
Dissertation

Reactive Synthesis:

branching logic & parameterized systems

Ayrat Khalimov

Advisor: Roderick Bloem
Graz University of Technology, Austria

Reviewer: Sven Schewe
University of Liverpool, UK

Dean of Studies: Denis Helic
Graz University of Technology, Austria

Institute for Applied Information Processing and Communications
Graz University of Technology

A-8010 Graz, Austria
Januar 2018

Acknowledgements

This work would not be possible without RiSE network (established by Roderick

Bloem and Helmut Veith). I stumbled upon the poster with the PhD position
by chance, during a relaxed walk at EPFL where I was doing an internship.
I am grateful to my advisor Roderick Bloem, who honestly answered my questions,
patiently directed me by asking questions and pitching ideas, and who always lis-
tened. Sasha Rubin showed how to be rigid and develop theories, with Swen Jacobs
we wondered a lot around parameterised synthesis bouncing the token from each
other, and Sven Schewe convinced me that tree automata are easy-peasy.
My colleagues Robert Könighofer, Georg Hofferek, and Bettina Könighofer helped
in the initial integration and changed my attitude towards people outside of Rus-
sia. Our secretaries Martina Piewald, Melanie Blauensteiner, Ursula Urwanisch,
and Angelika Wagner enabled me to focus on my work without administrative
distractions.
Dedicated to my grandfather Rauf and our large family.

i

ii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

. .
place, date signature

iii

iv

Abstract

Reactive synthesis is an automatic way to translate a human intention expressed
in some logic into a system of some kind. This thesis has two parts, devoted to
logic and to systems.

Part I. In 1963 Alonzo Church introduced the synthesis problem [28] for specifi-
cations in monadic second-order logic. Nowadays most model checkers and syn-
thesizers use linear temporal logic (LTL) [70]. LTL reasons about system runs in
a linear fashion. With LTL we can ask “does a run reach a particular state?” or
“does a run visits a particular state infinitely often?”. LTL is linear in its nature,
leaving the designer without structural properties, which are expressible in com-
putation tree logic (CTL) and its generalization CTL∗ [31, 41]. With CTL∗ we can
ask “does a run never visit a particular state but it has a possibility to reach it?”.
Such properties are important—they allow for fine-tuning the system structure.

In Part I, we develop two new approaches to CTL∗ synthesis. The first approach
is an extension (actually, two) of the SMT-based bounded synthesis [46]. We
describe two extensions: one follows bottom-up CTL∗ model checking, another one
follows the automata framework [63]. Then we develop the approach that reduces
CTL∗ synthesis to LTL synthesis. The reduction turns any LTL synthesiser into
a CTL∗ synthesiser. The approaches were implemented and are available online.

Part II. Modern systems become more and more distributed. Such distributed
systems are typically parameterized by the number of processes: they should work
for any number of processes. The parameterized synthesis problem [50] asks, given
a parameterized specification, to find a process template, that can be cloned to
form a correctly behaving system of any size. At the core of the method is the cutoff
reduction technique: reduce reasoning about systems with an arbitrary number of
processes to reasoning about systems of a fixed cutoff size. The intrinsic parameter,
hidden in the parameterized synthesis problem, is how the processes are connected
and how they communicate, i.e., the system architecture.

In Part II, we study parameterized synthesis for two system architectures. The
first architecture is guarded systems [38] and is inspired by cache coherence proto-
cols. In guarded systems, processes transitions are enabled or disabled depending
on the existence of other processes in certain local states. The existing cutoff re-
sults [38] for guarded protocols are restricted to closed systems, and are of limited
use for liveness properties. We close these gaps and prove tight cutoffs for open
systems with liveness properties, and also cutoffs for detecting deadlocks.

The second architecture is token-ring systems [40], where the single token cir-
culates processes arranged in a ring. The experiments with the existing parame-
terized synthesis method [50] showed that it does not scale to large specifications.
First, we optimize the method by refining the cutoff reduction, using modular-
ity and abstraction. The evaluation show several orders of magnitude speed-ups.
Second, we perform parameterized synthesis case study on the industrial arbiter
protocol AMBA [5]. We describe new tricks—a new cutoff extension and decom-
positional synthesis—that, together with the previously described optimizations,
allowed us to synthesize AMBA in a parameterized setting, for the first time.

v

vi

Contents

1 Introduction 1

I Excursion into Branching Logic 7

2 Common Definitions for Part I 11

3 Bounded Synthesis for Streett, Rabin, and CTL∗ 27
3.1 Introduction . 27
3.2 Synthesis from Büchi, Streett, Rabin, and Parity Automata 29

3.2.1 Preliminaries on Ranking . 29
3.2.2 Ranking for Büchi Automata 31
3.2.3 Ranking for co-Büchi Automata 31
3.2.4 Ranking for Streett Automata 32
3.2.5 Ranking for Rabin Automata 34
3.2.6 Discussion of Ranking . 35

3.3 Bounded Synthesis from CTL∗ . 35
3.3.1 Direct Encoding . 35
3.3.2 Encoding via Alternating Hesitant Tree Automata 37
3.3.3 Prototype Synthesizer for CTL∗ 40
3.3.4 Discussion of Bounded Synthesis from CTL∗ 42

4 CTL∗ Synthesis via LTL Synthesis 45
4.1 Introduction . 45
4.2 Converting CTL∗ to LTL for Synthesis 47

4.2.1 LTL Encoding . 47
4.2.2 Complexity . 56
4.2.3 Bounded Reduction . 57

4.3 Checking Unrealisability of CTL∗ 57
4.4 Experiments . 58
4.5 Conclusion . 60

II Excursion into Parameterized Systems 61

5 Parameterized Guarded Systems 65
5.1 Introduction . 65

vii

5.2 Related Work . 67
5.3 Preliminaries . 68

5.3.1 System Model . 68
5.3.2 Specifications . 70
5.3.3 Model Checking and Synthesis Problems 71

5.4 Reduction Method and Challenges 72
5.5 New Cutoff Results . 74
5.6 Proof Structure . 75
5.7 Proof Techniques for Disjunctive Systems 76

5.7.1 LTL\X Properties without Fairness: Existing Constructions 76
5.7.2 LTL\X Properties with Fairness: New Constructions 79
5.7.3 Deadlocks without Fairness: Updated Constructions 82
5.7.4 Deadlocks with Fairness: New Constructions 84

5.8 Proof Techniques for Conjunctive Systems 86
5.8.1 LTL\X Properties Without Fairness: Existing Constructions 86
5.8.2 LTL\X Properties with Fairness: New Constructions 88
5.8.3 Deadlocks Without Fairness: Updated Constructions 89
5.8.4 Deadlocks with Fairness: New Constructions 91

5.9 Conclusion . 96

6 Parameterized Token Rings 97
6.1 Introduction . 97
6.2 Definitions . 99

6.2.1 Token-ring Systems . 99
6.2.2 Parameterized Systems . 102
6.2.3 Parameterized Specifications 102
6.2.4 Parameterized Synthesis Problem 103

6.3 Reduction by Cutoffs . 104
6.4 Bounded Synthesis of Parameterized Token Rings 105

6.4.1 SMT Encoding . 105
6.4.2 Optimizations . 106
6.4.3 Evaluating Optimizations 110
6.4.4 Discussion . 111

6.5 AMBA Protocol Case Study . 111
6.5.1 Description of the AMBA Protocol 112
6.5.2 Handling the AMBA Specification 113
6.5.3 Experiments . 120
6.5.4 Discussion . 122

6.6 Conclusion . 123

Bibliography 125

viii

Chapter 1

Introduction

Dave: Hey, Elli, how can I calculate the week number from the date?

Elli: ...prints the C-function.

Dave: Great. Can this function also output three last requested dates?

Elli: ...prints another C-function.

Dave: Thanks. Can you also make it output the name of the requesting person?

Elli: I am sorry, Dave, I am afraid I can’t do that.

In synthesis, we describe the required behaviour and ask the computer to find
the solution with such a behaviour. (In the dialog above, Dave asks Elli to find a
function that, given a date, outputs the week number to which the date belongs.)
In reactive synthesis, we are interested not in simple “do-and-forget” functions,
but rather in functions that interact with the user akin to functions with an in-
ternal state. (In the dialog above, the second C-function is reactive.) It is not
always possible to find a solution, in which case the synthesizer (Elli) outputs
“specification is unrealizable”. (In the last dialogue request, the specification be-
came unrealizable, because the person name is not available to the function to be
synthesized.)

In 1963, Alonzo Church introduced the reactive synthesis problem [28]: given
a formula in Monadic Second Order Logic of One Successor, and the inputs and
the outputs of a circuit, find such a circuit such that all behaviors of the circuit
satisfy the formula. (The circuit behaviour is an infinite string of inputs combined
with the outputs.) Church’s problem was solved by Rabin [75] and by Büchi and
Landweber [25] in 1969.

Recent research in reactive synthesis focused on specifications given in Linear
Temporal Logic (LTL), introduced by Pnueli [70] in 1977. LTL has temporal op-
erators, like G (always) and F (eventually), and allows one to state properties like
“every request is eventually granted”: G(r → F g). A system satisfies a given LTL
property if all its computations satisfy it. Pnueli and Rosner proved [71] that the
LTL synthesis problem is 2EXPTIME-complete. Their approach translates a given
LTL formula into a nondeterministic Büchi automaton, then determinises it into
a deterministic parity automaton with the aid of involved Safra construction [77],
turns the automaton into a game, and solves the game. Recent research focused on
how to overcome the high complexity and Safra construction: the work [15] con-
sidered the synthesis for a subset of LTL called GR(1), the work [46, 61] considered

1

bounding the system size and gave a name to Bounded Synthesis, by combining the
previous bounding with efficient data structures—Anti-chains Synthesis [45]. The
SYNTCOMP competition [1] is another recent initiative with the goal to advance
efficient synthesisers and popularise reactive synthesis.

Despite substantial progress, reactive synthesis is not as widespread as model
checking. The major reason, I believe, is that writing the specifications—especially
complete specifications—is hard. The issue is less pronounced in model checking,
because we do not need all the properties, only those to model check.

In light of this issue, there are two directions to proceed. First, we can develop
synthesis approaches for richer logics, which can ease writing the specifications.
Second, we can find application contexts where high specification costs are accept-
able. This thesis targets both directions: we develop new synthesis approaches for
the logic called CTL∗, and we delve into synthesis of distributed algorithms.

Part I: Excursion into Branching Logic

Computation Tree Logic (CTL) [31] was introduced by Emerson and Clarke in 1981
to circumvent the high complexity (PSPACE-complete) of the LTL model checking
problem and to be able to specify structural properties. In 1986 Emerson and
Halpern introduced a generalization, Computation Tree Star Logic (CTL∗) [41],
that subsumes both CTL and LTL.

In contrast to LTL, which reasons about (linear) computation runs, CTL∗

reasons about (branching) computation trees. We can get such a tree by unfolding
the system transition structure. CTL∗ has—in addition to temporal operators—
path quantifiers: A (on all paths) and E (there exists a path). Such path quantifiers
allow us to reason about branching structure of trees, not just about their “linear”
paths. For example, CTL∗ formula “AGEF reset” says: “on all tree paths, from
every tree node, there should be a path into a node where ‘reset’ holds”. We
cannot express such a property using LTL alone.

Despite CTL∗ being more expressible than LTL, the complexity of CTL∗ syn-
thesis (2EXPTIME-complete) stays the same. This prompted us to look into
approaches to CTL∗ synthesis.

The standard solution [62] to CTL∗ synthesis turns the CTL∗ formula into
an alternating hesitant tree automaton, removes nondeterminism and derives a
universal co-Büchi tree automaton, determinises it using Safra construction [77]
into a parity tree automaton, and, finally, checks its non-emptiness. If it is empty,
then the specification is unrealisable, otherwise we can extract the system from
the proof of the non-emptiness. This approach is hard to implement correctly and
efficiently, due to the involved Safra construction1.

Part I contribution is two practical approaches to CTL∗ synthesis.

1It was a common belief that the Safra construction is difficult to implement and results in
impractical algorithms. However, the belief might be wrong, as SYNTCOMP [1] in 2017 showed:
the LTL synthesiser ltl-synt that used Safra construction performed very well.

2

Contribution I.1: CTL∗ Bounded Synthesis

We developed two bounded synthesis approaches for the CTL∗ specifications. Let
us recall how the SMT-based bounded synthesis by Schewe and Finkbeiner [46]
works: we bound the system size, and encode the resulting synthesis problem
into an SMT query2. The query encodes the model checking question: whether
a system—which is yet unknown—is accepted by the automaton. Bounding the
system size makes it possible to encode such a model checking query into an SMT
query. To solve such a query, an SMT solver efficiently enumerates every possible
system of a given size, and checks if it is correct. Thus, if the SMT query is
satisfiable, then we extract the system (of the given size), otherwise increase the
system size and repeat. The loop stops when the bound on the system size—
provided by the user or from the theory—is reached.

Our first bounded synthesiser for CTL∗ resembles bottom-up CTL∗ model
checking [9]: it introduces an atom for each subformula of the CTL∗ formula, and
encodes into an SMT query whether the atom holds in a system state, for every
state. We also require the top-level atom, representing the whole CTL∗ formula,
to hold in the initial system state, Hence, if the SMT query is satisfiable, then
there is a system of the given size, which satisfies the CTL∗ formula. Otherwise,
increase the system size and repeat.

Our second bounded synthesiser for CTL∗ uses the automata framework [63]:
translate the CTL∗ formula into an alternating hesitant automaton, then encode
into an SMT query whether there is a system of a given size that is accepted by the
automaton. Conceptually, the approach is the same as the previous one, except
that we do not introduce atoms for subformulas explicitly and instead use their
automata representation.

The results constitute Chapter 3 and were published in:

[56] Bounded Synthesis for Streett, Rabin, and CTL∗, by Ayrat Khalimov and
Roderick Bloem, at CAV conference, 2017

Contribution I.2: CTL∗-via-LTL Synthesis

We reduce synthesis for CTL∗ properties to synthesis for LTL. In the context of
model checking this is impossible—CTL∗ is more expressive than LTL. Yet, in
synthesis we have knowledge of the system structure and we can add new outputs.
These outputs can be used to encode witnesses of the satisfaction of CTL∗ subfor-
mulas directly into the system. This way, we construct an LTL formula, over old
and new outputs and original inputs, which is realisable if, and only if, the original
CTL∗ formula is realisable. The CTL∗-via-LTL synthesis approach preserves the
problem complexity, although it might produce systems that are larger than neces-
sary. Furthermore, the approach directly benefits from the performance advances
of LTL synthesisers. The results constitute Chapter 4 and were published in:

2Satisfiability Modulo Theory (SMT) [13] query is a set of constraints over in a given theory.
For example, in Linear Integer Arithmetic theory, the constraints talk about integer variables,
use operations plus, minus, and the comparison relations. Such a query asks whether there are
values for integer variables that make the constraint true.

3

[23] CTL∗ Synthesis via LTL Synthesis, by Roderick Bloem and Sven Schewe and
Ayrat Khalimov, at SYNT workshop, 2017

Part II: Excursion into Parameterized Systems

Modern systems become more and more distributed. Distributed systems are hard
to implement and even harder to debug. Yet, the failure of such systems may be
unacceptable. Thus, substantial efforts are devoted to ensure the correctness of
distributed systems. In Part II, we look into the hard task of automatic synthesis
of distributed parameterized systems.

Most distributed systems, algorithms, and data structures are parameterized :
they should work for a varied, not a priori fixed, number of the components. The
parameterized synthesis problem [50] asks, given a parameterized specification, to
find a process template, that can be cloned to form a correctly behaving system
of any size. An example parameterized specification is:

∀i 6= j. G¬(gi ∧ gj)∧
∀i. G(ri → F gi).

The synthesizer should find a process template, having input r and output g,
such that a system composed of any number of such processes, satisfies the above
specification. The related question is that of parametrized model checking where
the process template is given. The intrinsic parameter, hidden in the parameterized
synthesis problem, is how the processes are connected and how they communicate,
i.e., the system architecture. The survey of existing cutoff and decidability results
for many different system architectures can be found in [21]. We focus on two
system architectures: guarded systems and token-ring systems.

