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Abstract

We study time-bounded reachability in continuous-time Markov deci-
sion processes for various scheduler classes. Such reachability problems
play a paramount rôle in dependability analysis and the modelling of
manufacturing and queueing systems. Consequently, their efficient anal-
ysis has been studied intensively, and techniques for the fast approxi-
mation of optimal control are well understood. In this thesis, we study
the theoretical background of this problem and ask whether an optimal
scheduler actually exists. We provide a positive answer to this question
for all commonly considered scheduler classes. We provide constructive
proofs in which we use the fact that optimal schedulers prefer fast actions
over actions with low transition rates when time is short. Optimal sched-
ulers therefore have a simple structure, they converge to a stable strategy
as time progresses. For the scheduler classes without direct access to
time, we provide a simple procedure to determine optimal schedulers.
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Chapter 1

Introduction

Markov decision processes (MDPs) are a framework that incorporates both nondeter-
ministic and probabilistic choices. They are used in a variety of applications such as
the control of manufacturing processes [11, 5] or queueing systems [14]. We study a
real time version of MDPs, continuous-time Markov decisionprocesses (CTMDPs),
which are a natural formalism for modelling in scheduling [4, 11] and stochastic
control theory [5]. CTMDPs can also be seen as a unified framework for different
stochastic model types used in dependability analysis [13,11, 8, 6, 9].

The analysis of CTMDPs usually concerns the different possibilities to resolve
the nondeterminism by means of a scheduler (also called strategy). Typical questions
cover qualitative as well as quantitative properties, suchas: “Can the nondeterminism
be resolved by a scheduler such that a predefined property holds?” or respectively
“Which scheduler optimises a given objective function?”.

In this paper, we study thetime-bounded maximum reachability problem[11, 3,
16, 9, 10] for CTMDPs. Time-bounded reachability is the standard control prob-
lem to construct a scheduler that controls the Markov decision process such that the
likelihood of reaching a goal region within a given time bound is maximised, and
to determine the probability. For CTMDPs, the answer to bothquestions naturally
depends on the power a scheduler has to observe the run of the system—in particular
if it can observe time—and on its ability to store and processthis information. For
the common classes of schedulers, research has focused on efficient approximation
techniques [3, 9, 10], while the existence of optimal schedulers has remained open.

Overview. Given its practical importance, the bounded reachability problem for
Markov decision processes has been intensively studied [2,3, 16, 9, 10]. However,
previous research focused onapproximatingthe optimal result [3, 10], leaving the
question aside whether optimal schedulers exist.

Unlike for discrete time MDPs, various classes of schedulers for CTMDPs that
differ in terms of their power to observe the behaviour of thesystem have been dis-
cussed in the literature [9, 3]. Intuitively, the differences in these classes concern the
ability to store information, and to measure time.
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2 Chapter 1. Introduction

Figure 1.1 shows a comparison between the commonly considered scheduler
classes, where schedulers that can store the history, its length, or nothing at all are
marked H (for history dependent), C (for hop-counting), andP (for positional), re-
spectively. Schedulers that can observe time are marked with a T (timed), and with
TT (total time) if they have the power to revoke their decision.

Revoking decisions is a concept first discussed
TTP TTH

TP TH

H

C

P

Figure 1.1: Scheduler hierarchy

in [9] that extends schedulers on a different level
than on what they can observe: while traditional
scheduler classes require the schedulers to fix their
decisions as soon as they enter a location, TT
schedulers may change their decision for an action
while residing in the location.

The arrows in Figure 1.1 denote inclusions be-
tween scheduler classes, which are direct implica-
tions of their definitions. The classes in the figure
are ordered top down by their maximal reachability
probabilities as known from the literature [3, 9].

In principle, approximating optimal schedulers
is simple for all scheduler classes. For schedulers
that can observe time, it suffices to discretise time and to increase the sample rate [10],
and for time-abstract schedulers, it suffices to optimise the reachability within a
bounded number of steps and to let this bound grow to infinity [3].

Efficient techniques to determine these rates have, for example, been discussed
for uniform CTMDPs—CTMDPs with a constant transition rate—by Baier, Her-
manns, Katoen, and Haverkort [3].

Contribution. This paper has contributions on two levels: The clean resulton the
technical level is a proof that optimal schedulers exist forall commonly considered
scheduler classes, but we deem the simple insights on the conceptual level that led to
these results to be of similar importance.

Markov + Time = Markov. Markov processes are mathematical models for the ran-
dom evolution ofmemorylesssystems, that is, systems for which the likelihood of
future events, at any given moment, depends only on their present state, and not on
the past. We observe thatcontinuous-time Markov chains and decision processes
remain Markovian if we add the time that has passed to the state space.

We use this observation in Chapter 4 to introducetime-extendedCTMDPs, which
contain the time that has passed as part of their state space.This approach has an
immediate implication for all time-dependent scheduler classes: It implies without
further ado that the scheduler classes TP and TH as well as theclasses TTP and TTH
coincide, because optimal scheduler decisions in a Markovian system (with simple
objectives like time-bounded reachability) cannot dependon the history. As a result,
the description of optimal time-dependent schedulers in Chapter 4 is simple.
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Reasoning about time-abstract scheduler classes is slightly more involved, be-
cause time-abstract schedulers do not have access to the precise time that remains
for reaching the goal region. Phrased in terms of time-extended CTMDPs, these
schedulers do not know precisely in which state of the time-dependent CTMDP they
are, but they can infer a distribution over the states in which they could potentially
be. While this argument is not used explicitly in Chapter 3, it was the driving factor
in our research that led to the construction of optimal time-abstract schedulers. It
also provides quick and intuitive alternative proofs for the traditional result [3] that
counting and history dependent schedulers provide the sametime-bounded reachabil-
ity probability for uniform CTMDPs, but different ones for non-uniform CTMDPs:
while the distribution over the states of the time-extendedCTMDP coincides in the
first case, it differs in the latter.

Optimal Schedulers. The technical contribution are simple constructive proofsfor
the existence of optimal time-abstract (Chapter 3) and time-dependent (Chapter 4)
schedulers.

For time-abstract schedulers we build on the observation that, if time has almost
run out, we can use agreedy strategythat optimises our chances to reach our goal
in a single step. Reaching it in more steps is then used as a tie-break criterion with
decreasing power for increasing distance. We show that sucha scheduler exists and is
indeed optimal after a certain step bound. For the time-abstract case we also provide
an algorithmic solution (Section 3.4).

As a small side-result, we also extended the result that allowing for randomisation
does not increase the time-bounded reachability probability for any scheduler class.

