CTMC(C = (L,Act R,v,B), with Act= {b}, and a simple CSL
formula® = P ,(01°UB) we construct a CTMDEM,- for which the (only) decision
which action to take corresponds to the evaluatio®ofVe assume a unique initial
statelinii with v(linit ) = 1.

The CTMDPM, = (L/,Act,R’,V',B') is constructed as followd:’ = LU {sg},
Act = {a,b}, V/(lint) = 1, andB’ = BU{lg}. Further,R’ extendsR by the entries
for actiona which are all zero up to the enti’(linit,a,1g) = r for some constant
r € R. Figure 3.1 illustrates the construction. Constaf$ chosen such that the
time-bounded reachability probability of reachilpgwith actiona is exacltyp. This
constant clearly exists and therefore the search for the optimaldudie (out of the
two available) directy corresponds to the evaluation offtmmula @. O



Chapter 4

Time-dependent Scheduling

In this chapter we make use of a simple but illuminative simfour view on the
control problem for a CTMDPM: We consider the time that has passed as part of
the state-spaéeof a time-extended CTMDP (tCTMDP), turning the time-bouthde
reachability problem to reacB in time tp into an ordinary reachability problem to
reachB x [0,tg] in @ tCTMDP 94,.

This extension has obviously no effect on the Markovian atiar of the tCT-
MDP. In particular for a TT schedule$, which can revoke its decisions, the prob-
ability Pr?{((l,t)) to reach the goal regioB x [0,tp] from a state(l,t) in the time
extended CTMDPM,, is independent of the history.

For a traditional time-dependent schedulgrsthe probabilityPr?{((I,t)) to
reach a location in the goal region from a stéltd) is memoryful in general, as
the decisions made by the schedukedepend on the time that the locatibrwas
entered. However, the behaviour becomes memoryless if etesfon the points of
time at which a discrete transition took place.

In both cases it is simple to translate positional scheddtarthe resulting time-
extended CTMDPM, to equivalent TTP/TP schedulers for the original CTMBDR

4.1 Timed Schedulers

For every TP schedules, we havePr?{tO((I,t)) = 1 for all goal stategl,t) € B x

[0,t0], as we have reached the goal region in time in this casePa%{‘d((l,t)) =0
for all locationsl € L and allt > ty, because the goal region cannot be reached in time
any longer if it has not been visited before.

For a measurable deterministic positional scheddland a non-goal locations
I” ¢ B and timeg € [0,tp], we will reach the goal region in time (provided we have
not reached it before), if we reach it in time with or after to#owing transition.

1Adding the time to the state-space leads to a constructiainréfzalls the semantics of timed au-
tomata [1], although the treatment of time is much simpleehbecause we have only one clock and
no resets.

17
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Hence,

P2 (10) = 5 ROS(00)1) [P e R0 e
I"eL t

holds true, wher@r?ﬂo((l,t)) denotes the probability of reaching the goal region
when the locatioth is enteredat timet. Different to tCTMDPs for TT schedulers (cf.
Section 4.2), tCTMDPs for traditional T schedulers therefaave a discrete flavour.
Naturally, this shift in our way of looking at the problem hasinfluence on the
probability of reaching our objective, and the followinguatjons must hold:

2%
sup Prif(l,to—t) = supPrg °((1,t))
SETP SeP

and

sup Prif(tg) = Zv(l)supPr?{to((l,O)).
SeTP I'e SeP

The hard part—both for T and TT schedulers—is to show thatpimal mea-
surable scheduler exists. We start with a proof that thexeoptimal schedulers in
the class of randomised history and time-dependent sobresdiblat are deterministic
and positional.

Theorem 5 maxPrg‘l(t) = sup Pr?[(t), and randomisation does not improve the
SETP SE€TH
result.

Proof. The formulas given above for positional schedulers, as alsimilar
formulas for history dependent schedulers, are clearlyidat®d by the functions
defined by

Pr,z,w‘o((l,t)) — max R(I,a,l’)/ Pr,i‘l‘o(l’,r)e*R("""?'-)Tdr.
acAct(l) /. t

For an extension to randomised schedulers, the maximuntloerctions needs
to be replaced by a supremum over the distributions in anngdiate step, but
as suprema over affine combinations over a finite set of valuesaken in one of
these values, the same function is dominating the functionsneasurable history
dependent randomised schedulers as well.