A common approach to solve the parameterized synthesis and model checking
problems is to use the cutoff reduction [40]: reduce reasoning about systems with
an arbitrary number of processes to reasoning about systems of a fixed cutoff size.
For example, if we consider the parameterized specification mentioned above and
token-ring systems, then it is enough to consider a system with 4 processes: if it
is correct, then any larger system is correct.

Contribution II.1: Cutoffs for Parameterized Guarded Systems

Guarded systems [38] are inspired by cache coherence protocols found in most
modern processors. A cache coherence protocol is usually described by states,
where transitions between states happen depending on whether or not there is a
processor in a particular state. I.e., the transitions are guarded. Inspired by this,
in guarded systems, processes transitions are enabled or disabled depending on
the existence of other processes in certain local states. Our contribution concerns
both parameterized synthesis and parameterized verification. Our work stems from
the observation that existing cutoff results for guarded systems (i) are restricted to
closed systems, and (ii) are of limited use for liveness properties because reductions
do not preserve fairness. We close these gaps and obtain new cutoff results for
open systems with liveness properties under fairness assumptions. Furthermore,

4

we obtain cutoffs for the detecting deadlocks, which are of paramount importance
in synthesis. Finally, we prove tightness or asymptotic tightness for the new cutoffs.
The results constitute Chapter 5 and were published in:

[7] Tight Cutoffs for Guarded Protocols with Fairness, by Simon Außerlechner
and Swen Jacobs and Ayrat Khalimov, at VMCAI conference, 2016

Contribution II.2: Case Study of Parameterized Token-ring AMBA

In token-ring systems, a single token circulates in the system. A process possessing
the token knows that no other process has the token. Based on this information,
the process can, for example, raise the grant signal. If all processes raise the grant
only when they posses the token, then the grants will be mutually exclusive. Thus,
the token serves as the resource token.

The experiments with the existing parameterized synthesis method [50] showed
that it does not scale to large specifications. First, we optimize the method by
refining the cutoff reduction. The experiments show speed-ups of several orders of
magnitude. Second, we perform parameterized synthesis case study on the indus-
trial arbiter protocol AMBA [5]. We describe new cutoff extension and decompo-
sitional synthesis tailored to AMBA that, together with the previously mentioned
optimizations, allowed us to synthesize AMBA in parameterized setting, for the
first time. The results constitute Chapter 6 and were published in:

[54] Towards Efficient Parameterized Synthesis, by Ayrat Khalimov and Swen
Jacobs and Roderick Bloem, at VMCAI conference, 2013

[57] PARTY: Parameterized Synthesis of Token Rings, by Ayrat Khalimov and
Swen Jacobs and Roderick Bloem, at CAV conference, 2013

[20] Parameterized Synthesis Case Study: AMBA AHB, by Ayrat Khalimov and
Swen Jacobs and Roderick Bloem, at SYNT workshop, 2014

Other Results

Here are the results that did not make their way into the thesis:

[21] Decidability of Parameterized Verification, book of 170 pages, by Roderick
Bloem and Swen Jacobs and Ayrat Khalimov and Igor Konnov and Sasha
Rubin and Helmut Veith and Josef Widder.
In this book we consider the important case of systems parameterized by the
number of processes in the system and where each process is independent
of that number. The literature in this area produced a wealth of computa-
tional models for systems based on token passing, broadcast communication,
guarded transitions, and other communication primitives. We introduce a
computational model that unites the central synchronization and commu-
nication primitives of many models. We survey existing decidability and
undecidability results, and provide a systematic overview of the basic prob-
lems in this research area.

5

[22] Decidability in Parameterized Verification, the journal version of the above
book; appeared in SIGACT News in 2016.

[55] Specification Format for Reactive Synthesis Problems, by Ayrat Khalimov,
at SYNT workshop, 2015.
To do synthesis, we need a specification. Writing specifications is hard. In
this paper, we propose a user-friendly format to ease the specification work,
in particularly, that of specifying partial implementations. Also, we provide
scripts to convert specifications in the new format into the SYNTCOMP
format, thus benefiting from state of the art synthesizers.

[3] Parameterized Model Checking of Token-Passing Systems, by Benjamin Aminof
and Swen Jacobs and Ayrat Khalimov and Sasha Rubin, at VMCAI confer-
ence, 2014.
In this paper, we revisit the parameterized model checking problem for token-
passing systems and specifications in indexed CTL∗\X. We unify and sub-
stantially extend the results of Emerson and Namjoshi [39, 40] and Clarke et
al. [30] by systematically exploring fragments of indexed CTL∗\X with re-
spect to general network topologies. For each fragment we establish whether
a cutoff exists, and for some concrete topologies, such as rings, cliques and
stars, we infer small cutoffs. Finally, we show that the problem becomes
undecidable, and thus no cutoffs exist, if processes are allowed to choose the
directions in which they send or from which they receive the token.

[58] OpenSEA: Semi-Formal Methods for Soft Error Analysis, by Patrick Klampfl
and Robert Könighofer and Roderick Bloem and Ayrat Khalimov and Aiman
Abu-Yonis and Shiri Moran, on arxiv, 2017.
Due to alpha-particles and cosmic rays, modern circuits are prone to bit flips.
To alleviate the problem, designers develop protection circuits, but they are
hard to implement right. This leads to bugs: an undetected fault can bring
miscalculations, the protection that alarms about harmless faults incurs per-
formance penalty. In this paper, we use formal methods on designers input
tests, while keeping time-location open. This idea is at the core of the tool
OpenSEA. OpenSEA can (i) find latches vulnerable to and protected against
faults, (ii) find tests that exhibit checker false alarms, (iii) use fixed and open
inputs, and (iv) use environment assumptions. Evaluation on a number of
industrial designs shows that OpenSEA produces valuable results.

6

Part I

Excursion Into
Branching Logic

Approaches to CTL∗ Synthesis

7

Overview of Part I

The reactive synthesis problem was introduced by Alonzo Church [28]. Given
a specification as a formula in Monadic Second Order Logic of One Successor
(MSO), the question is to produce a circuit such that all its behaviors satisfy the
formula. Later Pnueli introduced Linear Temporal Logic (LTL) [70] and together
with Rosner solved the synthesis problem for LTL [71]. Now LTL is the main basic
logic for specifications. Both these logics, MSO and LTL, are linear : they describe
the set of behaviours, but do not allow for specifying structural properties of the
systems.

To be able to specify structural properties (and to circumvent a relatively high
complexity of the verification wrt. LTL), Emerson and Clarke introduced Compu-
tation Tree Logic (CTL) [31]. Later Emerson and Halpern introduced Computa-
tion Tree Star Logic (CTL∗) [41] that subsumed both CTL and LTL.

Let us briefly compare LTL and CTL∗.

LTL reasons about computations. The logic has temporal operators, e.g., G
(always) and F (eventually), and can describe properties like “every request is
eventually granted”: G(r → F g). A system satisfies such an LTL property iff all
its computations satisfy it. Thus a system is characterized by its computations.

In contrast, CTL∗ reasons about computation trees. Thus, a system is viewed
as a tree (cf. set of linear paths for LTL), and we can get such a tree by unfolding
the system. CTL∗ has—in addition to temporal operators—path quantifiers : A
(on all paths) and E (there exists a path). Such path quantifiers allow us to reason
about branching structure of trees, not just about the set of its “linear” paths. For
example, the CTL∗ formula “AGEF reset” says: “on all tree paths, from every tree
node, there should be a path into a node where ‘reset’ holds”. We cannot express
such a property using LTL alone.

This part of the thesis explores synthesis approaches from properties in CTL∗.
It consists of two chapters.

In Chapter 3 we introduce two approaches to synthesis from CTL∗. Both
approaches follow the Bounded Synthesis approach introduced by Finkbeiner and
Schewe [46]. In Bounded Synthesis, we repeatedly search for a system of increasing
sizes, until we find a solution. Bounded Synthesis is very flexible and can be
easily adapted to do e.g. distributed synthesis. We extend Bounded Synthesis to
specifications in CTL∗ and beyond.

The disadvantage of Bounded Synthesis is that it is susceptible to system size:
it works well when the specification admits a small implementation, but less well
when no small implementation exists. The same holds for our CTL∗ Bounded
Synthesis.

In Chapter 4, partly to overcome this disadvantage, we introduce a reduction
of the CTL∗ synthesis problem to the LTL synthesis problem. After applying the
reduction, any LTL synthesiser can do CTL∗ synthesis. Notice that for model
checking such a reduction is impossible—CTL∗ is more expressive than LTL. Yet,
in synthesis we control the system structure, which enables the reduction. The
CTL∗-via-LTL synthesis approach preserves the problem complexity, although it
might increase the size of a system.

9

The approaches differ in how they ensure the satisfaction of existential CTL∗

subformulas (recall that universal CTL∗ subformulas, just like LTL, talk about
system paths as a whole, while existential CTL∗ subformulas specify the existence
of a system path). Recall from Section 2 that bounded synthesis encodes the
LTL synthesis problem into the SMT satisfaction problem. The SMT constraints
annotate the states of a product (of a yet unknown system with an automaton
expressing a given CTL∗ formula) with information that ensures that all lassos in
the product are not “bad” (for universal subformulas) and that there are “good”
lassos (for existential subformulas). In contrast, CTL∗-via-LTL synthesis produces
an LTL formula that talks about system paths and has no direct access to the
product. Hence we move annotations into a system which may increase its size.

This thesis part is organized as follows. In the next Chapter 2 we introduce the
definitions which are used in both chapters. Chapter 3 focuses on extensions of
Bounded Synthesis to CTL∗, while Chapter 4 describes the CTL∗-to-LTL synthesis
reduction. Both chapters depend on the definitions section, but are independent
of each other.

10

Chapter 2

Common Definitions for Part I

Notation: B = {true, false} is the set of Boolean values, N is the set of natural
numbers (excluding 0), N0 = N ∪ {0}, [k] is the set {i ∈ N | i ≤ k} and [0, k] is
the set [k] ∪ {0} for k ∈ N.

The powerset of A is denoted by 2A. We often write (a, x) instead of a∪x (that
is from 2A∪X), and a ∪ x instead of (a, x) (that is from 2A × 2X), when a ∈ 2A,
x ∈ 2X and A ∩X = ∅.

We denote substitution by the symbol 7→. E.g., (a ∧ b)[a 7→ x] is x ∧ b.
All systems and automata are finite, paths are infinite, and trees have only

infinitely long paths but are finitely-branching—unless explicitly stated.

2.1 Moore Systems

A (Moore) system M is a tuple (I, O, T, t0, τ, out) where I and O are disjoint
sets of input and output variables, T is the set of states, t0 ∈ T is the initial state,
τ : T × 2I → T is a transition function, out : T → 2O is the output function that
labels each state with a set of output variables. Note that systems have no dead

ends and have a transition for every input. We write t
io→ t′ when t′ = τ(t, i) and

out(t) = o. We abuse the notation and define τ(t, w) for w1w2...wn ∈ (2I)+ to be

the system state tn such that t0
io0→ t1

io1→ ...
ion−1→ tn, i.e., τ(t, w) is the state where

the system ends after reading the word w, when starting from the initial state.
A system path is a sequence t1t2... ∈ T ω such that for every i ∈ N there is e ∈ 2I

with τ(ti, e) = ti+1. An input-labeled system path is a sequence (t1, e1)(t2, e2)... ∈
(T × 2I)ω where τ(ti, ei) = ti+1 for every i ∈ N. We sometimes use notation
t1

e1→ t2
e2→ t3... to describe the input-labeled system path (t1, e1)(t2, e2).... A system

computation starting from t1 ∈ T is a sequence (o1 ∪ e1)(o2 ∪ e2)... ∈ (2I∪O)ω for
which there exists an input-labeled system path (t1, e1)(t2, e2)... and oi = out(ti) for
every i ∈ N. We write system computation to mean system computation starting
from the initial state. Note that since systems are Moore, the output oi cannot
“react” to input ei—the outputs are “delayed” with respect to inputs.
Remark 1. There are two ways to group inputs and outputs into computations.
The first way is to introduce an initial transition τI : 2I → T instead of using the
initial state t0. Then the input-labeled system path

e1→ t1
e2→ t2

e3→ t3... corresponds
to the computation (e1, out(t1))(e2, out(t2))(e3, out(t3)).... Another way is to avoid

11

using the initial transition—use the initial state t0 instead—and “shift” inputs and
outputs. Then an input-labeled system path t0

e1→ t1
e2→ t2... corresponds to the

computation (out(t0), e1)(out(t1), e2).... We use the second approach.

2.2 Trees

A (infinite) tree is a tuple (D,L, V ⊆ D∗, l : V → L), where
• D is the set of directions (in our case, finite),

• L is the set of node labels (in our case, finite),

• V is the (infinite) set of nodes satisfying: (i) ε ∈ V is called the root (the
empty sequence), (ii) V is closed under prefix operation (i.e., every node is
connected to the root), (iii) for every n ∈ V there exists a d ∈ D such that
n · d ∈ V (i.e., there are no leafs),

• l is the node labeling function.

A tree (D,L, V, l) is exhaustive iff V = D∗. A tree is non-labeled iff |L| = 1 and
then we omit L and l.

A tree path is a sequence n1n2... ∈ V ω, such that, for every i, there is d ∈ D
such that ni+1 = ni · d.

In contexts where I and O are inputs and outputs, we call an exhaustive tree
(D,L, V, l) a computation tree, where D = 2I , L = 2O, V = D∗, and l : V → 2O.
We omit D and L when they are clear from the context.

With every system M = (I, O, T, t0, τ, out) we associate the computation tree
(D,L, V, l) such that, for every n ∈ V : l(n) = out(τ(t0, n)). We call such a tree a
system computation tree.

A computation tree is regular iff it is a system computation tree for some
(finite) system.

Two Views on the System

Later we introduce logics CTL∗ and LTL to distinguish correct from buggy systems.
The two logics look at systems from two sides.

On one side, we can associate with a system M a set of its computations
b(M) ⊆ (2I∪O)ω. A formula ϕ in Linear Temporal Logic (LTL) (introduced later)
describes a set of infinite words L(ϕ). Thus, we can use an LTL formula to specify
all correct computations. Then a system M is correct wrt. LTL formula ϕ iff
b(M) ⊆ L(ϕ), i.e., all system computations satisfy ϕ.

On the other side, we might want to specify structural properties of systems.
E.g., whether from every system state we can branch into a state satisfying p and
we can branch into a state satisfying ¬p. In this case, characterizing a system by
its set of computations—e.g. using LTL—is not possible. Instead, we associate
with a system its computation tree. A formula Φ in Computation Tree Logic
(defined later) describes a set of computation trees L(Φ). Thus, we can use such

12

a formula to describe a set of all correct computation trees. Then a system M is
correct wrt. Φ iff (V, l) ∈ L(Φ), i.e., the system computation tree satisfies Φ.

2.3 Logics: CTL∗ with Inputs and LTL

CTL∗ with inputs (release PNF)

Fix two disjoint sets: inputs I and outputs O. Below we define CTL∗ with inputs,
in release positive normal form1. The definition differentiates inputs and outputs
(see Remark 2).

Syntax. State formulas have the grammar:

Φ = true | false | o | ¬o | Φ ∧ Φ | Φ ∨ Φ | Aϕ | Eϕ

where o ∈ O and ϕ is a path formula. Path formulas are defined by the grammar:

ϕ = Φ | i | ¬i | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ,

where i ∈ I. The temporal operators G and F are defined as usual.
The above grammar describes the CTL∗ formulas in positive normal form. The

general CTL∗ formula (in which negations can appear anywhere) can be converted
into the formula of this form with no size blowup, using the equivalence ¬(aU b) ≡
¬a R ¬b and some others.

Semantics. We define the semantics of CTL∗ with respect to a computation tree
(V, l) (where D = 2I and L = 2O). The definition is very similar to the standard
one [9], except for a few cases involving inputs (marked with “+”).