A joint publication with Sven Schewe of these results is underway [12].
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Chapter 2

Continuous-Time Markov
Decision Processes

A continuous-time Markov decision processM is a tuple(L,Act,R,ν,B) with a finite
set of locationsL, a finite set of actionsAct, a rate matrixR : (L×Act×L) → R>0,
an initial distributionν ∈ Dist(L), and a goal regionB⊆ L. We define the total exit
rate for a locationl and an actiona asR(l ,a,L) = ∑l ′∈L R(l ,a, l ′). For a CTMDP
we require that for all locationsl ∈ L there must be an actiona ∈ Act such that
R(l ,a,L) > 0, and we call such actionsenabled. We defineAct(l) to be the set of
enabled actions in locationl . If there is only one enabled action per location, a
CTMDPM is a continuous-time Markov chain [7]. If multiple actions are available,
we need to resolve the nondeterminism by means of a scheduler(also called strat-
egy or policy). As usual, we assume the goal region to be absorbing, and we use
P(l ,a, l ′) = R(l ,a,l ′)

R(l ,a,L) to denote the time-abstract transition probability.
Note, that we explicitly distinguish betweenlocationsandstates. We consider a

state to be a location at a certain point of time. This notion will prove to be helpful
when considering time-dependent schedulers in Chapter 4.

Uniform CTMDPs. We call a CTMDP uniform with rateλ if for each location
l and actiona ∈ Act(l) the total exit rateR(l ,a,L) is λ. In this case the probabil-
ity pλt(n) that there are exactlyn discrete events (transitions) in timet is Poisson
distributed:pλt(n) = e−λt · (λt)n

n! .
We define theuniformisationU of a CTMDPM as the uniform CTMDP ob-

tained by creating copieslU for all locationsl . We call the new copies unobserv-
able, and the old copies observable locations. Letλ be the maximal total exit rate
in M . The new rate matrixRU extendsR by first adding the rateRU(l ,a, lU) =
λ−R(l ,a,L) for every locationl ∈ L and actiona∈ Act of M , and by then copying
the outgoing transitions from every observable locationl to its unobservable coun-
terpartlU , while the other components remain untouched. The intuition behind this
uniformisation technique is that it enables us to distinguish whether a step would

5



6 Chapter 2. Continuous-Time Markov Decision Processes

have occurred in the original automaton or not.

Paths. A timed pathπ in CTMDPM is a finite sequence in(L×Act×R>0)
∗×L =

Paths(M ). We write

l0
a0,t0
−−→ l1

a1,t1
−−→ ·· ·

an−1,tn−1
−−−−−→ ln.

for a sequenceπ, and we requireti−1 < ti for all i < n. The ti denote the system’s
time when the events happen. The correspondingtime-abstract pathis defined as
l0

a0−→ l1
a1−→ ·· ·

an−1
−−→ ln. We usePathsabs(M ) to denote the set of all such projections

and| · | to count the number of actions in a path. Concatenation of pathsπ,π′ will be
written asπ◦π′ if the last state ofπ is the first state ofπ′.

Schedulers. The system’s behaviour is not defined only by the CTMDP, but also
by a scheduler that resolves the nondeterminism. When analysing properties of a
CTMDP, such as the reachability probability, we usually quantify over a class of
schedulers. We restrict all scheduler classes to those schedulers creating a measurable
probability space (cf. [15]), and we consider the followingcommon classes, which
differ in their power to observe events and to revoke their decisions:

◦ Total time history-dependent(TTH) schedulersPaths(M )×R>0 → D
that map timed paths and the elapsed time to decisions.

◦ Total time positional(TTP) schedulers L×R>0 → D
that map locations and the elapsed time to decisions.

◦ Timed history(TH) schedulers Paths(M ) → D
that map timed paths to decisions.

◦ Timed positional(TP) schedulers L×R>0 → D
that map locations and the time until the last state change todecisions.

◦ Time-abstract history-dependent(H) schedulers Pathsabs(M ) → D
that map time-abstract paths to decisions.

◦ Time-abstract hop-counting(C) schedulers L×N → D
that map locations and the number of hops (length of the path)to decisions.

◦ Positional(P) or memoryless schedulers L → D
that map locations to decisions.

DecisionsD are either randomised (R), in which caseD = Dist(Act) is the set of
distributions over enabled actions, or are restricted to deterministic (D) choices, that
is D = Act. Wherever necessary to distinguish randomised and deterministic versions
we will add a postfix to the scheduler class, for example HD andHR.
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Induced Probability Space. We build our probability space in the natural way:
we first define the probability measure for cylindric sets of paths that start with

l0
a0,t0
−−→ l1

a1,t1
−−→ ·· ·

an−1,tn−1
−−−−−→ ln,

with t j ∈ I j for all j < n, and for non-overlapping open intervalsI0, I1, . . . , In−1, to be
the usual probability that a path starts with these actions for a randomised schedulerS

that may not revoke its decisions, and such thatS(l0
a0,t0
−−→ . . .

ai−1,ti−1
−−−−→ l i) is equivalent

for all (t0, . . . , ti−1) ∈ I0× . . .× Ii−1:

∫

t0∈I0,t1∈I1,...,tn−1∈In−1

n−1

∏
i=0

S(l0
a0,t0
−−→ . . .

ai−1,ti−1
−−−−→ l i)(ai) ·R(l i ,ai , l i+1) ·e

−R(li ,ai ,L)(ti−ti−1),

assumingt−1 = 0.
From this basic building block, we build our probability measure for measur-

able sets of paths and measurable sets of schedulers in the usual way [15]. The
similar space for TT schedulers, which may revoke their decisions, is described in
Section 4.2.

Time-Bounded Reachability Probability. For a given CTMDP M =
(L,Act,R,ν,B) and a given measurable schedulerS that resolves the nondetermin-
ism, we use the following notations for the probabilities:

◦ PrM
S (l , t) is the probability of reaching the goal regionB in timet when starting

in locationl ,

◦ PrM
S (t) = ∑l∈L ν(l)PrM

S (l , t) denotes the probability of reaching the goal re-
gion B in time t,

◦ k−PrM
S (t) denotes the probability of reaching the goal regionB in time t and

with at mostk discrete steps, and

◦ PRM
S (π, t) is the probability to traverse the time-abstract pathπ within time t,

if π does not visit the goal regionB, and 0 ifπ contains a location inB.