The hard part is to show that a measurable scheduler exadttaltes these max-
ima, that is, that no non-measurable change between diffactions is required. To
prove this, we show how to construct a measurable deterticipissitional scheduler
S that always chooses actioashat take the maximum value.

To determine suitable scheduler decisions for a locdtion such a schedules,
we disintegratg0, to] into measurable sefsl, | a € Act(l)}, such thatS only makes
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decisions that maximisg;., R(l,a,1") f;* Prz,wtO ((I",1))e RIabrdr. (For positions
outside of[0,tp], that is, for times behind our time boungl the behaviour of the
scheduler does not matter, aff,t) can be fixed to any constant decisima Act(l)
forallt > tg.)

We start with fixing an arbitrary order on the actions inAct(l), and intro-
duce, for each poirtte [0,tp], an order=; on the actions determined by the value of

el R(L A1) [ pr;’,”to ((I",1))e Rabitgr, using:- as a tie-breaker.

1. For the actiora in Act(l) that is minimal with respect te-, we start by fixing
the open seD, = [0,tp] of points in time where the scheduler does not make a
decisiona > a (where open set in this proof refers to sets opeidjtp)).

2. We then define the s&} as the points € O, in time, for which the actiom is
maximal with respect té=;.

ThenT, is an open measurable set with a countable fringe, and fpoadtst ¢

Ta~ Ta it holds thata maximisesy ¢, R(l,b,l’) /i Prﬁ{to ((I",1))e RbLTG

among all action® € Act(l), though not strictly. (A detailed description why
the continuity of ¢ R(I,b,l") [ Prz,w‘o((I’,T))e*R(“bv'-)Tdr for all actions

b € Act(l) implies thatT, is open, measurable, and has a countable fringe is
supplied in Section 4.2.)

3. Wefixs(l,t) =aforallt € T,NO,.

4. If there is a next smaller (with respect:tg actiona’ = max{a’ < a}, than we
fix the new open seDy = O, \ T, for &, and proceed with Step 2.

Repeating this for all non-goal locatioh& B, and fixing arbitrary decisions for the
goal locations (independent of the time passed) providesdght measurable de-
terministic time-dependent positional scheduler thatidates all history dependent
randomised time-dependent schedulers. O

Theorem 6 max Pr?{(t) = sup Pr?[(t), and randomisation does not improve the
SETTP SETTH
result.

4.2 Total Time Schedulers

In this section we describe the small differences that osdwen we allow for sched-
ulers that have the capability to revoke their decisions.

Probability Space.  As a first adjustment, we have to build a probability space
that covers this generalisation. Such spaces are not havdiltb (cf. [9, 10] for
locally uniform CTMDPs): We can simply define measures forge types of these
schedulers, and complete the measure space in the usual way.
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That is, we start with defining the probability measure fds ¢ paths

ap,to a1ty an-1,tn-1
lo ly I
with 0 <tg <ty <th <...<ty_1, such thattg € lp, t; € 11, ..., th—1 € In_1, fOr
disjoint open intervald, 14, ..., In_1, and schedulers that revoke their decisions in

finitely many pointsrq,ro,...,rm, but whose decisions do not depend on the times
to,tg, ... th—1.

For such simple sets of paths and schedulers, we can contqgupedbability to
obtain a path in this cylindric set as

" T R Lt
/ I_LR(Ii’ai’IH‘l) rle* (If,a, )(ifi—l)y
to€lo,ti€ly,... th-1€lh-1 j— i=

where
o tp=0,

ot} <t5<...<thy,is the chain of points in time that contaifis< t; <ty <
... <thp_pandry,ro,....ry,

o |/ is the location the CTMDP is in for the intervél|_,,t/), and

o & is the decision the scheduler would make in the time inteftya], t/), which
is also the decision it makes at the tinigsf the discrete transitions.

The extension to randomised schedulers is trivial.

These probabilities for cylindric sets then become thedagilding blocks of
our probability space: As usual, we can build-algebra over these sets, and com-
plete the resulting simple measure space. Note that thisitiefi does not raise the
requirement of locally uniform schedulers that was considenecessary previously
(cf. [9, 10]), although using locally uniform schedulersvatledly simplifies rep-
resenting the measure of these cylindric sets of traceset@dme integral used in
Chapter 2.