Let n ∈ V and o ∈ O. Then:

• n 6|= Φ iff n |= Φ does not hold,

• n |= true and n 6|= false,

• n |= o iff o ∈ l(n), n |= ¬o iff o 6∈ l(n),

• n |= Φ1 ∧ Φ2 iff n |= Φ1 and n |= Φ2. Similarly for Φ1 ∨ Φ2.

• n |= Aϕ iff for all tree paths π starting from n: π |= ϕ. For Eϕ, replace “for
all” with “there exists”.

Let π = n1n2... ∈ V ω be a tree path, i ∈ I, and n2 = n1 · e where e ∈ 2I . For
k ∈ N, define π[k:] = nknk+1..., i.e., the suffix of π starting in nk. Then:

• π |= Φ iff n1 |= Φ,

+ π |= i iff i ∈ e, π |= ¬i iff i 6∈ e,
1This form is sometimes called negation normal form. For the name, we follow [9]. Note that

without the release operator R—the dual of the until operator U—the logic is less expressive due
to the restriction on negations. That explains the name “release PNF”.

13

• π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2. Similarly for ϕ1 ∨ ϕ2.

• π |= Xϕ iff π[2:] |= ϕ,

• π |= ϕ1 U ϕ2 iff ∃l ∈ N : (π[l:] |= ϕ2 ∧ ∀m ∈ [1, l − 1] : π[m:] |= ϕ1),

• π |= ϕ1 R ϕ2 iff (∀l ∈ N : π[l:] |= ϕ2) ∨ (∃l ∈ N : π[l:] |= ϕ1 ∧ ∀m ∈ [1, l] :
π[m:] |= ϕ2).

A computation tree (V, l) satisfies a CTL∗ state formula Φ, written (V, l) |= Φ,
iff the root node satisfies it. A system M satisfies a CTL∗ state formula Φ, written
M |= Φ, iff its computation tree satisfies it.

Remark 2 (Subtleties). Note that (V, l) |= i∧ o is not defined, since i∧ o is not a
state formula. Let r ∈ I and g ∈ O. By the semantics, Er ≡ true and E¬r ≡ true,
while Eg ≡ g and E¬g ≡ ¬g. These facts are the consequences of the way we
group inputs with outputs (see also Remark 1).

LTL

The syntax of LTL formulas (in general form) is:

φ = true | p | ¬p | φ ∧ φ | ¬φ | φ U φ | Xφ,
where p ∈ I ∪ O. The temporal operators G and F are defined as usual, and
false = ¬true. The semantics is standard (see, e.g., [9]). A computation tree (V, l)
satisfies an LTL formula φ, written (V, l) |= φ, iff all tree paths starting in the
root satisfy it. A system satisfies an LTL formula iff its computation tree satisfies
it (equivalently, every system computation starting from the initial state satisfies
the LTL formula).

2.4 Tree Automata

Tree automata consume infinite trees and output “accept” or “reject”. Since every
Moore system has a corresponding computation tree, tree automata can be used
to differentiate buggy Moore machines from correct ones. Also, CTL∗ can be
translated into a special type of alternating tree automata. Thus, tree automata
are the excellent tool for model checking and synthesis.

We start with a general definition of alternating tree automata, then introduce
different acceptance conditions, then introduce alternating hesitant tree automata.

Notation B+(S). For a finite non-empty set S, let B+(S) be the set of all positive
Boolean formulas over elements of S, i.e., every such a formula φ has the syntax:
φ = e | φ ∧ φ | φ ∨ φ, where e ∈ S. Note that false 6∈ B+(S) and true 6∈ B+(S).
As we will see later, these are not limitations in our context. Also, since the set S
is finite, any Boolean formula over atoms in S and which is semantically different
from true and false is equivalent to some formula in B+(S). Furthermore, every
formula φ ∈ B+(S) can be rewritten into formula φ′ ∈ B+(S) in disjunctive normal
form (DNF) or into formula φ′′ ∈ B+(S) in conjunctive normal form (CNF). We
assume that formulas in B+(S) (and thus CNF and DNF formulas) have neither
redundant atoms, conjuncts, nor disjuncts.

14

Alternating tree automata

An alternating tree automaton is a tuple (Σ, D,Q, q0, δ, acc), where Σ is the set
of node propositions, D is the set of directions, q0 ⊆ Q is the initial state, δ :
Q×Σ→ B+(D×Q) is the transition relation, and acc : Qω → B is an acceptance
condition. For simplicity we assume that δ is total wrt. directions. Thus, it is
worth noting about δ(q, σ), for every (q, σ) ∈ Q× Σ:

• if we rewrite δ(q, σ) into DNF, then each conjunct mentions each direction
at least once (“totalness” wrt. directions).

• δ(q, σ) 6= false and δ(q, σ) 6= true. These are not limitations, because we can
emulate true and false by introducing additional states and modifying acc.

The above means that δ has a transition for every possible argument and direction.
Fix two disjoint sets, inputs I and outputs O.
Tree automata consume exhaustive trees like (D,L = Σ, V = D∗, l : V → Σ)

and produce run-trees.
A run-tree of an alternating tree automaton (Σ = 2O, D = 2I , Q, q0, δ, acc) on

a computation tree (V = (2I)∗, l : V → 2O) is a tree with directions 2I ×Q, labels
V ×Q, nodes V ′ ⊆ (2I ×Q)∗, labeling function l′ such that

• l′(ε) = (ε, q0),

• if v ∈ V ′ with l′(v) = (n, q), then:
there exists {(d1, q1), ..., (dk, qk)} that satisfies δ(q, l(n)) and n · (di, qi) ∈ V ′
for every i ∈ [1, k].

Intuitively, we run the alternating tree automaton on the computation tree:

(1) We mark the root node of the computation tree with the automaton initial
state q0. We say that initially, in the node ε, there is only one copy of the
automaton and it has state q0.

(2) We read the label l(n) of the current node n of the computation tree and
consult the transition function δ(q, l(n)). The latter gives a set of conjuncts
of atoms of the form (d′, q′) ∈ D × Q. We nondeterministically choose one
such conjunction {(d1, q1), ..., (dk, qk)} and send a copy of the alternating
automaton into each direction di in the state qi. Note that we can send up to
|Q| copies of the automaton into one direction (but into different automaton
states). That is why a run-tree defined above has directions 2I × Q rather
than 2I .

(3) We repeat step (2) for every copy of the automaton. As a result we get a
run-tree: a tree labeled with nodes of the computation tree and states of the
automaton.

A run-tree is accepting iff every run-tree path starting from the root is accept-
ing. A run-tree path v1v2... is accepting iff acc(q1q2...) holds (acc is defined later),
where qi for every i ∈ N is the automaton state part of l′(vi). Note that every

15

run-tree path is infinite. (In particularly, we do not have finite paths that end
with true nor false, by definition of δ : Q× Σ→ B+(D ×Q).)

An alternating tree automaton A = (Σ = 2O, D = 2I , Q, q0, δ, acc) accepts a
computation tree (V = (2I)∗, l : V → 2O), written (V, l) |= A, iff the automaton
has an accepting run-tree on that computation tree. An alternating tree automaton
is non-empty iff there exists a computation tree accepted by it.

Similarly, a Moore system M = (I, O, T, t0, τ, out) is accepted by the alternating
tree automaton A = (Σ = 2O, D = 2I , Q, q0, δ, acc), written M |= A, iff (V, l) |= A,
where (V = (2I)∗, l : V → 2O) is the system computation tree.

Let us define different variations of an acceptance condition acc : Qω → B. For
a given infinite sequence π ∈ Qω, let Inf(π) be the elements of Q appearing in π
infinitely often. Then:

• Büchi acceptance is defined by a set F ⊆ Q: acc(π) holds iff Inf(π)∩F 6= ∅.
We often call the states of F accepting.

• Co-Büchi acceptance is defined by a set F ⊆ Q: acc(π) holds iff Inf(π)∩F =
∅. We often call the states of F rejecting.

• Streett acceptance is defined by pairs {(Ai ⊆ Q,Gi ⊆ Q)}i∈[k]: acc(π) holds
iff ∀i ∈ [k] : Inf(π) ∩ Ai 6= ∅ → Inf(π) ∩Gi 6= ∅.

• Rabin acceptance is defined by pairs {(Fi, Ii)}i∈[k]: acc(π) holds iff ∃i ∈ [k] :
Inf(π) ∩ Fi = ∅ ∧ Inf(π) ∩ Ii 6= ∅.

• Parity acceptance is defined by a priority function p : Q → [0, k]: acc(π)
holds iff the minimal priority appearing infinitely often in p(π) is even.

In addition to the above acceptance conditions, we define generalized versions.
Generalized Büchi acceptance condition is defined by a set {Fi}i∈[k]: acc(π) holds iff
the Büchi condition holds wrt. every Fi where i ∈ [k]. Similarly define Generalized
co-Büchi2, Streett, Rabin, and Parity conditions.

Nondeterministic and universal tree automata

Depending on the form of δ(q, σ) (for every (q, σ) ∈ Q × Σ), we distinguish the
following special cases of alternating tree automata.

• Universal tree automata: δ(q, σ) is a conjunction of variables of Q×D, where
each direction is mentioned at least once.

• Deterministic tree automata: δ(q, σ) is a conjunction of variables of Q×D
and each direction is mentioned exactly once.

• Nondeterministic tree automata: let δ(q, σ) be rewritten in DNF. Then each
conjunct mentions each direction exactly once.

2We stress that, in our work, Generalized co-Büchi for a set {Fi}i∈[k] means: acc(π) holds
iff the co-Büchi condition holds wrt. every Fi where i ∈ [k]. But often Generalized co-Büchi
acceptance means that there exists Fi that is visited finitely often where i ∈ [k].

16

Alternating hesitant tree automata (AHT)

An alternating hesitant tree automaton (AHT) is an alternating tree automaton
(Σ, D,Q, q0, δ, acc) with the following acceptance condition and structural restric-
tions. The restrictions reflect the fact that AHTs are tailored for CTL∗ formulas.

• Q can be partitioned into QN
1 , . . . , Q

N
kN

, QU
1 , . . . , Q

U
kU

, where superscript N
means nondeterministic and U means universal. Let QN =

⋃
QN
i and

QU =
⋃
QU
i . (Intuitively, nondeterministic state sets describe E-quantified

subformulas of the CTL∗ formula, while universal state sets describe A-
quantified subformulas.)

• There is a partial order on {QN
1 , . . . , Q

N
kN
, QU

1 , . . . , Q
U
kU
}. (Intuitively, this is

because state subformulas can be ordered according to their relative nesting.)

• The transition function δ satisfies: for every q ∈ Q, a ∈ Σ

– if q ∈ QN
i , then: δ(q, a) contains only disjunctively related1 elements of

QN
i ; every element of δ(q, a) outside of QN

i belongs to a lower set;

– if q ∈ QU
i , then: δ(q, a) contains only conjunctively related1 elements of

QU
i ; every element of δ(q, a) outside of QU

i belongs to a lower set.

Finally, acc : Qω → B of AHTs is defined by a set Acc ⊆ Q: acc(π) holds for
π = q1q2... ∈ Qω iff one of the following holds.

• The sequence π eventually stays in some QU
i and Inf(π) ∩ (Acc ∩ QU) = ∅

(co-Büchi acceptance). Let us denote F = Acc ∩QU .

• The sequence π eventually stays in some QN
i and Inf(π) ∩ (Acc ∩ QN) 6= ∅

(Büchi acceptance). Let us denote I = (Acc ∩QN) ∪ (QU \Acc).

Due to the restrictions on the structure of hesitant automata, this acceptance is
equivalent to the Rabin acceptance with one pair (F, I).

2.5 Word Automata

In contrast to tree automata that consume infinite trees, word automata con-
sume infinite words. Every LTL formula can be translated into a word automaton,
but a CTL∗ formula, in general, cannot. This is because a CTL∗ formula describes
a set of trees, while an LTL formula describes a set of words.

We start with alternating word automata. Such automata can concisely repre-
sent LTL formulas (without incurring an exponential blow-up in its size). Then we
define two specializations: nondeterministic and universal word automata. Such
automata are often used as input to synthesis algorithms, because they are sim-
pler to work with (although translation of an LTL formula into such an automaton

1In a Boolean formula, atoms E are disjunctively [conjunctively] related iff the formula can
be written into DNF [CNF] in such a way that each cube [clause] has at most one element from
E.

17

can incur and exponential blow-up). Finally, we define alternating hesitant word
automata. They are useful for model checking and synthesis from AHTs (and thus
from CTL∗ formulas).

Alternating word automata

Remark 3 (Re-using definitions from tree automata). An infinite word can be
viewed as a tree with a single branch. Thus it is tempting to derive definitions
for word automata from those of tree automata. Without additional tricks this
will not work for the following reason. In our work, branching degree of every
computation tree is, by definition, |2I |. Thus, considering only single-branch trees
is equivalent to having systems with no inputs: |2I | = 1 ⇔ |I| = 0. But we are
interested in the general case: |I| ∈ N0. (To reuse definitions, we could move the
inputs into the outputs, consider nondeterministic systems without edge labels,
and require that each state has a successor containing a label e, for every e ∈ 2I .)

An alternating word automaton is a tuple (Σ, Q, q0, δ, acc) where Σ is an al-
phabet, Q is a set of states, q0 ∈ Q is initial, δ : Q × Σ → B+(Q) is a transition
function, and acc : Qω → B is a path acceptance condition. Note that δ(q) 6= false
and δ(q) 6= true for every q ∈ Q, i.e., there is a successor state for every letter.
These are not real limitations, they are in place to simplify definitions.

Given a word w = a1a2... ∈ Σω, let Pref(w) = {ε, a1, a1a2, a1a2a3, ...} denote
the set of all its prefixes (including the empty prefix). Also, for a finite non-empty
word w ∈ Σ+, let last(w) denote its last letter.

A run-tree of an alternating word automaton (Σ, Q, q0, δ, acc) on an infinite
word w = a1a2... ∈ Σω is a tree with directions Q, labels Pref(w) × Q, nodes
V ′ ⊆ (Σ×Q)∗, labeling function l′ : V ′ → Pref(w)×Q such that

• l′(ε) = (ε, q0),

• if v ∈ V ′ with l′(v) = (p, q), then:
there exists {q1, ..., qk} that satisfies δ(q, last(p)) and p · qi ∈ V ′ for every
i ∈ [1, k].

This definition coincides with the definition of run-trees of tree automata when
restricted to trees with a singe path.

A run-tree is accepting iff every run-tree path starting from the root is accept-
ing. A run-tree path v1v2... is accepting iff acc(q1q2...) holds, where qi, for every i,
is an automaton state of the label l′(vi).

An alternating word automaton A = (Σ, Q, q0, δ, acc) accepts an infinite word
w = a1a2... ∈ Σω, written w |= A, iff the automaton has an accepting run-tree on
the word. An alternating word automaton is non-empty iff there exists an infinite
word accepted by it.

So far we re-used definitions from Section 2.4, but now we depart.

In Section 2.3 about CTL∗, we introduced two path quantifiers: A (on all paths)
and E (there exists a path). Accordingly, we define M |= A(A) and M |= E(A):
M |= E(A) iff there is a system computation accepted by the automaton; M |=
A(A) iff every system computation is accepted by the automaton.

18

Remark 4 (Tree automata vs. Word automata). Consider CTL∗ formula EX g ∧
EX¬g, outputs O = {g}, inputs I = {r}. No alternating word automaton, when
prefixed with E or A, can describe this language, while there is an alternating tree
automaton for it.

Nondeterministic and universal word automata

We now look closer at nondeterministic and universal word automata. Their defi-
nitions coincide with those for tree automata when assuming the single direction,
but for clarity we recall them here.

Depending on the form of δ(q, a) (for every (q, a) ∈ Q× Σ), we distinguish:

• Deterministic word automata: δ(q, a) is a single state. There is no choice:
we know exactly into which state to proceed from q when reading a. Thus,
a run-tree degenerates into a line.

• Nondeterministic word automata: δ(q, a) is a (non-empty) disjunction of
states. We reading a in state q, we choose one of the states and proceed. A
run-tree degenerates into a line.