As usual, the supremum of the time-bounded reachability probability over a par-
ticular scheduler class is called the time-bounded reachability of M for this scheduler
class, and we use ‘max’ instead of ‘sup’ to indicate that thisvalue is taken for some
optimal schedulerS of this class.

Step Probability Vector. Given a schedulerS and a locationl for a CTMDPM ,
we define thestep probability vector dl ,S of infinite dimension. An entrydl ,S [i] for
i ≥ 0 denotes the probability to reach goal regionB in up to i steps from locationl
(not considering any time constraints).
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Chapter 3

Time-abstract Scheduling

In this chapter, we show thatoptimal schedulers exist for all natural time-abstract
classes, that is, for CD, CR, HD, and HR. Moreover, we show that there are optimal
schedulers that become positional after a small number of steps, which we compute
with a simple algorithm. We also show that randomisation does not yield any ad-
vantage: deterministic schedulers are as good as randomised ones. Our proofs are
constructive, and thus allow for the construction of optimal schedulers. This also
provides the first procedure to precisely determine the time-bounded reachability
probability, because we can now reduce this problem to solving the time-bounded
reachability problem of Markov chains [2].

Our proof consists of two parts. We first consider the class ofuniform CTMDPs,
which are much simpler to treat in the time-abstract case, because we can use Poisson
distributions to describe the number of steps taken within agiven time bound. For
uniform CTMDPs it is already known that the supremum over thebounded reacha-
bility collapses for all time-abstract scheduler classes from CD to HR [3]. It therefore
suffices to show that there is a CD scheduler which takes this value.

We then show that a similar claim holds for CD and HD schedulerin the general
class of not necessarily uniform CTMDPs. In this case, it also holds that there are
simple optimal schedulers that converge against a positional scheduler after a finite
number of steps, and that randomisation does not improve thetime-bounded reacha-
bility probability. However, in the non-uniform case the time-abstract path contains
more information about the remaining time than its length only, and bounded reach-
ability of history dependent and counting schedulers usually deviate [3].

We start this section with the introduction ofgreedy schedulers, HD schedulers
that favour reachability in a small number of steps over reachability with a larger
number of steps; the positional schedulers against which the CD and HD schedulers
converge are such greedy schedulers.

9



10 Chapter 3. Time-abstract Scheduling

3.1 Greedy Schedulers

The natural objective when seeking optimal schedulers is tomaximise time-bounded
reachabilityPrM

S
(l , t) for every locationl with respect to a particular scheduler class

such as HD. Unfortunately, this optimisation problem is comparably complex.
However, when the remaining timet is close to 0, then increasing the likelihood

of reaching the goal region in few steps dominates the impactof reaching it later.
While we have no direct access to the remaining time in the time-abstract case, we
can infer the distribution over the remaining time from the time-abstract history (or
its length). Since the expected remaining time converges to0 when the number of
transitions goes to infinity, we can argue in a way similar to the time-dependent case.

This motivates the introduction of greedy schedulers: We call an HD sched-
uler greedy1 if it maximises the step probability vector of every location l with
respect to the lexicographic order (e.g.(0,0.2,0.3, . . . ) >lex (0,0.1,0.4, . . . )). To
prove the existence of greedy schedulers, we draw from the fact that the supremum
dl = supS∈HD dl ,S obviously exists, where the supremum is to be read as a supremum
with respect to the lexicographic order. An actiona ∈ Act(l) is calledgreedyfor a
location l /∈ B if it satisfiesshift(dl ) = ∑l ′∈L P(l ,a, l ′)dl ′ , whereshift(dl ) shifts the
vector by one position (that is,shift(dl )[i] = dl [i + 1] ∀i ∈ N). For locationsl in the
goal regionB, all enabled actionsa∈ Act(l) are greedy.

Lemma 1 Greedy schedulers exist, and they can be described as the class of sched-
ulers that choose a greedy action upon every reachable time-abstract path.

Proof. It is plain that, for every non-goal locationl /∈B, shift(dl )≥∑l ′∈L P(l ,a, l ′)dl ′

holds for every actiona, and that equality must hold for some.
For a schedulerS that always chooses greedy actions, a simple inductive argu-

ment shows thatdl [i] = dl ,S [i] holds for alli ∈N, while it is easy to show thatdl > dl ,S

holds if S deviates from greedy decisions upon a path that is possible under its own
scheduling policy. �

This allows in particular to fix a positionalstandard greedy schedulerby fixing a
greedy action for every location.

So far, we have only shown the existence of a greedy scheduler, but not argued
how to determine the set of greedy actions. If a schedulerS starts in a locationl
with a non-greedy actiona, thenshift(dl ,S ) ≤ ∑l ′∈L P(l ,a, l ′)dl ′ holds true. The sum
∑l ′∈L P(l ,a, l ′)dl ′ corresponds to the scheduler choosing the non-greedy action a at
location l and acting greedy in all further steps. Letdl ,a denote the step probability
vector of such schedulers.

We know thatdl ,S ≤ dl ,a < dl . Hence, there is not only a difference betweendl ,S

anddl , this difference will not occur at a higher index as the first difference between
the newly defineddl ,a anddl . The finite number of locations and actions thus implies

1Thek-greedy schedulers introduced in [3] are greedy with respect to a different goal: they maximise
the partial sum∑k

i=0dl ,S [i] · pλt(i) for a givenk. They correspond to thek-optimal schedulers used in
this paper.
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the existence of a boundk on the occurrence of this first difference betweendl ,a anddl

as well asdl ,S anddl . While the existence of such ak suffices to show the existence of
optimal schedulers, we need an upper bound fork to actually identify greedy actions.
In Appendix 4.2 we show that this constantk < |L| is smaller than the CTMDP itself.

Having established such a boundk, it suffices to compare schedulers up to this
bound. This provides us with the greedy actions, and also with the initial sequence
dl ,a[0],dl ,a[1], . . . ,dl ,a[k] for all locationsl and actionsa. Finally, we determine a
positive lower boundµ > 0 for the first non-zero entry of the vectorsdl − dl ,a. We
call this lower boundµ the discriminator of the CTMDP. The intuition behind the
discriminator is that it represents the minimal advantage of the greedy strategy over
all other strategies.

3.2 Uniform CTMDPs

In this subsection, we show that every CD or HD scheduler for auniform CTMDP
can be transformed into a scheduler that converges to the positional standard greedy
scheduler.