Optimal TT Schedulers. Based on the resulting probabilistic space, we argue as
in Section 4.1 that we can consider tCTMDPs instead of thedstta ones, and that
the resulting tCTMDPs remain Markovian. This suggests afgiar the existence of
optimal TT schedulers comparable to the prove for time-ddpet schedulers that
cannot revoke their decisions.

The main difference to the proof in Section 4.1 is that TT dcihers can revoke
their decision in any point of time, and the resulting tCTMBE, is Markovian in
any state, rather than only in any discrete entry point. Tdkes away the discrete
flavour from the T scheduler case. Comparable to the case di@dslers, we know
that
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o Pr?{tO ((1,t)) = 1 holds for all goal statelse B and allt < to,
o Pr?{‘(J ((1,t)) =0 holds for all locations$ € L and allt > to, and

o Primo ((1,t0)) = 0 holds for all non-goal locatioris¢ B.

holds for every scheduler. For a measurable positionaldsdbes, we now have that

Prs™0 ((1,0) = 3 R(LS((0,0).1) - (P ((1,0) = Pri(07,1)))

I"eL

for all non-goal locations ¢ B, and allt € [0,to] holds true, Wher@'rSMtO((I,t)) is

the derivation oPr?ltO ((1,t)) to the second argument, that is, to the time.
Naturally, our shift in the way we look at the problem has aga influence on
the probability of reaching our objective, and the follogriaquations must hold:

sup Prif(l,to—t) = supPrémo ((1,1)
SETTP SeP

and

sup Pr(to) = R0 supPr?{tO ((1,0)).
SeTTP I'eL SeP

The hard part is again to show that an optimal measurablelstdreexists.

Theorem 6 SrgTa#xPPr?{(to) = sup Prg‘{(to), and randomisation does not improve
SeTTH
the result.

Proof. The formulas discussed above provide us with simple diftaibequations,

and the functions that we yield for positional schedulesswall as those that we
would get for history dependent schedulers, are clearlyidaiad by the functions
defined by the differential equation

Prs™o((1,t)) = min ZLR(I,a,I’) : (Pr?{‘O (1) - Pr?{‘O((I’,t))>

acAct(l) |

forallt € [0,to).

For an extension to randomised schedulers, the minimumtbeeactions needs
to be replaced by an infimum over the distributions in an mextiate step, but as the
infima over affine combinations of a finite set of values takesninimum in one of
these values, the same differential equations defines and¢ing function.

Just like in the proof of Theorem 5, the hard part of the praatoi show that
there is a measurable schedufthat always chooses an actianthat minimises
this value. This guaranteegic v(1)Pr(1,0) = sup Pr(to). We can construct

SeTTH
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such a scheduler similarly to the construction of an optischleduler in the proof of
Theorem 5.

To construct the scheduler decisions for a locatidor a measurable scheduler
S, we disintegratg0,to] into measurable setfT, | a € Act(l)}, such that$ only
makes decisions that minimisg.., R(l,a,1") - (Pr?{to ((1,1) - Primo ((1,1)). (For
positions outside of0,to], that is, for times behind the time bouty the behaviour
of the scheduler does not matter agifl,t) can be fixed to any constant decision
ac Act(l) for all t > to.)

We start with fixing an arbitrary order on the actions irAct(l), and intro-
duce, for each poirtte [0,tp], an order=; on the actions determined by the value of

SreLR(Lal)- (Pr?{tO ((1,1) - Pr?{to ((I';t))), using>- as a tie-breaker.

1. For the actiora in Act(l) that is maximal with respect te, we start by fixing
the open seD, = [0,1p] of points in time where the scheduler does not make a
decisiona > a (where open set in this proof refers to sets opeidjty)).

2. We then define the s& as the point$ € O in time, for which the actiom is
minimal with respect to=;.

Being minimal with respect t&; requires the value
Y Ril.al). (Prife((1,1)) — Prafo ((1"1)))
I"eL

to be strictly smaller foe compared to the respective value of all other actions
a < a, which implies that this sum is also strictly smaller for @&lin some
e-environment of in [0,1to].

As O, is open, such ae-environment is a subset @f,, which implies thafT,

is open.

We now first fix one sucls-environment% C O, for all t € T, and then fix

an arbitrary sequencgy), Z;, ... from these open sets such that, foriafl N,
there is na € T, such thatfﬂ\uj<i 7 dr > ZIE\UM 7 dr.