• Universal word automata: δ(q, a) is a conjunction of states q1∧ ...∧qk where
k ≥ 1. Thus, when reading a we send one copy of the automaton into every
q1...qk. A run-tree is indeed a tree.

In all the cases above, the transition function can be expressed as δ : Q × Σ →
2Q \ {∅}. We often use this notation instead of δ : Q× Σ→ B+(Q).

Alternating hesitant word automata (AHW)

An alternating hesitant word automaton (AHW) A = (Σ, Q, q0, δ : Q × Σ →
B+(Q), Acc ⊆ Q) is an alternating word automaton with the similar to AHTs
structural restrictions and the same as for AHTs acceptance condition.

Tree variants of word automata

We define the following tree variants, AA and AE, of a word automaton A. Given
a nondeterministic word automaton A = (2I∪O, Q, q0, δ : Q× 2I∪O → 2Q, acc), let
AE = (2O, D = 2I , Q, q0, δ

′ : Q × 2O → 2Q×D, acc) be the nondeterministic tree
automaton defined in the most natural way: for every (q, o) ∈ Q× 2O,

δ′(q, o) =
∨
d∈D

δ
(
q, (o, d)

)
[q′ 7→ (d, q′)] .

We define AA in the same way.
We will use AE to talk about “the product between system M and nondeter-

ministic word automaton A”. Since we do not define such a product—it is defined
for tree automata only—we use AE instead. Similarly, when we have universal
word automata, we use AA.

AA and AE satisfy the following property: for every system M ,

19

• for universal A: M |= A(A) ⇔ M |= AA,

• for nondeterministic A: M |= E(A) ⇔ M |= AE.

Automata Abbreviations

We use the standard three letter abbreviation for automata

({A,U,N,D} × {B,C, S, P,R} × {W,T}) ∪ {AHT,AHW}.

For example, NBW means Nondeterministic Büchi Word automaton, UCT means
Universal co-Büchi Tree automaton, AHT means Alternating Hesitant Tree au-
tomaton.

2.6 Approaches to Model Checking

This section treats the automata-theoretic approach to CTL∗ and LTL model
checking [63], as well as the classical bottom-up approach to CTL∗ model check-
ing [32]. Let us start with the definition.

The model checking problem is:

Given: a Moore system M , formula Φ in some logic
Return: does M |= Φ?

Depending on the logic of Φ, we have CTL∗ and LTL model checking problems.

We now briefly describe the automata-based solution to CTL∗ (and thus LTL)
model checking problem introduced by Kupferman, Vardi, and Wolper [63]. The
idea is to translate a given formula Φ into a tree automaton:

• into AHT, when Φ is in CTL∗,

• into UCT, when Φ is in LTL.

Then we build the “product” of the system and the automaton, which will be a
word automaton (an alternating one for CTL∗, a universal one for LTL). Such a
word automaton captures the joint behaviours of the system and the automaton
for Φ. The nice property of the product is that it is empty iff the system is
accepted by the tree automaton for Φ (equivalently: iff the system satisfies Φ).
Thus, we reduce the model checking problem to checking the non-emptiness of a
word automaton. Below we define the product.

Product of system and tree automaton

Let us provide the intuition.
A system M can be seen as a deterministic tree automaton AM that accepts

only its own computation tree. Then the question of whether the system is ac-
cepted by a given tree automaton A is equivalent to checking whether the inter-
section AM ∧ A is non-empty. The product of a system M and a tree automaton

20

A, written M ⊗ A, can be seen as the intersection tree automaton AM ∧ A, from
which we remove labels and directions3 and which we treat as a word automaton.
The important property is that the product M ⊗ A—a 1-letter alternating word
automaton— is empty iff AM ∧ A is empty.

A 1-letter alternating hesitant word automaton (1-AHW) is an AHW (Q, q0, δ :
Q → B+(Q), Acc ⊆ Q), whose alphabet has only one letter (not shown in the
tuple). Informally, an 1-AHW is an and-or graph of a restricted form plus a Rabin
acceptance condition.

A product of an AHTA=(2O, 2I , Q, q0, δ, Acc) and a systemM=(I, O, T, t0, τ, out),
written M ⊗ A, is a 1-AHW (Q× T, (q0, t0),∆, Acc′) such that

Acc′ = {(q, t) | q ∈ Acc}

and for every (q, t) ∈ Q× T :

∆(q, t) = δ(q, out(t))[(d, q′) 7→ (τ(t, d), q′)].

As before, M⊗A is non-empty iff there exists an infinite word accepted by it. Since
M ⊗ A has a one-letter alphabet—let it be Σ = {l}—checking the non-emptiness
of M ⊗ A means checking whether the infinite word lω is accepted.

Recall that the states of an AHW can be partitioned into “existential” sets
QN

1 , ..., Q
N
kN

and “universal” sets QU
1 , ..., Q

U
kU

. These sets are ordered, and the
transition function of the AHW satisfies the restriction that ensures the following:
every infinite path of the AHW gets trapped in some QN

i or QU
j .

CTL∗ model checking using the product

For the general case of CTL∗ formulas and AHTs we know the following.

Proposition 1 ([63]). A system M is accepted by an AHT A iff their product
M ⊗ A is non-empty.

Corollary 2. A system M satisfies CTL∗ formula Φ iff the product M ⊗ AΦ is
non-empty, where AΦ is an AHT for Φ.

The 1-AHW non-emptiness problem can be decided in linear time wrt. the
size of the automaton [63], therefore the approach is EXPTIME wrt. the size of
a given CTL∗ formula. It is known [9] that CTL∗ model checking problem is
PSPACE-complete.

LTL model checking using the product

Consider the special case of LTL properties. We can check whether a given system
M satisfies an LTL formula ϕ as follows. First, construct a UCT Aϕ for ϕ (we
do not need alternating automata for LTL). Second, build the product M ⊗ Aϕ.
Such a product is a 1-letter universal word automaton (1-UCW). Then the model
checking is equivalent to checking non-emptiness of the 1-UCW.

3We can remove labels because, for each state of As, the label is uniquely defined—it is out(t)
for the corresponding system state t. We can remove directions, because in the non-emptiness
check of a 1-letter tree automaton we do not distinguish directions.

21

Proposition 3. A system M satisfies an LTL formula ϕ iff the product M ⊗ Aϕ
is non-empty, where Aϕ is the UCT for ϕ.

For the same arguments as for CTL∗, the approach is EXPTIME wrt. the size
of a given LTL formula.

Bottom-up CTL∗ model checking

Here is the classical construction [32] (see also [9, p.427]) for CTL∗ model checking.

We will need the following notions of F , P , and Φ̃. Let Φ be a CTL∗ formula
with inputs I and outputs O. Let F ′ = {f ′1, ..., f ′k} be the set of CTL∗ subformulas
of the form Aϕ or Eϕ, where ϕ is a path formula. The subformulas {f ′1, ..., f ′k} can
be ordered wrt. path quantifier nesting depth d. Let us assume that f ′1, ..., f

′
k are

ordered wrt. d in increasing order, i.e., d(f ′i) ≤ d(f ′i+1) for every i. With every f ′i
we associate a proposition pi, which makes up the set P = {p1, ..., pk}. Let F =
{f1, ..., fk} be the set of formulas, where each fi is f ′i in which all subformulas were
replaced by the corresponding propositions: For example, for the CTL∗ formula
Φ = EG(g → g U AX¬g) we have F ′ = {f ′1 = AX¬g, f ′2 = EG(g → g U AX¬g)},
P = {p1, p2}, and F = {f1 = AX¬g, f2 = EG(g → g U p1)}. Notice about F : (i) F
are formulas over atoms I∪O∪P , (ii) every fi is over terms I∪O∪{p1, ..., pj≤i−1},
and (iii) they are of the form Aϕ or Eϕ, where ϕ is a CTL∗ path formula that

has no path quantifiers. Let Φ̃ be Φ where all subformulas were replaced by the
corresponding propositions. Note that Φ̃ is a Boolean formula over O ∪ P .

Given a CTL∗ formula Φ and a system M . The bottom up model checker
creates the formulas F , propositions P , and Φ̃. Then it annotates the system
states with propositions from P such that a proposition pi holds in a state t iff
t |= fi. It does so in a bottom up manner (inductively):

• It starts with the proposition p1: the formula f1 is a path formula over
propositions I ∪ O. We can use LTL model checker to check if t |= f1, for
every system state t.

• Similarly for pi: use LTL model checker to check if t |= fi, where fi can talk
about propositions I ∪ O ∪ {p1, ..., pi−1} whose truth for every system state
we already established.

• Finally, M |= Φ iff Φ̃ holds in the initial system state.

The complexity of the procedure is EXPTIME wrt. |Φ|.

2.7 Approaches to Synthesis

This section describes (i) the classical game-based approach [71] to LTL syn-
thesis, (ii) a more recent approach [46] that avoids automata determinization and
uses constraint solvers, and (iii) an approach to CTL∗ synthesis. Let us start with
the definition.

The synthesis problem is:

22

Given: the set of inputs I, the set of outputs O, formula Φ in some logic
Return: a Moore system with inputs I and outputs O satisfying Φ,

or “unrealisable” if no such system exists

The input 〈I, O,Φ〉 to the problem is called a specification. A specification is
realisable if the answer is a system, otherwise the specification is unrealisable.
Depending on the logic of Φ, we have LTL and CTL∗ synthesis problems. Instead
of a formula Φ, we can use tree automata or word automata prefixed with the E
or A path quantifier.

It is known [62, 71] that the CTL∗ and LTL synthesis problems are 2EXPTIME-
complete. Below we discuss two approaches to LTL synthesis problem, game-based
approach and bounded synthesis. Then we discuss an approach to CTL∗ synthesis.

LTL synthesis via reduction to games

The standard game-based approach [71] to synthesis from LTL specifications is as
follows.

• Translate a given LTL formula into a nondeterministic Büchi word automa-
ton [82]. The automaton can be exponentially larger than the LTL formula.

• Determinise the automaton into a deterministic parity word automaton, e.g.
using Safra construction [77]. The resulting automaton can be exponentially
larger than the original one, leading to the doubly exponential blow up.

• Translate the word automaton into a tree automaton, by splitting each tran-
sition into two transitions according to the input and output labels.

• Check the non-emptiness of the deterministic parity tree automaton. The
check can be done by treating the tree automaton as a game, and then
solving the game. If the game is winning for the system player (it controls
the choice of output labels), then the specification is realisable, otherwise
it is unrealisable. The particular class of parity games that we get can be
solved in polynomial time e.g. using [26].

The method gives 2EXPTIME solution to the synthesis problem.
The 2EXPTIME-hardness comes from the fact that we can encode into the LTL

realisability problem the acceptance of a given word by an alternating exponential-
space bounded Turing machine [72, 80].4 I.e., given such a Turing machine and
an input word, we can build the LTL specification, which is realisable iff the word
is accepted by the machine. The length of the specification is 2cn where n is the
length of the input word and c is a constant. The specification requires a system
to output, in each step, the set of all successor configurations of the TM until it
accepts on all of them. In each step, with the aid of additional inputs, we choose

4An alternating Turing machine is, like an alternating automaton, has universal and existential
transitions. A given word is accepted if there is an accepting run-tree of the machine on this
word (and thus all its branches are accepting). A Turing machine is exponential-space bounded
iff: (i) it terminates on all inputs, (ii) it uses 2cn number of cells where n is the length of the
input word and c is a constant. The problem of deciding whether a word is accepted by such a
machine is 2EXPTIME-complete [27].

23

one configuration from which to proceed. Non-deterministic transitions of the TM
are emulated using ORs in the LTL formula.

Bounded LTL synthesis via SMT

The idea of bounded synthesis via SMT [46] is to reduce the synthesis problem to
SMT solving. The resulting SMT query encodes the model checking question—
the query is satisfiable iff the system satisfies a given specification. To turn model
checking into synthesis, we replace the given system by uninterpreted functions.
Therefore, if the query is satisfiable, then the SMT solver produces—in addition to
YES/NO answer—models of the uninterpreted functions that encode the system.
From those models we extract the system, and such a system is correct.

The SMT query encodes the non-emptiness of the product of a system and
a UCT, where UCT represents a given LTL formula (see also Proposition 3 on
page 22). Recall that such a product is a 1-UCW. Thus, the emptiness question
reduces to finding a lasso with a final state of the 1-UCW in the loop.

If a system was given (as in the model checking), then using SMT solvers in
this way to solve such a simple graph question does not seem5 to be wise (if we fix
a system, then the complexity of solving such6 SMT queries is NPTIME-hard wrt.
the size of the formula automaton, while the straight graph-based approach is in
PTIME wrt. the size of the formula automaton; also, the SMT-based approach is
not symbolic). But in the case of synthesis the system is not given: here, an SMT
solver plays the role of an efficient guess-verify searcher.

The pseudo-code of the bounded synthesis is:

convert a given LTL formula into UCT

for system size in {1...bound}:

encode non-emptiness of system*UCT into SMT query

solve the query

if the query is satisfiable:

return REALIZABLE

return UNREALIZABLE

Let us go through the steps.

Automata translation. A given LTL formula ϕ is translated into a UCT U which
accepts a Moore machine M iff M satisfies ϕ. This can be done, for example, using
SPOT [35] or LTL3BA [8]: negate the formula, translate it into a NBW, treat it
as a UCW A, and turn the UCW A into a UCT AA as described on page 19. This
AA is the sought UCT U .

Iteration for increasing bounds. Fix the number of states in a system M .
This allows us to encode the non-emptiness problem of M ⊗ U into a decidable
fragment of SMT. The bound bound can be either user-chosen or it is the upper

5SMT solvers are used in verification, see, for example, papers on solving Horn clauses [14,
11, 12]. Here we refer only to the way of using them as it is done in bounded synthesis.

6Here “such queries” means that they have the same theory as those used by bounded synthesis
(for example, UFLIA). We did not analyse whether the special structure of SMT queries from
bounded synthesis gives way to a simpler complexity than that of solving general UFLIA queries.

24

bound on the system size (O(22|ϕ|)). A better way, from the practical point of
view, is described in Remark 5.

SMT encoding. Let inputs and outputs be I and O. Fix the states T of a system
M = (I, O, T, t0, τ, out). Let UCT U = (2O, 2I , Q, q0, δ

′ : Q×2O → 2Q×2I , F ⊆ Q).
In the SMT query, we use uninterpreted functions to express system functions
δ and out. We also use two uninterpreted functions: rch : Q × T → B denotes
whether a pair (q, t) ∈ Q×T is reachable in the product M⊗U , and ρ : Q×T → N
which is called ranking function and is used to ensure the absence of bad lassos
(they visit q ∈ F in the loop of the lasso). The constraints are:

rch(q0, t0)∧∧
(q,t)∈Q×T

[
rch(q, t)→

∧
(d,q′)∈δ(q,out(t))

rch(q′, τ(t, d)) ∧ ρ(q, t) . ρ(q′, τ(t, d))
]

(2.1)

where . is > if q ∈ F , otherwise ≥. The intuition is as follows. We mark the initial
state (q0, t0) of the product M⊗U as reachable. For every reachable state (q, t), we
mark every successor state (q′, τ(t, d)) of the product as reachable, and we require
the rank to strictly decrease if q ∈ F , and non-strictly decrease otherwise. Thus,
all reachable states of the product are marked with rch. Additionally, if there is
a bad lasso (that has (qb, t) with qb ∈ F inside its loop), then the query will have
an unsatisfiable cycle of constraints (qb, t) > ... ≥ (qb, t). Note that this query
is satisfiable iff there exists functions τ and out (and ρ and rch) such that the
product does no have a bad lasso [46].

Solving the SMT query. To solve the query one can use e.g. Z3 solver [34].