In the quest for an optimal CD scheduler, it is useful to consider the fact that
the maximum reachability probability can be computed usingthe step probability
vector, because the likelihood that a particular number of steps happen in timet is
independent of the scheduler:

PrM
S (t) = ∑

l∈L

ν(l)
∞

∑
i=0

dl ,S [i] · pλt(i). (3.1)

Moreover, the Poisson distributionpλt has the useful property that the probability
of taking k steps is falling very fast. We define thegreed bound nM to be a natural
number, for which

µ pλt(n) ≥
∞

∑
i=1

pλt(n+ i) ∀n≥ nM (3.2)

holds true. It suffices to choosenM ≥ 2λt
µ since it impliesµpλt(n)≥ 2pλt(n+1), ∀n>

nM (which yields (3.2) by simple induction). Such a greed boundimplies that the
decrease in likelihood of reaching the goal region in few steps caused by making a
non-greedy decision after the greed bound dwarfs any potential later gain. We use
this observation to improve any given CD or HD schedulerS that makes a non-greedy
decision after≥nM steps by replacing the behaviour after this history by a greedy
scheduler. Finally, we use the interchangeability of greedy schedulers to introduce
a schedulerS that makes the same decisions asS on short histories and follows the
standard greedy scheduling policy once the length of the history reaches the greed
bound. For this scheduler, we show thatPrM

S
(t)≥PrM

S
(t) holds true.

Theorem 1 For uniform CTMDPs, there is an optimal scheduler for the classes CD
and HD that converges to the standard greedy scheduler afternM steps.
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Proof. Let us consider any HD schedulerS that makes a non-greedy decision after a
time-abstract pathπ of length|π| ≥ nM with last locationl . If the path ends in, or has
previously passed, the goal region, or if the probability ofthe historyπ is 0, that is, if
it cannot occur with the scheduling policy ofS , then we can change the decision of
S on every path starting withπ arbitrarily—and in particular to the standard greedy
scheduler—without altering the reachability probability.

If PRM
S (π, t) > 0, then we change the decisions of the schedulerS for paths

with prefix π such that they comply with the standard greedy scheduler. Wecall the
resulting HD schedulerS ′ and analyse the change in reachability probability using
Equation (3.1):

PrM
S ′ (t)−PrM

S (t) = PRM
S (π, t) ·

∞

∑
i=0

(dl [i]−dl ,Sπ [i]) · pλt(|π|+ i),

whereSπ : π′ 7→ S(π◦π′) is the HD scheduler which prefixes its input with the pathπ
and then calls the schedulerS . The greedy criterion impliesdl > dl ,Sπ with respect to
the lexicographic order, and we can apply Equation 3.2 to deduce that the difference
PrM

S ′ (t)−PrM
S

(t) is non-negative.
Likewise, we can concurrently change the scheduling policyto the standard

greedy scheduler for all paths of length≥ nM for which the schedulerS makes
non-greedy decisions. In this way, we obtain a schedulerS ′′ that makes non-greedy
decisions only in the firstnM steps, and yields a (not necessarily strictly) better time-
bounded reachability probability thanS .

Since all greedy schedulers are interchangeable without changing the bounded
reachability probability (and even without altering the step probability vector), we
can modify S ′′ such that, after≥ nM steps, it does not only follow any greedy
scheduling policy, but complies with the standard greedy scheduler, resulting in an-
other schedulerS with the same time-bounded reachability probability asS ′′. Note
thatS is counting ifS is counting.

Hence, the supremum over the bounded reachability of all CD/HD schedulers
is equivalent to the supremum over the bounded reachabilityof CD/HD schedulers
that deviate from the standard greedy scheduler only in the first nM steps. This class
is finite, and the supremum over the bounded reachability is therefore the maximal
bounded reachability obtained by one of its representatives. �

Hence, we have shown the existence of a—simple—optimal time-bounded CD
scheduler. Using the fact that the suprema over the time-bounded reachability prob-
ability coincide for CD, CR, HD, and HR scheduler [3], we can infer that such a
scheduler is optimal for all of these classes.

Corollary 1 max
S∈CD

PrM
S (t) = max

S∈CR
PrM

S (t) = max
S∈HD

PrM
S (t) = max

S∈HR
PrM

S (t) holds for

all uniform CTMDPsM . �

The existential proof above does not directly lead to a construction though. In
Section 3.4 we present a method to obtain the optimal scheduler.
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3.3 Non-uniform CTMDPs

Reasoning over non-uniform CTMDPs is harder than reasoningover uniform CT-
MDPs, because the likelihood of seeing exactlyk steps does not adhere to the simple
Poisson distribution, but depends on the precise history. Even if two paths have the
same length, they may refer to different probability distributions over the time passed
so far. Knowing the time-abstract history therefore provides a scheduler with more
information about the system’s state than merely its length. As a result, it is simple
to construct example CTMDPs, for which history dependent and counting schedulers
can obtain different time-bounded reachability probabilities [3].

In this subsection, we extend the results from the previous subsection to general
CTMDPs. We show that simple optimal CD/HD scheduler exist, and that randomi-
sation does not yield an advantage:

max
S∈CD

PrM
S (t) = max

S∈CR
PrM

S (t) and max
S∈HD

PrM
S (t) = max

S∈HR
PrM

S (t).

To obtain this result, we work on the uniformisationU of M instead of working
on M itself. We argue that the behaviour of a general CTMDPM can be viewed as
the observable behaviour of its uniformisationU, using a scheduler that does notsee
the new transitions and locations. Schedulers from this class can then be replaced by
(or viewed as) schedulers that do notusethe additional information. And finally, we
can approximate schedulers that do not use the additional information by schedulers
that do not use it initially, where initially means until thenumber of visible steps—
and hence in particular the number of steps—exceeds the greed boundnU of the
uniformisationU of M . Comparable to the argument from the proof of Theorem
1, we show that we can restrict our attention to the standard greedy scheduler after
this initial phase, which leads again to a situation where considering a finite class of
schedulers suffices to obtain the optimum.

Lemma 2 The greedy decisions and the step probability vector coincide for the ob-
servable and unobservable copy of each location in the uniformisation U of any
CTMDPM .

Proof. The observable and unobservable copy of each location reachthe same
successors under the same actions with the same transition rate. �

We can therefore choose a positionalstandard greedy schedulerwhose decisions
coincide for the observable and unobservable copy of each location.