Now, the open setE; = Uiy % is measurable, and since obviously
limi_o fﬂ\uﬁﬂ =0holds true, _,zdT=0 f0||0ﬁs forallt € T, which
implies & C £, (because the measurable openfet. ‘£, is a 0 set, and hence
empty).

Since‘E, is a countable union of open intervalg, . Ea| < |N| is countable,

and hence a ngt. Furthermore, we have shawa T, C £, holds true, and
hence thaf, = ‘£, is measurable.

3. Moreover, for the points of time in the fringe af, the continuity of
SreLR(LA, 1) - (Pr?{t"((l,t)) - Pr?{“’((l’,t))) for every actiona € Act(l)
guarantees tha still minimises this value, although not necessarily #iic
Hence, we can fi$(l,t) = afor allt € T,NO,.
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4. If there is a next smaller (with respect:g actiona’ = max{a’ < a}, we fix
the new open sédy = O, \ T, for &, and proceed with step 2.

This way, we can construct measurablescheduler that provides the optimal
solution. ]
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Omitted Proofs

Greedy Schedulers

The proof of the existence of a positional greedy schedunl&eiction 3.1 is not con-
structive, because we do not provide means to compute aarhsthat satisfies
di #d o= 3K <k d[K > d a[k]. Moreover, suitable constanisandn,, can only
be computed onckis known. Without being able to provide a suitable constamet,
could therefore provide an algorithm that converges tonogititime-abstract sched-
ulers, but we would not be able to determine whether an opsoiation has already
been reached.

The techniques we exploit in this appendix to show that|L | is in fact smaller
than the uniform CTMDPV itself draw from linear algebra, and are, while simple,
a bit unusual in this context. We first turn to the simpler owtf Markov chains, re-
solving the nondeterminism in accordance with the positistandard greedy sched-
uler § whose existence was shown in Section 3.1.

We first lift the step probability vector from locations tsttibutions, where, =
S1eLV(h)d is, for a distributionv : L — [0,1], the normal affine combination of the
step probability vectors of the individual locations. Wl tao distributionsv,V’ :

L — [0,1] equivalent, if their step probability vectods = d, are equal, and-step
equivalent if they are equal up to positiofvj <i. dy[j] = dy[j]). We immediately
extend these definitions to arbitrary vectorsL — R.

We then define the vector spadesof multitudes of differences — v’ of i-step
equivalent distributions, Vv’ : L — [0, 1]. Thatis, the differences betweerstep equiv-
alent distributions form a spanning set®f

As a basis for our constructioly is simple to construct: it is the vector space
that contains the multitudes of differenoes v’ of distributionsv,v’ : L — [0, 1] that
are equally likely in the goal region. The first implies thetrigtion 5, 8(1) =0,
and the latter the restrictiop,cg 8(1) = 0 for all d € Dg. On the other hand, all vectors
that satisfy these side conditions are clearly multitudetfferencesv — Vv’ of 0-step
equivalent distributions, v’ : L — [0, 1], such thaDg is completely described by this
description.

Once we have computed the vector spBgewe can compute the vector space
O; that contains a vectad if it is a multitude of differences — v’ of distributions
v,V': L — [0,1], such thashift(d, ) andshift(d,/) arei-step equivalent. The transition

29



30

from step probability vectors to thehift of them is a simple linear operation, which
essentially transforms the distributions according totthasition matrix, but drops
all weight that is already accumulated in the goal regionndde we can obtai®;
from D; by a simple linear transformation of the vector space.

Now, Dj_ 1 obviously consists of those vectordinthat are also i®©;, andD;, 1 =
D; N O; can be obtained by an intersection of two vector spaces.

NowDo2 D3 2... 2Dy 22 ... obviously holds, an®; = Dj, 1 impliesO; =
Oi+1, and henc®; = D.. AsDg is a|L| — 2 dimensional vector space, and inequality
implies the loss of at least one dimension, a fixed point ishred after at most.| — 2
steps. That is, two distributions are equivalent, if, anty éhthey are(|L| — 2)-step
equivalent.

Having established this, we apply it on the distributippobtained in one step
from a positionl ¢ B when choosing the actiom as compared to the distribution
obtained when choosing the actigfl) defined by the positional greedy scheduler.

Now, d > d 5 holds if, and only ifshift(d,) = d, > d,, , = shift(d a), which
implies dy, [K'] > dy, ,[K] for somek’ < |L| —2, and hence [k] > d, 4[k] for some
k< [L].
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