Remark 5 (Checking unrealisability). When a given LTL specification is un-
realisable, the above procedure iterates through all system sizes up to a bound
O(22|ϕ|). The bound is computationally difficult to reach on non-toy unrealisable
specifications, making the approach impractical. To overcome this, we can use
the determinacy of the LTL synthesis problem, which states: an LTL specifica-
tion is unrealisable iff the dual LTL specification is realisable. For a specification
〈I, O, ϕ,Moore〉 the specification 〈O, I,¬ϕ,Mealy〉 is called dual, i.e., we swap in-
puts and outputs, negate the formula, and search for a Mealy machine instead of
a Moore machine. (Mealy machines are just like Moore machines except that the
output function out : T × 2I → 2O also depends on inputs.) Thus, instead of
iterating for increasing system bound, we can run two processes in parallel: one
checks for realisability of the original specification, another checks for realisability
of the dual specification. The process that finishes first, returns the answer, while
the other process is terminated. This approach is used in most bounded synthesis
implementations [1].

CTL∗ synthesis

The standard approach to CTL∗ synthesis [62] is: translate a given CTL∗ formula
Φ into an alternating Rabin tree automaton [63] with ≈ 2|Φ| many states and ≈ |Φ|
many acceptance pairs, turn it into a nondeterministic Rabin tree automaton [67]

25

with ≈ 22|Φ| many states and ≈ 2|Φ| many acceptance pairs, and check its non-
emptiness. The latter check is polynomial in the size of the automaton [42, 71],

i.e., requires ≈ 22|Φ| time. Thus, the approach gives a 2EXPTIME algorithm.
The lower bound comes from the 2EXPTIME completeness of the LTL synthesis
problem [72, 80] and the fact that CTL∗ subsumes LTL.

26

Chapter 3

Bounded Synthesis for Streett,
Rabin, and CTL∗

This chapter is based on joint work with Roderick Bloem [56].

Abstract. SMT-based Bounded Synthesis uses an SMT solver to syn-
thesize systems from LTL properties by going through co-Büchi au-
tomata. In this chapter, we show how to extend the ranking functions
used in Bounded Synthesis, and thus the bounded synthesis approach,
to Büchi, Parity, Rabin, and Streett conditions. We show that we can
handle both existential and universal properties this way, and there-
fore, that we can extend Bounded Synthesis to CTL∗. Thus, we obtain
the first Safraless synthesis approach and the first synthesis tool for
(conjunctions of) the acceptance conditions mentioned above, and for
CTL∗.

3.1 Introduction

For Linear Temporal Logic [70], the standard approach to reactive synthesis in-
volves Safra’s relatively complex construction [77] to determinize Büchi automata
[71]. The difficulty to implement the construction has led to the development of
Safraless approaches [61, 46]. In this chapter, we focus on one such approach,
called Bounded Synthesis, introduced by Finkbeiner and Schewe [46].

The idea behind Bounded Synthesis is the following. LTL properties can be
translated to Büchi automata [82] and verification of LTL properties can be re-
duced to deciding emptiness of the product of this automaton and the Kripke
structure representing a system [66, 83] (see also Section 2.7). This product is a
Büchi automaton in its own right. Finkbeiner and Schewe made two important
observations: (1) Using a ranking function, the emptiness problem of Büchi au-
tomata can be encoded as a Satisfiability modulo Theories (SMT) query, and (2)
by fixing its size, the Kripke structure can be left uninterpreted, resulting in an
SMT query for a system that fulfills the property. Because the size of the system
is bounded by Safra’s construction, this yields an approach to LTL synthesis that
is complete in principle. (Although proofs of unrealizability are usually computed
differently.)

27

The reduction to SMT used by Bounded Synthesis provides two benefits: the
performance progress of SMT solvers and the flexibility. The flexibility allows
one to easily adapt the SMT constraints, produced by Bounded Synthesis, to
build semi-complete synthesizers for distributed [46], self-stabilising [16], param-
eterized [49], assume-guarantee [17], probabilistic [10], and partially implemented
systems.

In this chapter, we extend Bounded Synthesis in two directions.
First, we show how to directly encode into SMT that some path of a system is

accepted by an X automaton, for X ∈ {Büchi, co-Büchi, Parity, Streett, Rabin}.
We do this by introducing new ranking functions. Therefore we avoid the explicit
translation of these automata into Büchi automata, which would be needed if we
were to use the original Bounded Synthesis.

Second, we extend Bounded Synthesis to the branching logic CTL∗. CTL∗

formulas allow the user to specify structural properties of the system. For example,
if g is system output and r is system input, then the CTL∗ formula AGEF g says
that a state satisfying g is always reachable; and the CTL∗ formula EFG(g ∧ r)
says that a state satisfying g is reachable and it has a loop when reading r that
satisfies g. In both cases, the existential path quantifier E allows us to refrain from
specifying the exact path that leads to such states.

In this chapter we show two Bounded Synthesis approaches for CTL∗. First, we
show how to use the ranking functions for X automata to either decide that some
path of a system fulfills such a condition, or that all paths of the system do. Once
we have established this fact, we can extend Bounded Synthesis to logics like CTL∗

by replacing all state subformulas by fresh atomic propositions and encoding them
each by a Büchi automaton. This approach follows the classical construction [32]
of model checking CTL∗, extending it to synthesis setting. Alternatively, we show
that we can use a translation of CTL∗ to Alternating Hesitant Tree Automata [63]
to obtain a relatively simple encoding to SMT.

Thus, we obtain a relatively simple, Safraless synthesis procedure to (con-
junctions of) various acceptance conditions and CTL∗. This gives us a decision
procedure that is efficient when the specification is satisfied by a small system, but
is admittedly impractical at showing unrealizability. Just like Bounded Synthesis
does for LTL synthesis, it also gives us a semi-decision procedure for undecidable
problems such as distributed [73] or parameterized synthesis [49, 57]. We have
implemented the CTL∗ synthesis approach in a tool1 that to our knowledge is the
only tool that supports CTL∗ synthesis.

The chapter is structured as follows. In the next section we list the definitions
that this chapter uses. Then in Section 3.2 we introduce ranking functions that
can be used to verify and synthesize properties expressed as word automata. Sec-
tion 3.3 contains two approaches to Bounded Synthesis for CTL∗: Section 3.3.1
describes the direct encoding into SMT, in the spirit of bottom-up CTL∗ model
checking, while Section 3.3.2 describes the approach via hesitant tree automata.
Section 3.3.3 describes the prototype CTL∗ synthesizer and the experiments that
show applicability of the approach for the synthesis of small monolithic and dis-
tributed systems.

1Available at https://github.com/5nizza/party-elli, branch “cav17”.

28

https://github.com/5nizza/party-elli

3.2 Synthesis from Büchi, Streett, Rabin, and

Parity Automata

In this section we describe how to verify and synthesize properties described by
Büchi, co-Büchi, Parity, Streett, and Rabin conditions. For each acceptance con-
dition X ∈ {Büchi, co-Büchi, Parity, Streett, Rabin}, we can handle the question
whether (the word defined by) some path of a system is in the language of a
nondeterministic X automata, as well as the question of whether all paths of the
system are in the language defined by a universal X automaton. There does not
appear to be an easy way to mix these queries (“do all paths of the system fulfill
the property defined by a given nondeterministic automaton?”).

3.2.1 Preliminaries on Ranking

In the following, given a system M = (I, O, T, t0, τ, out) and a nondeterministic
(universal) word automaton A = (2I∪O, Q, q0, δ, acc), we describe how to build an
SMT query Φ(M,A) that is satisfiable iff some path (all paths, resp.) of M are
in L(A). That is, we focus on the verification problem. When the verification
problem is solved, we obtain the solution to the synthesis problem easily, following
the Bounded Synthesis approach: given an automaton A, we ask the SMT solver
whether there is a system M such that Φ(M,A) is satisfiable. More precisely, for
increasing k, we fix a set of k states and ask the SMT solver for a transition relation
τ and a labeling out (and a few more objects) for which Φ(M,A) is satisfiable.

Our constructions use ranking functions. A ranking function is a function
ρ : Q × T → D for some totally ordered set D with order ≥. A rank comparison
relation is a (possibly partial) relation . ⊆ Q×D×D. In the following, we write
d .q d

′ to mean (q, d, d′) ∈ .. We will usually define . using ≥ and ρ.

We will first establish how to use the ranking functions to check existential
and universal properties, expressed as E(A) and A(A). Then we define the ranking
functions and comparisions for the different acceptance conditions, i.e., for different
types of the word automaton A.

Given a rank comparison ., we define the following formula to check an exis-
tential property E(A):

Φ.
E(M,A) =rch(q0, t0)∧∧

q,t∈Q×T

rch(q, t)→
∨

(q,i∪o,q′)∈δ

out(t)=o ∧ rch(q′, τ(t, i)) ∧ ρ(q, t) .qρ(q′, τ(t, i)).

Similarly, to check a universal property A(A), we define

Φ.
A(M,A) =rch(q0, t0)∧∧

q,t∈Q×T

rch(q, t)→
∧

(q,i∪o,q′)∈δ

out(t)=o→ rch(q′, τ(t, i)) ∧ ρ(q, t) .qρ(q′, τ(t, i)).

In these formulas,

29

• the free variable rch : Q × T → B is an uninterpreted function that marks
reachable states in the product of M and AE or AA, where AE and AA are
the tree automata for E(A) and A(A) (defined on page 19), and

• the free variable ρ : Q× T → D is an uninterpreted ranking function.

Intuitively, Φ.
E will be used to encode that there is an accepting loop in the

product automaton, while Φ.
A will be used to ensure that all loops are accepting.

Given a path π = (q1, t1)(q2, t2) · · · ∈ (Q × T)ω, a rank comparison relation
., totally ordered set D, and a ranking function ρ, π satisfies . using ρ and D,
written (π,D, ρ) |= ., iff ρ(qi, ti) .q ρ(qi+1, ti+1) holds for every i.

Let us look at the properties of these equations.

Lemma 4. For every totally ordered set D, rank comparison relation ., ranking
function ρ, nondeterministic word automaton A, and machine M : Φ.

E(M,A) is
satisfiable using ρ and D iff the product M ⊗AE has an infinite path that satisfies
. using ρ and D.

Proof idea. Direction ⇐. Let us assume that the product contains a path π =
(q1, t1)(q1, t1) . . . such that (π,D, ρ) |= .. By definition, ρ(qi, ti) . ρ(qi+1, ti+1)
holds for every i. If we set rch(q, t) to true for (q, t) ∈ π and to false for all the
other states, then the formula Φ.

E(M,A) holds.
Direction⇒. Let us assume that Φ.

E is satisfiable, then there is a model for rch.
We can use rch to construct a lasso-shaped infinite path π such that (π,D, ρ) |= .
and that belongs to the product.

A similar result holds for universal word automata.

Lemma 5. For every well-founded domain D, rank comparison relation ., ranking
function ρ, universal word automaton A, and machine M : Φ.

A(M,A) is satisfiable
using ρ and D iff in the product M ⊗AA every infinite path satisfies . using ρ and
D.

Proof idea. Direction ⇐. If we set rch to true for every (q, t) reachable in the
product M ⊗ AA, then Φ.

A(M,A) holds.
Direction ⇒. (Note that rch may mark some (q, t) with true, although it

is not reachable in the product M ⊗ AA. But for any reachable (q, t), rch(q, t)
holds.) We prove this direction by contradiction. Assume that there is an infinite
path π = (q1, t1)(q2, t2) . . . such that (π,D, ρ) 6|= .. Hence there is i such that
¬
(
ρ(qi, ti) . ρ(qi+1, ti+1)

)
. Since (qi, ti) is reachable (thus rch(qi, ti) = true) and

M ⊗ AA has a transition into (qi+1, ti+1), this falsifies Φ.
A(M,A) when using ρ.

Contradiction.

These two lemmas will help us to establish the main results: M |= AE whenever
Φ.

E(M,A) is satisfiable, and M |= AA whenever Φ.
A(M,A) is satisfiable, where the

word automata A are nondeterministic and universal respectively, with different
acceptance conditions, and the form of . in Φ.

E and Φ.
A depends on the acceptance

condition. In the next sections, we describe rank comparison relations . for the
acceptance conditions Büchi, co-Büchi, Streett, Rabin, and Parity. For didactic
purposes, let us start with the relatively simple Büchi and co-Büchi conditions.

30

3.2.2 Ranking for Büchi Automata

Büchi conditions were also presented in [18] and implicitly in [10]. Given a Büchi
automaton A = (2I∪O, Q, q0, δ, F), we define the rank comparison relation .AB as

ρ(q, t) .AB ρ(q′, t′) =

{
true if q ∈ F,
ρ(q, t) > ρ(q′, t′) if q 6∈ F.

(3.1)

Theorem 6 ([18, 10]). Let D be N0. For every universal Büchi word automaton
U , nondeterministic Büchi word automaton N , and machine M :

• M |= E(N) iff Φ.
E(M,N) is satisfiable, where . = .NB .

• M |= A(U) iff Φ.
A(M,U) is satisfiable, where . = .UB.

Proof idea. Consider the first item, direction ⇐. If Φ.
E(M,N) is satisfiable, then,

using the model of rch, we can extract a lasso-shaped path π = (q1, t1)(q2, t2) . . .
of M ⊗NE, which satisfies . for every i. Such a path visits at least one accepting
state of N in its loop part and therefore is Büchi accepting.

Consider the direction ⇒. There is an infinite path of M ⊗N , in the shape of
a lasso, that has an accepting state in its loop. We set rch(q, t) = true for every
state (q, t) visited on the lasso-path, and set ρ(q, t) to the shortest distance to an
accepting state. Such rch and ρ make Φ.

E(M,N) hold.
Consider now the case M |= A(U). The direction ⇐ is simple, consider the

direction ⇒. We describe ρ and rch that make Φ.
A(M,U) hold. For every (q, t)

reachable in M ⊗UA, let rch(q, t) = true. For every reachable (q, t), let ρ(q, t) be a
longest distance to an accepting state. These ρ and rch make Φ.

A(M,U) hold.

Note that in the theorem a machine M is either fixed (then we solve the model
checking problem), or we fix the number of states in M and express it using
uninterpreted functions (then we solve the bounded synthesis problem). Also note
that we used the set N of natural numbers for D, but we could prove the results
for some other large-enough well-founded sets.

3.2.3 Ranking for co-Büchi Automata

This case was presented in the original paper [46] on Bounded Synthesis. Given a
co-Büchi automaton A = (2I∪O, Q, q0, δ, F), the ranking constraint relation .AC for
co-Büchi is defined as

ρ(q, t) .AC ρ(q′, t′) =

{
ρ(q, t) > ρ(q′, t) if q ∈ F,
ρ(q, t) ≥ ρ(q′, t′) if q 6∈ F.

(3.2)

Theorem 7 ([46]). Let D be N0. For every universal co-Büchi word automaton
U , nondeterministic co-Büchi word automaton N , and machine M :

• M |= E(N) iff Φ.
E(M,N) is satisfiable, where . = .NC .

• M |= A(U) iff Φ.
A(M,U) is satisfiable, where . = .UC.

31

Proof idea. Consider the first item. Direction ⇒: M ⊗ NE has an infinite path,
in the shape of a lasso, that never visits a rejecting state in the loop. We set
rch(q, t) = true for all reachable (q, t) in the path, and set ρ(q, t) to be the number
of rejecting states visited before entering the loop. Direction ⇐: From the model
of rch we can construct an infinite path that is accepted by N . Any such path
must be accepting, because having a rejecting state (q, t) visited infinitely often
implies having an unsatisfiable cycle of constraints (q, t) > ... ≥ (q, t).

Consider the case M |= A(U), direction ⇒. We set rch(q, t) = true for every
reachable (q, t) in M ⊗ UA, and set ρ(q, t) to the maximal number of visits to
rejecting states among the paths starting from (q, t). Such a number is finite,
because all paths visit a rejecting state only finitely often. The direction⇐ holds,
because every rejecting path visits a rejecting state (q, t) infinitely often, which
implies having an unsatisfiable cycle of constraints (q, t) > ... ≥ (q, t).

3.2.4 Ranking for Streett Automata

The ranking below is our contribution.
Fix a Streett automaton A = (2I∪O, Q, q0, δ, {(Ai, Gi)}i∈[k]). We slightly modify

the definitions to have ρ : Q × T → Dk and . ⊆ Q × Dk × Dk, i.e., the ranking
function consists of k components.