For the uniformisation U of a CTMDP M , we define the functionvis :
Pathsabs(U) → Pathsabs(M ) that maps a pathπ of U to the corresponding path in
M , thevisible path, by deleting all unobservable locations and their preceding tran-
sitions fromπ. (Note that all paths inU start in an observable location.) We call a
schedulern-visible if its decisions only depend on the visible path and coincidefor
the observable and unobservable copy of every location for all paths containing up to
n visible steps. We call a schedulervisible if it is n-visible for all n∈ N.
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We call a HD/HR scheduler an (n-)visible HD/HR scheduler if it is (n-)visible,
and we call an (n-)visible HD/HR scheduler a visible CD/CR scheduler if its deci-
sions depend only on the length of the visible path, and ann-visible CD/CR scheduler
if its decisions depend only on the length of the visible pathfor all paths containing
up ton visible steps. The respective classes are denoted with according prefixes, for
example,n-vCD. Note that (n-)visible counting schedulers are not counting.

It is a simple observation that we can study visible CD, CR, HD, and HR sched-
ulers on the uniformisationU of a CTMDPM instead of studying CD, CR, HD, and
HR schedulers onM .

Lemma 3 S 7→ S ◦ vis is a bijection from visible CD, CR, HD, or HR sched-
ulers for the uniformisationU of a CTMDPM onto CD, CR, HD, or HR sched-
ulers, respectively, forM that preserves the time-bounded reachability probability:
PrU

S (t) = PrM
S◦vis(t). �

At the same time, copying the argument from the proof of Theorem 1, annU-
visible CD or HD schedulerS can be adjusted to thenU-visible CD or HD scheduler
S that deviates fromS only in that it complies with the standard greedy scheduler for
U afternU visible steps, without decreasing the time-bounded reachability probabil-
ity. These schedulers are visible schedulers from a finite sub-class, and hence some
representative of this class takes the optimal value.

Lemma 4 The following equations hold for the uniformisationU of a CTMDPM :

max
S∈nU−vCD

PrU
S (t) = max

S∈vCD
PrU

S (t) and max
S∈nU−vHD

PrU
S (t) = max

S∈vHD
PrU

S (t).

Proof. We have shown in Theorem 1 that turning to the standard greedyscheduling
policy afternU or more steps can only increase the time-bounded reachability prob-
ability. This implies in particular that we can turn to the standard greedy scheduler
afternU visiblesteps.

The scheduler resulting from this adjustment does not only remainnU-visible, it
becomes a visible CD and HD scheduler, respectively. Moreover, it is a scheduler
from the finite subset of CD or HD schedulers, respectively, whose behaviour may
only deviate from the standard scheduler within the firstnU visible steps. �

We can therefore construct optimal CD and HD scheduler for every CTMDPM .
To prove that optimal CD and HD scheduler are also optimal CR and HR scheduler,
respectively, we first prove the simpler lemma that this holds for k-bounded reacha-
bility.

Lemma 5 k-optimal CD or HD schedulers are also k-optimal CR or HR schedulers,
respectively.

Proof. For a CTMDPM we can turn an arbitrary CR or HR schedulerS into a
CD or HD schedulerS ′ with a time andk-bounded reachability probability that is at
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least as good as the one ofS by first determinising the scheduler decisions from the
k+1st step onwards—this has obviously no impact onk-bounded reachability—and
then determinising the remaining randomised choices.

Replacing a single randomised decision on a pathπ (for history dependent sched-
ulers) or on a set of pathsΠ (for counting schedulers) that end(s) on a location
l is safe, because the time andk-bounded reachability probability of a scheduler
is an affine combination—the affine combination defined byS(π) and S(|π|, l),
respectively—of the|Act(l)| schedulers resulting from determinising this single de-
cision. Hence, we can pick one of them whose time andk-bounded reachability
probability is at least as high as the one ofS .

As the number of these randomised decisions is finite (≤ k|L| for CR, and≤ k|L|

for HR schedulers), this results in a deterministic scheduler after a finite number of
improvements. �

Theorem 2 Optimal CD schedulers are also optimal CR schedulers.

Proof. First, the probability that the goal regionB is reached in more thank steps
converges to 0, independent of the scheduler. Together withLemma 5, this implies

sup
S∈CR

PrM
S (t) = lim

n→∞
sup

S∈CR
n−PrM

S (t) = lim
n→∞

sup
S∈CD

n−PrM
S (t) ≤ max

S∈CD
PrM

S (t),

while≥ is implied byCD⊆CR. �

Analogously, we can prove the similar theorem for history dependent schedulers:

Theorem 3 Optimal HD schedulers are also optimal HR schedulers. �

3.4 A Practical Approach

In this section we present a procedure to construct an optimal scheduler in the time-
abstract case. For the sake of simplicity we assume a uniformCTMDPM .

There is an obvious method how to construct an optimal scheduler: Compute
and compare the reachability probabilities for all finitelymany history dependent
schedulers that may choose freely until stepnM and act greedy afterwards. In order
to compute these values, we construct a continuos time Markov chain (CTMC)—a
CTMDP without nondeterminism—for each schedulerS and compute its reachability
probability.

As we know that in uniform CTMDPs the classes of counting schedulers and
history dependent schedulers yield the same reachability probabilities, it suffices to
consider the CTMDP which encodes the step number in its statespace (up to stepnM )
in the natural way and fix the decisions according toS in order to obtain a CTMC.

It is plain that this CTMC yields the same reachability probability as the original
CTMDP M under schedulerS : PrM

S (t). These probabilities can be computed and
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l init

lB

a

r

CTMC C

b

Figure 3.1: A simple CTMDP

compared by means of the methods of Aziz et al. [2]. Unfortunately, the complexity
of this result is unknown which prevents us from assessing this method.

We can, however, determine a lower bound by reducing the corequestion of CSL
(continuous stochastic logic, cf. [2, 3]) model checking inCTMCs to the comparison
of actions in CTMDPs:

Theorem 4 The search for an optimal scheduler is at least as hard as checking the
formulaP<p(♦

[0,t]B) a CTMC for a rational number p.

Proof. Given a CTMCC = (L,Act,R,ν,B), with Act = {b}, and a simple CSL
formulaΦ = P<p(♦

[0,t]B) we construct a CTMDPMC for which the (only) decision
which action to take corresponds to the evaluation ofΦ. We assume a unique initial
statel init with ν(l init ) = 1.

The CTMDPMC = (L′,Act′,R′,ν′,B′) is constructed as follows:L′ = L∪̇{sB},
Act′ = {a,b}, ν′(l init ) = 1, andB′ = B∪̇{lB}. Further,R′ extendsR by the entries
for actiona which are all zero up to the entryR′(l init ,a, lB) = r for some constant
r ∈ R. Figure 3.1 illustrates the construction. Constantr is chosen such that the
time-bounded reachability probability of reachinglB with actiona is exacltyp. This
constantr clearly exists and therefore the search for the optimal scheduler (out of the
two available) directy corresponds to the evaluation of theformulaΦ. �
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Time-dependent Scheduling

In this chapter we make use of a simple but illuminative shiftin our view on the
control problem for a CTMDPM : We consider the time that has passed as part of
the state-space1 of a time-extended CTMDP (tCTMDP), turning the time-bounded
reachability problem to reachB in time t0 into an ordinary reachability problem to
reachB× [0, t0] in a tCTMDPMt0.