The ranking function ρ : Q × T → Dk is defined using k components ρi :
Q × T → D, ρ(q, t) =

(
ρ1(q, t), ..., ρk(q, t)

)
. The rank comparison relation .S :

Q×Dk ×Dk is ρ(q, t) .AS ρ(q′, t′) =
∧
i∈[k]

(
ρi(q, t) .

A,i
S ρi(q

′, t′)
)

, where

ρi(q, t) .
A,i
S ρi(q

′, t′) =


true if q ∈ Gi,

ρi(q, t) > ρi(q
′, t′) if q ∈ Ai ∧ q 6∈ Gi,

ρi(q, t) ≥ ρi(q
′, t′) if q 6∈ Ai ∪Gi.

(3.3)

Theorem 8. Let D be N0. For every universal Streett word automaton U , non-
deterministic Streett word automaton N , and machine M :

• M |= E(N) iff Φ.
E(M,N) is satisfiable, where . = .NS .

• M |= A(U) iff Φ.
A(M,U) is satisfiable, where . = .US .

Proof idea. We prove only the second item, the first item can be proven similarly.
Direction ⇒. We construct ρ = (ρ1, ..., ρk) and rch that satisfy Φ.

A(M,U).
Set rch(q, t) = true for all reachable (q, t) in the product Γ = M ⊗ UA, and for
unreachable states set rch to false and set ρ = (0, ..., 0). Now let us remove all
unreachable states from Γ. Then for each i ∈ [k], ρi is defined as follows.

• For every (q, t) ∈ ∪i∈[k]Gi × T , let ρi(q, t) = 0.

• Define an SCC S of a graph to be any maximal subset of the graph states
such that for any s ∈ S, s′ ∈ S, the graph has a path π = s, ..., s′ of length
≥ 2, where the length is the number of states appearing on the path. Thus,
a single-state SCC can appear only if the state has a self-loop.

32

• Remove all outgoing edges from every state (q, t) of Γ with q ∈ Gi. The
resulting graph Γ′ has no SCCs that have a state (q, t) with q ∈ ∪i∈[k]Ai.

• Let us define the graph Γ′′. Let S be the set of all SCCs of Γ′. Then Γ′′ has
the states VΓ′′ = S ∪ {{s} | s 6∈ ∪S∈SS}, i.e., each state is either an SCC or
a singleton-set containing a state outside of any SCC (but in both cases, a
state of Γ′ is a set of states of Γ). The edges EΓ′′ of Γ′′ are: (S1, S2) ∈ EΓ′′ iff
∃s1 ∈ S1, s2 ∈ S2 : S1 6= S2 ∧ (s1, s2) ∈ EΓ′ . Intuitively, Γ′′ is a graph derived
from Γ by turning all accepting states into leafs, and by making SCCs the
new states. Note that the graph Γ′′ is a DAG.

• Given a path π = S1, ..., Sm in Γ′′, let nb(π) be the number of “bad” states
visited on the path, i.e., nb = |π ∩ {{(q, t)} : q ∈ ∪i∈[k]Ai}|. Such a number
exists since all paths of Γ′′ are finite.

• For all (q, t) ∈ S ∈ VΓ′′ with q 6∈ Gi, let ρi(q, t) be the max number of “bad”
states visited on any path from S: ρi(q, t) = max({nb(π) | π is a path from S}).
Such a number exists since the number of paths in Γ′′ is finite.

This concludes the direction ⇒.
The direction ⇐ is proven by contradiction. Suppose Φ.

A(M,U) is satisfiable
with some rch and ρ = (ρ1, ..., ρk), but M ⊗ UA is empty. The latter means that
there is a lasso-shaped path that is not accepted by some pair (Ai, Gi): it visits Ai
infinitely often but visits Gi only finitely often. Thus, the loop part of the path
contains state (q, t) with q ∈ Ai but has no states visiting Gi. Recall that such
a path is labeled true by rch, because rch over-approximates the set of reachable
states. Altogether this makes Φ.

A(M,U) unsatisfiable, because of the unsatisfiable
cycle of constraints ρi(q, t) > ... ≥ ρ(q, t).

Remark 6 (Comparison with ranking from [69]). Piterman and Pnueli [69] in-
troduced ranking functions to solve Streett games. Our ranking functions can
be adapted to solve games, too. (Recall that our SMT encoding describes model
checking with an uninterpreted system.) It may seem that in the case of games,
our construction uses fewer counters than [69], but that is not the case. Given
a DSW with k Streett pairs and n states, a winning strategy in the correspond-
ing Streett game may require a memory of size k!. In this case, the size of the
product system×automaton is k!n. Our construction introduces 2k counters with
the domain [k!n] → [k!n] to associate a rank with each state. In contrast, [69]
introduces k!k counters with the domain [n] → [0, n]. Encoding these coun-
ters into SAT would require 2k · k!n · log2(k!n) bits for our construction, and
k!k ·n · log2(n) bits for the construction of [69]. Thus, our construction introduces

2(1+ log2(k!)
log2(n)

) ≈ 2(1+ log2(log2(n))) times more bits (the approximation assumes

that k = log2(n) and n is large). On the positive side, our construction is much
simpler.

Ranking for Parity Automata

Given a Parity automaton A = (2I∪O, Q, q0, δ, p) with priorities 0, . . . , k − 1, it is
known that we can translate it into an equivalent Streett automaton with pairs

33

(A1, G1), . . . , (Am/2, Gm/2), where Ai = {q | p(q) = 2i − 1}, Gi = {q | p(q) ∈
{0, 2, . . . , 2i − 2}}. We can then apply the encoding for Streett automata. The
resulting ranking resembles Jurdziński’s progress measure [52].

3.2.5 Ranking for Rabin Automata

Given a Rabin automaton A = (2I∪O, Q, q0, δ, {(Fi, Ii)}i∈[k]) and a system M =
(I, O, T, t0, τ, out), we use ranking constraints described by Piterman and Pnueli [69]
to construct a rank comparison relation. The ranking function ρ : Q× T → N2k+1

0

maps a state of the product to a tuple of numbers (b, j1,d1, . . . , jk,dk), where the
numbers have the following meaning. For each l ∈ [k],

• jl ∈ [k] is the index of a Rabin pair,

• b ∈ [0, |Q×T |] is an upper bound on the number of times the set Fj1 can be
visited from (q, t),

• dl ∈ [0, |Q× T |] is the maximal distance from (q, t) to the set Ijl ,

We define the rank comparison relation . ⊆ Q × N2k+1
0 × N2k+1

0 as follows:
(b, j1,d1, . . . , jk,dk) .q (b′, j′1,d

′
1, . . . , j

′
k,d
′
k) iff there exists l ∈ [k] such that one of

the following holds:

b > b′,

(b, . . . , jl−1, dl−1) = (b′, . . . , j′l−1, d
′
l−1) ∧ jl > j′l ∧ q 6∈ ∪

m∈[l−1]
Fjm ,

(b, . . . , jl) = (b′, . . . , j′l) ∧ dl > d′l ∧ q 6∈ ∪
m∈[l]

Fjm ,

(b, . . . , jl) = (b′, . . . , j′l) ∧ q ∈ Ijl ∧ q 6∈ ∪
m∈[l]

Fjm .

(3.4)

Here is the intutition. The first line bounds the number of visits to Fj1 (b decreases
each time Fj1 is visited). The second line limits the changes of order j1, . . . , jk in
the rank (b, j1, d1, . . . , jk, dk) to a finite number. Together, these two lines ensure
that on any path some Fm is not visited infinitely often. The third and fourth
lines require Ijl to be visited within dl steps; once it is visited, the distance dl can
be reset to any number ≤ |Q× T |.

We can encode the rank comparison constraints in Eq. 3.4 into SMT as follows.
For each of j1, . . . , jk introduce an uninterpreted function: Q× T → [k]. For each
of b, d1, . . . , dk introduce an uninterpreted function: Q×T → [0, |Q×T |]. Finally,
replace in Eq. 3.4 counters b, j, d, b′, j′, d′ with expressions b(q, t), j(q, t), d(q, t),
b(q′, t′), j(q′, t′), d(q′, t′) resp.

Ranking for Generalized Automata

The extension to generalized automata is simple: replace ρ(q, t) . ρ(q′, t′) with∧
i ρ

i(q, t).i ρi(q′, t′) where ρi and .i are for ith automaton acceptance component.

34

3.2.6 Discussion of Ranking

A close work on rankings is the work by Beyene et al. [11] on solving infinite-state
games using SMT solvers. Conceptually, they use co-Büchi and Büchi ranking
functions to encode game winning into SMT, which was also partially done by
Schewe and Finkbeiner [46] a few years earlier (for finite-state systems). The au-
thors focused on co-Büchi and Büchi automata, while we also considered Rabin
and Streett automata (for finite-state systems). Although they claimed their ap-
proach can be extended to µ-calculus (and thus to CTL∗), they did not elaborate
beyond noting that CTL∗ verification can be reduced to games. In the next section
we introduce two approaches to bounded synthesis from CTL∗. Both approaches
inherit the ideas on rankings presented in this section.

3.3 Bounded Synthesis from CTL∗

We describe two ways to encode model checking for CTL∗ into SMT. The first
one, direct encoding (Section 3.3.1), resembles bottom-up CTL∗ model checking
[32] (see also page 2). The second encoding (Section 3.3.2) follows the automata-
theoretic approach [63] (see also Section 2.6) and goes via hesitant tree automata.
As usual, replacing a concrete system function with an uninterpreted one of a fixed
size gives a bounded synthesis procedure.

Let us compare the approaches. In the direct encoding, the main difficulty
is the procedure that generates the constraints: we need to walk through the
formula and generate constraints for nondeterministic Büchi or universal co-Büchi
sub-automata. In the approach via hesitant tree automata, we first translate
a given CTL∗ formula into a hesitant tree automaton A, and then encode the
non-emptiness problem of the product of A and the system into an SMT query.
In contrast to the direct encoding, the difficult—from the implementation point
of view—part is to construct the automaton A, while the definition of the rank
comparison relation is very easy.

In the next section we define CTL∗ with inputs and then describe two ap-
proaches. The approaches are conceptually the same, thus automata fans are in-
vited to read Section 3.3.2 about the approach using hesitant automata, while the
readers preferring bottom-up CTL∗ model checking are welcomed to Section 3.3.1.

3.3.1 Direct Encoding

We reduce the CTL∗ model checking problem into SMT following the classical
bottom-up model checking approach (see page 22).

Let M = (I, O, T, t0, τ, out) be a machine and Φ be a CTL∗ state formula (in

positive normal form). We use the notions of F , P , and Φ̃ defined on page 22: recall
that with every state subformula Eϕ or Aϕ we associate a Boolean proposition,
whose truth in a system state t implies that the corresponding subformula holds.
The set P = {p1, ..., pk} is the set of such propositions, the set F = {f1, ..., fk}
is the set of subformulas corresponding to {p1, ..., pk} (note that each fi is of the

35

q0 q1

g

¬g

1

(a) NBW for F¬g, associated with p1

that encodes the truth of EF¬g.

v0 v1

p1

¬p1

1

(b) UCW for Gp1, associated with p2

that encodes the truth of AG p1.

Figure 3.1: Automata for Example 1

form Aϕ or Eϕ and ϕ has no path quantifiers), and Φ̃ is the top-level Boolean
formula. We define the SMT query as follows.

(1) The query talks about uninterpreted functions rch : Qall × T → B, ρ :
Qall × T → N, τ : T × 2I → T , out : T → 2O, and p : T → 2P . What is Qall

will become clear later.

(2) For each f ∈ {f1, . . . , fk}, we do the following. If f is of the form Aϕ, we
translate ϕ into a UCW2, otherwise into an NBW; let the resulting automa-
ton be Aϕ = (2I∪O∪P , Q, q0, δ, F). Note that δ ⊆ Q×2I×2O×2P ×Q, and it
depends on P . For every (q, t) ∈ Q× T , the query contains the constraints:

(2a) If Aϕ is an NBW, then:

rch(q, t) →
∨

(e,q′)∈δ(q,out(t),p(t))

rch(q′, t′) ∧ ρ(q, t) .B ρ(q′, t′)

(2b) If Aϕ is a UCW, then:

rch(q, t) →
∧

(e,q′)∈δ(q,out(t),p(t))

rch(q′, t′) ∧ ρ(q, t) .C ρ(q′, t′)

In both cases, we have: p(t) = {pi ∈ P | rch(qpi0 , t) = true}, qpi0 is the
initial state of Aϕi

, .B and .C are the Büchi and co-Büchi rank comparison
relations wrt. Aϕ (see Eq. 3.1–3.2), and t′ = τ(t, i). Intuitively p(t) under-
approximates the subformulas that hold in t: if pi ∈ p(t), then t |= fi.

(3) The query contains the constraint Φ̃[pi 7→ rch(qpi0 , t0)], where qpi0 is the initial
state of Aϕi

. For example, for Φ = g ∧AGEF¬g where g ∈ O, the constraint
is g(t0)∧rch(qp2

0 , t0), where p2 corresponds to AG p1, p1 corresponds to EF¬g.

Example 1. Let I = {r}, O = {g}, Φ = g ∧ AGEF¬g. We associate p1 with EF¬g
and p2 with AG p1. Automata for p1 and p2 are in Fig. 3.1, the SMT constraints
are in Fig. 3.2.

Theorem 9 (Correctness of direct encoding). Given a CTL∗ formula Φ over inputs
I and outputs O and a system M = (I, O, T, t0, τ, out): M |= Φ iff the SMT query
is satisfiable.

2To translate ϕ into a UCW, translate ¬ϕ into an NBW and treat it as a UCW.

36

initial : g(t0) ∧ rch(q0, t0)

v0
p1→ v0 : rch(v0, t) ∧ rch(q0, t)→

∧
r∈B

rch(v0, τ(t, r)) ∧ ρ(v0, t) ≥ ρ(v0, τ(t, r))

v0
¬p1→ v1 : rch(v0, t) ∧ ¬rch(q0, t)→

∧
r∈B

rch(v1, τ(t, r)) ∧ ρ(v0, t) ≥ ρ(v1, τ(t, r))

v1
true→ v1 : rch(v1, t)→

∧
r∈B

rch(v1, τ(t, r)) ∧ ρ(v1, t) > ρ(v1, τ(t, r))

q0
g→ q0 : rch(q0, t) ∧ g(t)→

∨
r∈B

rch(q0, τ(t, r)) ∧ ρ(q0, t) > ρ(q0, τ(t, r))

q0
¬g→ q1 : rch(q0, t) ∧ ¬g(t)→

∨
r∈B

rch(q1, τ(t, r)) ∧ ρ(q0, t) > ρ(q1, τ(t, r))

q1
true→ q1 : rch(q1, t)→

∨
r∈B

rch(q1, τ(t, r))

Figure 3.2: SMT constraints for Example 1 for some t ∈ T . The final query is the
conjunction of the constraints for every t ∈ T . The first line is the initialisation,
item (3). The second line encodes the transition v0

p1→ v0 of the automaton in
Fig. 3.1b and corresponds to item (2b): since we do not know whether p1 holds in
state t, we add the assumption rch(q0, t).

Here is the intuition behind the proof. The standard bottom-up model checker
(see page 2) marks every system state with state subformulas it satisfies. The
model checker returns “Yes” iff the initial state satisfies the top-level Boolean
formula. The direct encoding conceptually follows that approach. If for some
system state t, rch(qpi0 , t) holds, then t satisfies the state formula fi corresponding
to pi. Thus, if the top-level Boolean constraint (3) holds, then t0 |= Φ. And vice
versa: if a model checker returns “Yes”, then the marking it produced can be
used to satisfy the SMT constraints. Finally, the positive normal form of Φ allows
us to get away with encoding of positive obligations only (rch(qpi0 , t) ⇒ t |= fi),
eliminating the need to encode ¬rch(qpi0 , t)⇒ t |= ¬fi.

3.3.2 Encoding via Alternating Hesitant Tree Automata

Let us recall how we can model check and synthesize systems from CTL∗ formulas
(see also Section 2.6). First, we convert a given CTL∗ formula into an alternating
hesitant tree automaton. Then we build the product between the system and
the automaton—such a product is a 1-letter alternating hesitant word automaton.
Then we check the non-emptiness of the product automaton. We show how to
encode the latter check into an SMT query. Such an SMT query is satisfiable iff
the product is non-empty (thus the system satisfies the formula). As before, if we
want to do synthesis, we replace a given system with an unknown system of a fixed
size. Then an SMT solver returns a model (from which we extract a system), if
such exists, together with a proof of the non-emptiness.

It is worth refreshing the following definitions: AHT and AHW (Chapter 2,

37

pages 17 and 19), 1-AHW and model checking wrt. CTL∗ (Section 2.6).

Encoding non-emptiness of the product into SMT

We start by converting a given CTL∗ formula Φ into an AHT. Then we build the
product between a given system and the AHT. Such a product is a 1-AHW. We
are going to encode the non-emptiness of the 1-AHW into an SMT query.

Let us explain the idea of the encoding. Recall that the states of the 1-AHW can
be partitioned into “existential” sets QN

1 , ..., Q
N
kN

and “universal” sets QU
1 , ..., Q

U
kU

.
Such sets are ordered and the 1-AHW transition function ensures the following:
Every path in every run-tree of the 1-AHW gets trapped in some QN

i or in QU
j .

Such a path π is accepting iff Inf(π)∩Acc 6= ∅ for the case of QN
i (Büchi acceptance)

or Inf(π) ∩ Acc = ∅ for the case of QU
j (co-Büchi acceptance). We will build an

SMT query where the SMT solver has to: (a) resolve nondeterminism in the 1-
AHW, (b) ensure that every path in the resulting universal word automaton is
accepting.

Consider a system M = (I, O, T, t0, τ, out) and an AHT A = (2O, 2I , Q, q0, δ :
Q × 2O → B+(2I × Q), Acc ⊆ Q) that corresponds to a given CTL∗ formula Φ.
We encode the non-emptiness of the product M ⊗A, which has the states Q× T ,
into the following SMT query:

rch(q0, t0)∧∧
(q,t)∈Q×T

rch(q, t)→ δ
(
q, out(t)

) [
(d, q′) 7→ rch(q′, τ(t, d))∧

ρ(q, t) .q,q′ ρ(q′, τ(t, d))
] (3.5)

where .q,q′
3 is:

• if q and q′ are in the same QN
i , then the Büchi rank comparison .

QN
i

B ;

• if q and q′ are in the same QU
i , then the co-Büchi rank comparison .

QN
i

C ;

• otherwise, true.

Theorem 10. Given a system (I, O, T, t0, τ, out) and CTL∗ formula Φ over inputs
I and outputs O: system |= Φ iff the SMT query in Eq. 3.5 is satisfiable.

Proof idea. Direction ⇒. Let (Q, q0, δ, Acc) be the 1-AHW representing the prod-
uct system⊗AHT. We will use the following observation.

Observation: The 1-AHW non-emptiness can be reduced to solving the
following 1-Rabin game. The game states are Q, the game graph cor-
responds to δ, there is one Rabin pair (F, I) with F = Acc ∩ QU ,
I = (Acc ∩ QN) ∪ (QU \Acc). Let us view δ to be in the DNF. Then,
in state q of the game, the “existential” player (Automaton) chooses

3Here .q,q′ depends on q and q′, but it can also be defined to depend on q only, as it is
originally introduced.

38

a disjunct in δ(q), while the “universal” player (Pathfinder) chooses
a state in that disjunct. Automaton’s strategy is winning iff for any
Pathfinder’s strategy the resulting play satisfies the Rabin acceptance
(F, I). Note that Automaton has a winning strategy iff the 1-AHW is
non-empty; also, memoryless strategies suffice for Automaton.

Since the 1-AHW is non-empty, Automaton has a memoryless winning strategy.
We will construct rch and ρ from this strategy. For rch: set it to true if there is a
strategy for Pathfinder such that the state will reached. Let us prove that ρ exists.

Since states from different Qi can never form a cycle (due to the partial or-
der), ρ of states from different Qi are independent. Hence we consider two cases
separately: ρ for some QN

i and for some QU
i .

• The case of QN
i is simple: by the definition of the 1-AHW, we can have only

simple loops within QN
i . Any such reachable loop visits some state from

Acc ∩ QN
i . Consider such a loop: assign ρ for state q of the loop to be the

minimal distance from any state Acc ∩QN
i .

• The case of QU
i : in contrast, we can have simple and non-simple loops within

QU
i . But none of such loops visits Acc ∩ QU

i . Then, for each q ∈ QU
i assign

ρ to be the maximum bad-distance from any state of QU
i . The bad-distance

between q and q′ is the maximum number of Acc∩QU states visited on any
path from q to q′.

Direction⇐. The query is satisfiable means there is a model for rch. Note that
the query is Horn-like (. . .→ . . .), hence there is a minimal marking rch of states
that still satisfies the query45. Wlog., assume rch is minimal. Consider the subset
of the states of the 1-AHW that are marked with rch, and call it U . Note that U
is a 1-AHW and it has only universal transitions (i.e., we never mark more than
one disjunct of δ on the right side of . . . → δ(. . .)). Intuitively, U is a finite-state
representation of the (infinite) run-tree of the original 1-AHW.

Claim: the run-tree—the unfolding of U—is accepting. Suppose it is
not: there is a run-tree path that violates the acceptance. Consider
the case when the path is trapped in some QU

i . Then the path visits a
state in QU

i ∩ Acc infinitely often. But this is impossible since we use
co-Büchi ranking for QU

i . Contradiction. The case when the path is
trapped in some QN

i is similar—the Büchi ranking prevents from not
visiting Acc ∩QN

i infinitely often.

Thus, the 1-AHW is non-empty since it has an accepting run-tree (the unfolding
of U).

4Minimal in the sense that it is not possible to reduce the number of rch truth values by
falsifying some of rch.

5Non-minimality appears when δ of the alternating automaton has OR and the SMT solver
marks with rch more than one OR argument. Another case is when the solver marks some state
with rch but there is no antecedent requiring that.

39

3.3.3 Prototype Synthesizer for CTL∗

We implemented both approaches to CTL∗ synthesis described in Sections 3.3.1
and 3.3.2 inside the tool PARTY [57]: https://github.com/5nizza/party-elli

(branch “cav17”). In this section we illustrate the approach via AHTs.

The synthesizer works as follows:

(1) Parse the specification that describes inputs, outputs, and a CTL∗ formula
Φ.

(2) Convert Φ into a hesitant tree automaton using the procedure described
in [63], using LTL3BA [8] to convert path formulas into NBWs.

(3) For each system size k in increasing order (up to some bound):

– encode “∃Mk : Mk ⊗ AHT 6= ∅?” into SMT using Eq. 3.5 where
|Mk| = k

– call Z3 solver [34]: if the solver returns “unsatisfiable”, goto next iter-
ation; otherwise print the system in the dot graph format.

This procedure is complete, because there is a O(22|Φ|) bound on the size of the
system, although reaching it is impractical.

Running example: resettable 1-arbiter. Let I = {r}, O = {g}. Consider a
simple CTL∗ property of an arbiter

EG(¬g) ∧ AG(r → F g) ∧ AGEF¬g.

The property says: there is a path from the initial state where the system never
grants (including the initial state); every request should be granted; and finally, a
state without the grant should always be reachable. We now invite the reader to
Figure 3.3. It contains the AHT produced by our tool, and on its right side we
show the product of the AHT with the one-state system that does not satisfy the
property. The correct system needs at least two states and is on Figure 3.4.

Resettable 2-arbiter. Let I = {r1, r2}, O = {g1, g2}. Consider the formula

EG(¬g1 ∧ ¬g2) ∧ AGEF(¬g1 ∧ ¬g2) ∧
AG(r1 → F g1) ∧ AG(r2 → F g2) ∧ AG(¬(g1 ∧ g2)).

Note that without the properties with E, the synthesizer can produce the system
in Figure 3.5a which starts in the state without grants and then always grants
one or another client. Our synthesizer outputs the system in Figure 3.5b (in one
second).

Sender-receiver system. Consider a sender-receiver system of the following
structure. It has two modules, the sender (S) with inputs {i1, i2} and output wire
and the receiver (R) with input wire and outputs {o1, o2}.

40

https://github.com/5nizza/party-elli

q0

p0

r0

s0

t0 >

s1

¬g
Ar

Ar

Er

¬g
Er ¬g

g

Er

Ar

g

Er

¬g

g

Ar

r

Ar

¬g
¬g

r

Ar

q0,m

p0,m
r0,m

s0,m

s1,m

≤

>
≤

<

Figure 3.3: On the left: AHT for the CTL∗ formula EG¬g ∧ AGEF¬g ∧ AG(r →
F g). Green states are from the nondeterministic partion, red states are from the
universal partition, double states are final (a red final state is rejecting, a green
final state is accepting). State > denotes an accepting state. All transitions
going out of the black dots are conjuncted. For example, δ(q0,¬g) = ((r, p0) ∨
(¬r, p0))∧ ((r, r0)∧ (¬r, r0))∧ (r, s1)∧ ((r, s0)∧ (¬r, s0)). States s0 and s1 describe
the property AG(r → F g), state p0 — EG¬g, states r0 and t0 — AGEF¬g, state
t0 — EF¬g. (Note that some states, e.g. q0, do not have a transition for some
letters. We assume that non-existing transitions go into a non-rejecting self-loop
state for red (universal) states, and into a non-accepting self-loop state for green
(nondeterministic) states.)
On the right side is the product (1-AHW) of the AHT with the one state system

that never grants (thus it has m
true→ m and out(m) = ¬g). The edges are labeled

with the relation .q,q′ defined in Eq. 3.5. The product has no plausible annotation

due to the cycle (s1,m)
>→ (s1,m), thus the system does not satisfy the property.

Figure 3.4: The system that satisfies the property of the resettable 1-arbiter.

0

¬g
1

g

¬r

r

true

41

0

¬g1¬g2

1

¬g1g2

2

g1¬g2

r1 ∨ r2 true

r2

¬r2¬r1¬r2

(a) The case without E properties

0

¬g1¬g2

1

¬g1g2

2

g1¬g2

r2

¬r1¬r2
r1¬r2

¬r2

true

r2

(b) The case with E properties

Figure 3.5: Synthesized systems for the resettable arbiter example

0 wire ≡ ¬i1¬i2

(a) The sender (Mealy machine)

0

o1¬o2

3

¬o1o2

1

o1o2

2

¬o1¬o2

¬wire

wire

¬wire

w
ire

true

wire¬w
ir
e

(b) The receiver (Moore machine)

Figure 3.6: The synthesized system for the sender-receiver example

S R

i1
i2

wire
o1
o2

The sender can send one bit over the wire to the re-
ceiver. We would like to synthesize the sender and re-
ceiver modules that satisfy the following CTL∗ formula
over I = {i1, i2} and O = {o1, o2}:

AG((i1 ∧ i2)→ F(o1 ∧ o2))∧
AG((i1 ∧ i2 ∧ o1 ∧ o2)→ X(o1 ∧ o2))∧
AG(EF(o1 ∧ ¬o2) ∧ EF(¬o1 ∧ o2) ∧ EF(¬o1 ∧ ¬o2) ∧ EF(o1 ∧ o2)).

Our tool does not support distributed synthesis, so we manually adapted the SMT
query it produced, by introducing the following uninterpreted functions.

• For the sender: the transition function τs : Ts × 2{i1,i2} → Ts and the output
function outs : Ts × 2{i1,i2} → B. We set Ts to have a single state.

• For the receiver: the transition function τr : Tr×2{wire} → Tr and the output
functions o1 : Tr → B and o2 : Tr → B. We set Tr to have four states.

It took Z3 solver about 1 minute to find the solution shown in Figure 3.6.

3.3.4 Discussion of Bounded Synthesis from CTL∗

We described two approaches to the CTL∗ synthesis and the only (to our knowl-
edge) synthesizer supporting CTL∗. (For CTL synthesis see [60, 33, 74], and [10]
for PCTL.) The two approaches are conceptually similar. The approach via di-
rect encoding is easier to code. The approach via alternating hesitant automata

42

hints, for example, at how to reduce CTL∗ synthesis to solving safety games: via
bounding the number of visits to co-Büchi final states and bounding the distance
to Büchi final states, and then determinizing the resulting automaton. A possible
future direction is to extend the approach to the logic ATL* and distributed sys-
tems. In the next chapter, we show how CTL∗ synthesis can be reduced to LTL
synthesis, which avoids developing specialized CTL∗ synthesisers, presented here.

43

44

Chapter 4

CTL∗ Synthesis via LTL Synthesis

This chapter is based on joint work with Roderick Bloem and Sven Schewe [23].

Abstract. We reduce synthesis for CTL∗ properties to synthesis for
LTL. In the context of model checking this is impossible — CTL∗ is
more expressive than LTL. Yet, in synthesis we have knowledge of the
system structure and we can add new outputs. These outputs can
be used to encode witnesses of the satisfaction of CTL∗ subformulas
directly into the system. This way, we construct an LTL formula, over
old and new outputs and original inputs, which is realisable if, and only
if, the original CTL∗ formula is realisable. The CTL∗-via-LTL synthesis
approach preserves the problem complexity, although it might increase
the minimal system size. We implemented the reduction, and evaluated
the CTL∗-via-LTL synthesiser on several examples.

4.1 Introduction

The problem of reactive synthesis was introduced by Church for Monadic Second
Order Logic [28]. Later Pnueli introduced Linear Temporal Logic (LTL) [70] and
together with Rosner proved 2EXPTIME-completeness of the reactive synthesis
problem for LTL [71]. In parallel, Emerson and Clarke introduced Computation
Tree Logic (CTL) [31], and later Emerson and Halpern introduce Computation
Tree Star Logic (CTL∗) [41] that subsumes both CTL and LTL. Kupferman and
Vardi showed [62] that the synthesis problem for CTL∗ is 2EXPTIME-complete.

Intuitively, LTL allows one to reason about infinite computations. The logic
has temporal operators, e.g., G (always) and F (eventually), and allows one to
state properties like “every request is eventually granted” (G(r → F g)). A system
satisfies a given LTL property if all its computations satisfy it.

In contrast, CTL and CTL∗ reason about computation trees, usually derived by
unfolding the system. The logics have—in addition to temporal operators—path
quantifiers : A (on all paths) and E (there exists a path). CTL forbids arbitrary
nesting of path quantifiers and temporal operators: they must interleave. E.g.,
AG g (“on all paths we always grant”) is a CTL formula, but AGF g (“on all paths
we infinitely often grant”) is not a CTL formula. CTL∗ lifts this limitation.

45

The expressive powers of CTL and LTL are incomparable: there are systems
indistinguishable by CTL but distinguishable by LTL, and vice versa. One impor-
tant property inexpressible in LTL is the resettability property: “there is always
a way to reach the ‘reset’ state” (AGEF reset).

There was a time when CTL and LTL competed for “best logic for model
checking” [81]. Nowadays most model checkers use LTL, because it is easier for
designers to think about paths rather than about trees. LTL is also prevalent in
reactive synthesis. SYNTCOMP [1]—the reactive synthesis competition with the
goal to popularise reactive synthesis—has two distinct tracks, and both use LTL
(or variants) as their specification language.

Yet LTL leaves the designer without structural properties. One solution is to
develop general CTL∗ synthesisers like the one we developed in Chapter 3. Another
solution is to transform the CTL∗ synthesis problem into the form understandable
to LTL synthesisers, i.e., to reduce CTL∗ synthesis to LTL synthesis. Such a
reduction would automatically transfer performance advances in LTL synthesisers
to a CTL∗ synthesiser. In this chapter we show one such reduction.

Our reduction of CTL∗ synthesis to LTL synthesis works as follows.