This extension has obviously no effect on the Markovian character of the tCT-
MDP. In particular for a TT schedulerS , which can revoke its decisions, the prob-
ability PrM

S

(

(l , t)
)

to reach the goal regionB× [0, t0] from a state(l , t) in the time
extended CTMDPMt0 is independent of the history.

For a traditional time-dependent schedulersS , the probabilityPrM
S

(

(l , t)
)

to
reach a location in the goal region from a state(l , t) is memoryful in general, as
the decisions made by the schedulerS depend on the time that the locationl was
entered. However, the behaviour becomes memoryless if we focus on the points of
time at which a discrete transition took place.

In both cases it is simple to translate positional schedulers for the resulting time-
extended CTMDPMt0 to equivalent TTP/TP schedulers for the original CTMDPM .

4.1 Timed Schedulers

For every TP schedulerS , we havePr
Mt0
S

(

(l , t)
)

= 1 for all goal states(l , t) ∈ B×

[0, t0], as we have reached the goal region in time in this case, andPr
Mt0
S

(

(l , t)
)

= 0
for all locationsl ∈ L and allt > t0, because the goal region cannot be reached in time
any longer if it has not been visited before.

For a measurable deterministic positional schedulerS and a non-goal locations
l ′ /∈ B and timest ∈ [0, t0], we will reach the goal region in time (provided we have
not reached it before), if we reach it in time with or after thefollowing transition.

1Adding the time to the state-space leads to a construction that recalls the semantics of timed au-
tomata [1], although the treatment of time is much simpler here, because we have only one clock and
no resets.

17



18 Chapter 4. Time-dependent Scheduling

Hence,

Pr
Mt0
S

(

(l , t)
)

= ∑
l ′∈L

R
(

l ,S
(

(l , t)
)

, l ′
)

∫ ∞

t
Pr

Mt0
S

(l ′,τ)e−R(l ,S((l ,t)),L)τdτ

holds true, wherePr
Mt0
S

(

(l , t)
)

denotes the probability of reaching the goal region
when the locationl is enteredat timet. Different to tCTMDPs for TT schedulers (cf.
Section 4.2), tCTMDPs for traditional T schedulers therefore have a discrete flavour.

Naturally, this shift in our way of looking at the problem hasno influence on the
probability of reaching our objective, and the following equations must hold:

sup
S∈TP

PrM
S (l , t0− t) = sup

S∈P
Pr

Mt0
S

(

(l , t)
)

and

sup
S∈T P

PrM
S (t0) = ∑

l∈L

ν(l)sup
S∈P

Pr
Mt0
S

(

(l ,0)
)

.

The hard part—both for T and TT schedulers—is to show that an optimal mea-
surable scheduler exists. We start with a proof that there are optimal schedulers in
the class of randomised history and time-dependent schedulers that are deterministic
and positional.

Theorem 5 max
S∈T P

PrM
S

(t) = sup
S∈TH

PrM
S

(t), and randomisation does not improve the

result.

Proof. The formulas given above for positional schedulers, as wellas similar
formulas for history dependent schedulers, are clearly dominated by the functions
defined by

Pr
Mt0
P

(

(l , t)
)

= max
a∈Act(l)

∑
l ′∈L

R(l ,a, l ′)
∫ ∞

t
Pr

Mt0
P (l ′,τ)e−R(l ,a,L)τdτ.

For an extension to randomised schedulers, the maximum overthe actions needs
to be replaced by a supremum over the distributions in an intermediate step, but
as suprema over affine combinations over a finite set of valuesare taken in one of
these values, the same function is dominating the functionsfor measurable history
dependent randomised schedulers as well.

The hard part is to show that a measurable scheduler exists that takes these max-
ima, that is, that no non-measurable change between different actions is required. To
prove this, we show how to construct a measurable deterministic positional scheduler
S that always chooses actionsa that take the maximum value.

To determine suitable scheduler decisions for a locationl for such a schedulerS ,
we disintegrate[0, t0] into measurable sets{Ta | a∈ Act(l)}, such thatS only makes
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decisions that maximise∑l ′∈L R(l ,a, l ′)
∫ ∞

t Pr
Mt0
P

(

(l ′,τ)
)

e−R(l ,a,L)τdτ. (For positions
outside of[0, t0], that is, for times behind our time boundt0, the behaviour of the
scheduler does not matter, andS(l , t) can be fixed to any constant decisiona∈ Act(l)
for all t > t0.)

We start with fixing an arbitrary order� on the actions inAct(l), and intro-
duce, for each pointt ∈ [0, t0], an order3t on the actions determined by the value of

∑l ′∈L R(l ,a, l ′)
∫ ∞

t Pr
Mt0
P

(

(l ′,τ)
)

e−R(l ,a,L)τdτ, using� as a tie-breaker.

1. For the actiona in Act(l) that is minimal with respect to�, we start by fixing
the open setOa = [0, t0] of points in time where the scheduler does not make a
decisiona′ � a (where open set in this proof refers to sets open in[0, t0]).

2. We then define the setTa as the pointst ∈ Oa in time, for which the actiona is
maximal with respect to3t .

ThenTa is an open measurable set with a countable fringe, and for allpointst ∈

Ta r Ta it holds thata maximises∑l ′∈L R(l ,b, l ′)
∫ ∞

t Pr
Mt0
P

(

(l ′,τ)
)

e−R(l ,b,L)τdτ
among all actionsb∈ Act(l), though not strictly. (A detailed description why

the continuity of∑l ′∈L R(l ,b, l ′)
∫ ∞

t Pr
Mt0
P

(

(l ′,τ)
)

e−R(l ,b,L)τdτ for all actions
b ∈ Act(l) implies thatTa is open, measurable, and has a countable fringe is
supplied in Section 4.2.)

3. We fixS(l , t) = a for all t ∈ Ta∩Oa.

4. If there is a next smaller (with respect to�) actiona′ = max{a′′ ≺ a}, than we
fix the new open setOa′ = Oa r Ta for a′, and proceed with Step 2.

Repeating this for all non-goal locationsl /∈ B, and fixing arbitrary decisions for the
goal locations (independent of the time passed) provides the sought measurable de-
terministic time-dependent positional scheduler that dominates all history dependent
randomised time-dependent schedulers. �

Theorem 6 max
S∈TTP

PrM
S

(t) = sup
S∈T TH

PrM
S

(t), and randomisation does not improve the

result.

4.2 Total Time Schedulers

In this section we describe the small differences that occurwhen we allow for sched-
ulers that have the capability to revoke their decisions.

Probability Space. As a first adjustment, we have to build a probability space
that covers this generalisation. Such spaces are not hard tobuild (cf. [9, 10] for
locally uniform CTMDPs): We can simply define measures for simple types of these
schedulers, and complete the measure space in the usual way.
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That is, we start with defining the probability measure for sets of paths

l0
a0,t0
−−→ l1

a1,t1
−−→ ·· ·

an−1,tn−1
−−−−−→ ln

with 0 < t0 < t1 < t2 < .. . < tn−1, such thatt0 ∈ I0, t1 ∈ I1, . . . , tn−1 ∈ In−1, for
disjoint open intervalsI0, I1, . . . , In−1, and schedulers that revoke their decisions in
finitely many pointsr1, r2, . . . , rm, but whose decisions do not depend on the times
t0, t1, . . . , tn−1.

For such simple sets of paths and schedulers, we can compute the probability to
obtain a path in this cylindric set as

∫

t0∈I0,t1∈I1,...,tn−1∈In−1

n−1

∏
i=0

R(l i,ai , l i+1)

m+n

∏
i=1

e−R(l ′i ,a
′
i ,L)(t ′i −t ′i−1),

where

◦ t ′0 = 0,

◦ t ′1 < t ′2 < .. . < t ′m+n is the chain of points in time that containst0 < t1 < t2 <
.. . < tn−1 andr1, r2, . . . , rm,

◦ l ′i is the location the CTMDP is in for the interval(t ′i−1, t
′
i ), and

◦ a′i is the decision the scheduler would make in the time interval(t ′i−1, t
′
i ), which

is also the decision it makes at the timest j of the discrete transitions.

The extension to randomised schedulers is trivial.
These probabilities for cylindric sets then become the basic building blocks of

our probability space: As usual, we can build aσ-algebra over these sets, and com-
plete the resulting simple measure space. Note that this definition does not raise the
requirement of locally uniform schedulers that was considered necessary previously
(cf. [9, 10]), although using locally uniform schedulers admittedly simplifies rep-
resenting the measure of these cylindric sets of traces to the same integral used in
Chapter 2.

Optimal TT Schedulers. Based on the resulting probabilistic space, we argue as
in Section 4.1 that we can consider tCTMDPs instead of the standard ones, and that
the resulting tCTMDPs remain Markovian. This suggests a proof for the existence of
optimal TT schedulers comparable to the prove for time-dependent schedulers that
cannot revoke their decisions.

The main difference to the proof in Section 4.1 is that TT schedulers can revoke
their decision in any point of time, and the resulting tCTMDPMt0 is Markovian in
any state, rather than only in any discrete entry point. Thistakes away the discrete
flavour from the T scheduler case. Comparable to the case of T schedulers, we know
that
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◦ Pr
Mt0
S

(

(l , t)
)

= 1 holds for all goal statesl ∈ B and allt ≤ t0,

◦ Pr
Mt0
S

(

(l , t)
)

= 0 holds for all locationsl ∈ L and allt > t0, and

◦ Pr
Mt0
S

(

(l , t0)
)

= 0 holds for all non-goal locationsl /∈ B.

holds for every scheduler. For a measurable positional schedulerS , we now have that

˙PrS
Mt0

(

(l , t)
)

= ∑
l ′∈L

R
(

l ,S
(

(l , t)
)

, l ′
)

·
(

Pr
Mt0
S

(

(l , t)
)

−Pr
Mt0
S

(

(l ′, t)
)

)

for all non-goal locationsl /∈ B, and allt ∈ [0, t0] holds true, where ˙PrS
Mt0

(

(l , t)
)

is

the derivation ofPr
Mt0
S

(

(l , t)
)

to the second argument, that is, to the time.
Naturally, our shift in the way we look at the problem has again no influence on

the probability of reaching our objective, and the following equations must hold:

sup
S∈TTP

PrM
S (l , t0− t) = sup

S∈P
Pr

Mt0
S

(

(l , t)
)

and

sup
S∈T TP

PrM
S (t0) = ∑

l∈L

ν(l)sup
S∈P

Pr
Mt0
S

(

(l ,0)
)

.

The hard part is again to show that an optimal measurable scheduler exists.

Theorem 6 max
S∈TTP

PrM
S

(t0) = sup
S∈TTH

PrM
S

(t0), and randomisation does not improve

the result.

Proof. The formulas discussed above provide us with simple differential equations,
and the functions that we yield for positional schedulers, as well as those that we
would get for history dependent schedulers, are clearly dominated by the functions
defined by the differential equation

˙PrS
Mt0

(

(l , t)
)

= min
a∈Act(l)

∑
l ′∈L

R(l ,a, l ′) ·
(

Pr
Mt0
S

(

(l , t)
)

−Pr
Mt0
S

(

(l ′, t)
)

)

for all t ∈ [0, t0].
For an extension to randomised schedulers, the minimum overthe actions needs

to be replaced by an infimum over the distributions in an intermediate step, but as the
infima over affine combinations of a finite set of values takes its minimum in one of
these values, the same differential equations defines a dominating function.

Just like in the proof of Theorem 5, the hard part of the proof is to show that
there is a measurable schedulerS that always chooses an actiona that minimises
this value. This guarantees∑l∈L ν(l)PrM

S
(l ,0) = sup

S∈TTH
PrM

S
(t0). We can construct
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such a scheduler similarly to the construction of an optimalscheduler in the proof of
Theorem 5.

To construct the scheduler decisions for a locationl for a measurable scheduler
S , we disintegrate[0, t0] into measurable sets{Ta | a ∈ Act(l)}, such thatS only

makes decisions that minimise∑l ′∈L R(l ,a, l ′) ·
(

Pr
Mt0
S

(

(l , t)
)

−Pr
Mt0
S

(

(l ′, t)
))

. (For
positions outside of[0, t0], that is, for times behind the time boundt0, the behaviour
of the scheduler does not matter andS(l , t) can be fixed to any constant decision
a∈ Act(l) for all t > t0.)

We start with fixing an arbitrary order� on the actions inAct(l), and intro-
duce, for each pointt ∈ [0, t0], an order3t on the actions determined by the value of

∑l ′∈L R(l ,a, l ′) ·
(

Pr
Mt0
S

(

(l , t)
)

−Pr
Mt0
S

(

(l ′, t)
))

, using� as a tie-breaker.

1. For the actiona in Act(l) that is maximal with respect to�, we start by fixing
the open setOa = [0, t0] of points in time where the scheduler does not make a
decisiona′ � a (where open set in this proof refers to sets open in[0, t0]).

2. We then define the setTa as the pointst ∈ Oa in time, for which the actiona is
minimal with respect to3t .

Being minimal with respect to3t requires the value

∑
l ′∈L

R(l ,a, l ′) ·
(

Pr
Mt0
S

(

(l , t)
)

−Pr
Mt0
S

(

(l ′, t)
))

to be strictly smaller fora compared to the respective value of all other actions
a′ ≺ a, which implies that this sum is also strictly smaller for allt ′ in some
ε-environment oft in [0, t0].

As Oa is open, such anε-environment is a subset ofOa, which implies thatTa

is open.

We now first fix one suchε-environmentEt ⊆ Oa for all t ∈ Ta, and then fix
an arbitrary sequenceE ′

0,E
′
1, . . . from these open sets such that, for alli ∈ N,

there is not ∈ Ta such that
∫

Etr
⋃

j<i E ′
j
dτ > 2

∫

E ′
i r

⋃

j<i E ′
j
dτ.

Now, the open setEa =
⋃

i∈N E ′
i is measurable, and since obviously

lim i→∞
∫

E ′
i r

⋃

j<i E ′
j
= 0 holds true,

∫

Etr
⋃

i∈N E ′
i
dτ = 0 follows for allt ∈Ta, which

impliesEt ⊆ Ea (because the measurable open setEarEa is a 0 set, and hence
empty).

SinceEa is a countable union of open intervals,|Ea r Ea| ≤ |N| is countable,
and hence a 0 set. Furthermore, we have shownEa ⊆ Ta ⊆ Ea holds true, and
hence thatTa = Ea is measurable.

3. Moreover, for the points of time in the fringe ofTa, the continuity of

∑l ′∈L R(l ,a′, l ′) ·
(

Pr
Mt0
S

(

(l , t)
)

− Pr
Mt0
S

(

(l ′, t)
))

for every actiona′ ∈ Act(l)
guarantees thata still minimises this value, although not necessarily strictly.
Hence, we can fixS(l , t) = a for all t ∈ Ta∩Oa.
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4. If there is a next smaller (with respect to�) actiona′ = max{a′′ ≺ a}, we fix
the new open setOa′ = Oa r Ta for a′, and proceed with step 2.

This way, we can construct ameasurablescheduler that provides the optimal
solution. �
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Omitted Proofs

Greedy Schedulers

The proof of the existence of a positional greedy scheduler in Section 3.1 is not con-
structive, because we do not provide means to compute a constant k that satisfies
dl 6= dl ,a ⇒∃k′ ≤ k. dl [k] > dl ,a[k]. Moreover, suitable constantsµ andnM can only
be computed oncek is known. Without being able to provide a suitable constant,we
could therefore provide an algorithm that converges to optimal time-abstract sched-
ulers, but we would not be able to determine whether an optimal solution has already
been reached.

The techniques we exploit in this appendix to show thatk < |L| is in fact smaller
than the uniform CTMDPM itself draw from linear algebra, and are, while simple,
a bit unusual in this context. We first turn to the simpler notion of Markov chains, re-
solving the nondeterminism in accordance with the positional standard greedy sched-
uler S whose existence was shown in Section 3.1.

We first lift the step probability vector from locations to distributions, wheredν =

∑l∈L ν(l)dl is, for a distributionν : L → [0,1], the normal affine combination of the
step probability vectors of the individual locations. We call two distributionsν,ν′ :
L → [0,1] equivalent, if their step probability vectorsdν = dν′ are equal, andi-step
equivalent if they are equal up to positioni (∀ j ≤ i. dν[ j] = dν′ [ j]). We immediately
extend these definitions to arbitrary vectorsν : L → R.

We then define the vector spacesDi of multitudes of differencesν− ν′ of i-step
equivalent distributionsν,ν′ : L→ [0,1]. That is, the differences betweeni-step equiv-
alent distributions form a spanning set ofDi .

As a basis for our construction,D0 is simple to construct: it is the vector space
that contains the multitudes of differencesν−ν′ of distributionsν,ν′ : L → [0,1] that
are equally likely in the goal region. The first implies the restriction ∑l∈L δ(l) = 0,
and the latter the restriction∑l∈B δ(l) = 0 for all δ∈D0. On the other hand, all vectors
that satisfy these side conditions are clearly multitudes of differencesν−ν′ of 0-step
equivalent distributionsν,ν′ : L → [0,1], such thatD0 is completely described by this
description.

Once we have computed the vector spaceDi, we can compute the vector space
Oi that contains a vectorδ if it is a multitude of differencesν− ν′ of distributions
ν,ν′ : L→ [0,1], such thatshift(dν) andshift(dν′) arei-step equivalent. The transition
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from step probability vectors to theshift of them is a simple linear operation, which
essentially transforms the distributions according to thetransition matrix, but drops
all weight that is already accumulated in the goal region. Hence, we can obtainOi

from Di by a simple linear transformation of the vector space.
Now,Di+1 obviously consists of those vectors inDi that are also inOi, andDi+1 =

Di ∩Oi can be obtained by an intersection of two vector spaces.
Now D0 ⊇ D1 ⊇ . . . ⊇ D|L|−2 ⊇ . . . obviously holds, andDi = Di+1 impliesOi =

Oi+1, and henceDi = D∞. AsD0 is a|L|−2 dimensional vector space, and inequality
implies the loss of at least one dimension, a fixed point is reached after at most|L|−2
steps. That is, two distributions are equivalent, if, and only if, they are(|L|−2)-step
equivalent.

Having established this, we apply it on the distributionνl ,aobtained in one step
from a positionl /∈ B when choosing the actiona, as compared to the distributionνl

obtained when choosing the actionS(l) defined by the positional greedy scheduler.
Now, dl > dl ,a holds if, and only ifshift(dl ) = dνl > dνl ,a = shift(dl ,a), which

implies dνl [k
′] > dνl ,a[k

′] for somek′ ≤ |L| − 2, and hencedl [k] > dl ,a[k] for some
k < |L|.
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