First, recall how the standard CTL∗ model checking works (see page 2). The
verifier introduces a proposition for every state subformula—formulas starting with
an A or an E path quantifier—of a given CTL∗ formula. Then the verifier anno-
tates system states with these propositions, in the bottom up fashion, starting
with propositions that describe subformulas over original propositions (system in-
puts and outputs). Therefore the system satisfies the CTL∗ formula iff the initial
system state is annotated with the proposition describing the whole CTL∗ formula
(assuming that the CTL∗ formula starts with A or E).

Now let us look into CTL∗ synthesis. The synthesiser has the flexibility to
choose the system structure, as long as it satisfies a given specification. We intro-
duce new propositions—outputs that later can be hidden from the user—for state
subformulas of the CTL∗ formula, just like in the model checking case above. We
also introduce additional propositions for existentially quantified subformulas—to
encode the witnesses of their satisfaction. Such propositions describe the direc-
tions (inputs) the environment should provide to satisfy existentially quantified
path formulas. The requirement that new propositions indeed denote the truth of
the subformulas can be stated in LTL. For example, for a state subformula Aϕ,
we introduce proposition pAϕ, and require G [pAϕ → ϕ′], where ϕ′ is ϕ with state
subformulas substituted by the propositions. For an existential subformula Eϕ, we
introduce proposition pEϕ and require, roughly, G

[
pEϕ → ((G dpEϕ

)→ ϕ′)
]
, which

states: if the proposition pEϕ holds, then the path along directions encoded by dpEϕ

satisfies ϕ′ (where ϕ′ as before). We wrote “roughly”, because there can be several
different witnesses for the same existential subformula starting at different system
states: they may meet in the same system state, but depart afterwards—then, to
be able to depart from the meeting state, each witness should have its own direction
d. We show that, for each existential subformula, a number ≈ 2|ΦCTL∗ | of witnesses
is sufficient, where ΦCTL∗ is a given CTL∗ formula. This makes the LTL formula
exponential in the size of the CTL∗ formula, but the special—conjunctive—nature
of the LTL formula ensures that the synthesis complexity is 2EXPTIME wrt.

46

|ΦCTL∗|.
Our reduction is “if and only if” and preserves the synthesis complexity. How-

ever, it may increase the size of the system, and is not very well suited to establish
unrealisability. Of course, to show that a given CTL∗ formula is unrealisable, one
could reduce CTL∗ synthesis to LTL synthesis, then reduce the LTL synthesis
problem to solving parity games, and derive the unrealisability from there1. But
the standard approach for unrealisability checking—by synthesising the dualised
LTL specification—does not seem to be practical. The reason is that the LTL
formula ΦLTL is exponential in the size |ΦCTL∗ | of the CTL∗ formula. The negated
LTL formula ¬Φ (used in the dualised specification) is a big disjunction (vs. big
conjunction for ΦLTL), which makes a corresponding universal co-Büchi automaton
doubly-exponential in |ΦCTL∗ | (vs. singly-exponential for ΦLTL). The double expo-
nential blow up in the size of the automaton—which is used as input to bounded
synthesis—makes this unrealisability check impractical 2.

Finally, we have implemented3 the converter from CTL∗ into LTL, and evalu-
ated our CTL∗-via-LTL synthesis approach, using two LTL synthesisers and CTL∗

synthesiser (Chapter 3), on several examples. The experimental results show that
such an approach works very well—outperforming the specialised CTL∗ synthesiser
(Chapter 3)—when the number of CTL∗-specific formulas is small.

The chapter depends on notions defined in Chapter 2 and is structured as fol-
lows. In the next Section 4.2 we present the main contribution: the reduction.
Then Section 4.3 briefly discusses checking unrealisability of CTL∗ specifications.
Section 4.4 describes the experimental setup, specifications, solvers used, and syn-
thesis timings, and Section 4.5 concludes.

4.2 Converting CTL∗ to LTL for Synthesis

In this section, we describe how and why we can reduce CTL∗ synthesis to LTL
synthesis. First, we recall the standard approach to CTL∗ synthesis, then describe,
step by step, the reduction and the correctness argument, and then discuss some
properties of the reduction.

4.2.1 LTL Encoding

Let us first look at standard automata based algorithms for CTL∗ synthesis [62].
When synthesising a system that realizes a CTL∗ specification, we normally do
the following.

• We turn the CTL∗ formula into an alternating hesitant tree automaton A.

• Move from computation trees to annotated computation trees that move

1Reducing LTL synthesis to solving parity games is practical, as SYNTCOMP’17 [1] showed:
such synthesiser ltlsynt was among the fastest.

2This is a conjecture: we have not proven that the synthesis of dualised LTL formulas,
produced by our reduction, takes triply exponential time.

3Available at https://github.com/5nizza/party-elli, branch “cav17”

47

https://github.com/5nizza/party-elli

the (memoryless) strategy of the verifier4 into the label of the computation
tree. This allows for using the derived universal co-Büchi tree automaton U ,
making the verifier deterministic: it does not make any decisions, as they
are now encoded into the system;

• Determinise U to a deterministic tree automaton D.

• Play an emptiness game for D.

• If the verifier wins, his winning strategy (after projection of the additional
labels) defines a system, if the spoiler wins, the specification is unrealisable.

We draw from this construction and use particular properties of the alternating
hesitant tree automaton A. Namely, A is not a general alternating tree automaton,
but is an alternating hesitant tree automaton. Such an automaton is built from
a mix of nondeterministic Büchi and universal co-Büchi word automata, called
“existential word automata” and “universal word automata”. These universal and
existential word automata start at any system state [tree node] where a universally
or existentially, respectively, quantified subformula is marked as true in the an-
notated system [annotated computation tree]. We use the term “existential word
automata” to emphasise that the automaton is not only a non-deterministic word
automaton, but it is also used in the alternating tree automaton in a way, where
the verifier can pick the system [tree] path, along which it has to accept.

We will use the following notions defined on page 22: the set F of state sub-
formulas of a given CTL∗ formula Φ, the set of corresponding propositions P , and
the top-level Boolean formula Φ̃.

Example 2 (Word and tree automata). Consider the formula EGEX(g∧X(g∧F¬g))
where inputs I = {r} and outputs O = {g}. The set F = {fEG = EG pEX, fEX =

EX(g ∧ X(g ∧ F¬g))}, the set P = {pEX, pEG}, and Φ̃ = pEG. Figure 4.1 shows the
nondeterministic word automata for the path formulas of the subformulas, and the
alternating (actually, nondeterministic) tree automaton for the whole formula. In
what follows, we work mostly with word automata.

We are going to show how and why we can reduce CTL∗-synthesis to LTL
synthesis. The argument is split into steps (a), (b), (c), (d), and (e). Figure 4.2
summarises the steps.

Step A (the starting point). The verifier takes as input: a computation tree,
universal and existential word automata for the CTL∗ subformulas, and the top-
level proposition corresponding to the whole CTL∗ formula. It has to produce an
accepting run tree (if the computation tree satisfies the formula).

Step B. Given a computation tree, the verifier maps each tree node to a (universal
or existential word) automaton state, and moves from a node according to the
quantification of the automaton (either in all tree directions or in one direction).
The decision in which tree direction to move and which automaton state to pick for
the successor node, constitutes the strategy of the verifier. Each time the verifier

4Such a strategy maps, in each tree node, an automaton state to a next automaton state and
direction.

48

q0 q1 q2 q3 q4
1 g g

g

¬g
1

(a) NBW for X(g∧X(g∧F¬g)), the alphabet Σ = 2{r,g}. Transitions to the non-accepting
state sink are not shown.

q′0

pEX

(b) NBW for G(pEX), the alphabet Σ = 2{r,g,pEX}. The transition to the non-accepting
state sink is omitted.

1 E

E g g ¬g

1

E E E
E

gE

q′0 q1 q2 q3 q4

(c) Alternating hesitant tree automaton for EGEX(g∧X(g∧F¬g)) (actually it is nondeter-
ministic). The green color of the states indicate that they are from the nondeterministic
partition of the states (and thus double-circled states are from the Büchi acceptance
condition). The edges starting in the filled triangle are connected with ∧. Edge label E
abbreviates the set of edges, for each tree direction, connected with ∨. Thus, the transi-
tion from q′0 is ((q′0, r) ∨ (q′0,¬r)) ∧ ((q1, r) ∨ (q1,¬r)). To get an alternating automaton
for AGEX(...), replace in the self-loop edge of q′0 label E with A, and make the state
non-rejecting (these also move the state into the universal partition of the states).

Figure 4.1: Word and tree automata.

has to move in several tree directions (this happens when the node is annotated
with a universal word automaton state), we spawn a new version of the verifier,
for each tree direction and transition of the universal word automaton.

The strategy of the verifier is a mapping of states of the existential word au-
tomata to a decision, which consists of a tree direction (the continuation of the
tree path, along which the automaton shall accept) and an automaton successor
state transition. For every node n, this is a mapping dec : Q→ 2I ×Q such that
dec(q) = (e, q′) implies that q′ ∈ δ

(
q, (l(n), e)

)
, where δ corresponds to the exis-

tential word automaton to which q belongs, and l(n) ∈ 2O is a label of the current
tree node n5. Note that strategies are defined per-node-basis, i.e., dec may differ
in two different nodes n1 and n2. (All node labels depend on the current node,
but we will omit specifying this explicitly.) Notice that the strategy is memoryless
wrt. the history of automata states.

We call a model, in which every state is additionally annotated with a ver-
ifier strategy, an annotated model. Similarly, an annotated computation tree is
a computation tree in which every node is additionally annotated with a verifier
strategy. Thus, in both cases, every system state [node] is labeled with: (i) original
propositional labeling out : O → B, (ii) propositional labeling for universal and
existential subformulas F = Funiv ∪̇ Fexist, p : F → B, and (iii) decision labeling
dec : Q→ 2I ×Q where Q are the states of all existential automata.

5The verifier, when in the tree node or system state, moves according to this strategy.

49

universal and existential
word automata

computation tree with labels
out O B(: →)

accepting
run tree

Verifier:
- chooses directions
 for existential transitions
- chooses next-states
 for existential transitions
- spawns new verifiers on
 universal transitions

(a) The verifier takes a computation tree, universal and existential word automata, and
the top-level proposition, that together encode a given CTL∗ formula. It produces an
accepting run tree (if the computation tree satisfies the formula).

universal and existential
word automata

computation tree with labels
out O B p F B dec Q Q(: → , : → , : → ×I)

accepting
run tree

Verifier:
- follows encoded directions
 for existential transitions
- follows encoded next-states
 for existential transitions
- spawns new verifiers on
 universal transitions

(b) We encode the verifier decisions into annotated computation trees, making the verifier
deterministic. Figure 4.3b shows such an annotated computation tree.

universal and existential
word automata

computation tree with labels
out O B p F B(: → , : → ,

 id Q k: →{1,…, },
 d k: {1,..., }→I succ Q Q, : →)

accepting
run tree

Verifier:
- follows encoded directions
 for existential transitions
- follows encoded next-states
 for existential transitions
- spawns new verifiers on
 universal transitions

(c) The new annotation is a re-phrasing of the previous one. Figure 4.4 gives an example.

universal and existential
word automata

computation tree with labels
out O B v F(: → , :

exist
 k → {0,..., },

 d k: {1,..., }→I p,
univ

 F:
univ

B→)
accepting
run tree

Verifier:
- follows encoded directions
 for existential transitions
- chooses next-states
 for existential automata
- spawns new verifiers on
 universal transitions

(d) We keep directions in the annotation but remove next-states—now the verifier has
to choose. Figure 4.5 gives an example. The change from the label id : Q → {1, ..., k}
to the label v : Fexist → {0, ..., k} is the reason why the system size can increase.

LTL formula
universal word automata()

computation tree with labels
out O B v F(: → , :

exist
k→{0,..., },

 d k: {1,..., }→I)
accepting
run tree

Verifier:
- spawns new verifiers on
 universal transitions

(e) Now the obligation of the verifier can be stated in LTL (or using universal co-Büchi
word automata).

Figure 4.2: Steps in the correctness argument. We transform the input to the
verifier and its task, step by step. We begin with a computation tree labeled with
2O and end with a computation tree labeled additionally with v : Fexist → {0, ..., k}
and d : {1, ..., k} → I. (Calligraphic I denotes 2I .) This is about verifying a given
computation tree (labels are fixed), in synthesis we would search for such a tree.

50

r

r̄r̄ r
ḡ gq0 7→(q1,r)

q′0 7→(q′0,r)
q0 7→(q1,r)
q′0 7→(q′0,r)

q3 7→(q4,r̄) q1 7→(q2,r)
q2 7→(q3,r̄)q4 7→(q4,r̄)

pEXpEX,pEG

(a) An annotated system satisfying EGEX(g ∧ X(g ∧ F¬g)). Near the nodes is the
annotation that encodes the winning strategy of the verifier, the label pEX means the
subformula EX(g∧X(g∧F¬g)) holds, the label pEG means the subformula EG pEX holds.

...

ḡ

g

g ḡ

ḡgḡg

g ḡ g ḡ g ḡ g ḡ

q0 7→(q1,r)
q′0 7→(q′0,r)

q1 7→(q2,r)
q0 7→(q1,r)
q′0 7→(q′0,r)

q2 7→(q3,r)
q1 7→(q2,r)

q′0 7→(q′0,r)

q2 7→(q3,r̄)
q3 7→(q3,r̄)

q′0 7→(q′0,r)

q0 7→(q1,r)

q1 7→(q2,r)
q0 7→(q1,r)

pEX,pEG

pEX

pEX

pEX

(b) An annotated computation tree that satisfies EGEX(g∧X(g∧F¬g)). The root node
is called ε, its left child r, the left child of node r is rr, and so on. Let pEG correspond to
EG(pEX) and let pEX correspond to EX(g ∧ X(g ∧ F¬g)). The annotation for the verifier
strategy is on the left side of nodes, and decisions for non mapped states are irrelevant.
Paths used by the winning strategy are depicted using dashed and colored lines. The
black dashed path witnesses pEG, the blue path witnesses pEX starting in the root node
ε, the pink path witnesses pEX starting in the node r, and so on. The pink and blue
paths share the tail. Note that this particular annotated computation tree is not the
unfolding of the annotated system above: in the annotated system the right state maps
q2 7→ (q3, r̄), while in the tree the node rr has q2 7→ (q3, r). (This is done to illustrate
that mapped out tree paths can share the tail.)

Figure 4.3: Annotated system and computation tree.

Example 3. Figure 4.3 shows an annotated system and computation tree.

Step C. The verifier strategy (encoded in the annotated computation tree) en-
codes both the words on which the nondeterministic automata are interpreted
and witnesses of acceptance (accepting automata paths on those words). For the
encoding in LTL that we will later use, it is enough to map out the word, and
replace the witness by what it actually means: that the automaton word satisfies
the respective path formula. I.e., if a proposition p corresponding to an existential
formula Eϕ holds in a tree node, then it will be enough to require that ϕ holds on
the path starting in that node and that follows the directions encoded in the tree.

Example 4. Let us look at Figure 4.3b to understand the notions of mapped out
paths and words. For every proposition marking a tree node there is a mapped
out path. Consider the root node labeled with pEX and pEG and look at pEG first.
The proposition pEG corresponds to EG pEX and is associated with the NBW in

51

Figure 4.1b that has the initial state q′0. We consult the strategy q′0 7→ (q′0, r)
and move in direction r into node r (note that the root is labeled pEX and thus
we can transit q′0

r→ q′0). In the node r we consult the strategy q′0 7→ (q′0, r)
and again move in direction r into node rr, and so on. This way we map out
the tree path ε, r, rr, ... for pEG from the root, and the corresponding mapped out
word is (ḡ, pEX, r)(g, pEX, r)

ω. Now consider the root label pEX that corresponds to
EX(g ∧ X(g ∧ F¬g)) and is associated with the NBW in Figure 4.1a. We consult
the strategy q0 7→ (q1, r) that tells us to move in direction r into node r (again,

note that the root label g makes it possible to transit q0
g→ q1). In the node r

we consult the strategy q1 7→ (q2, r) and move into node rr, while the automaton
state advances to q2. From the node rr the strategy q2 7→ (q3, r) directs us into
node rrr, then the node rrr has the strategy q3 7→ (q3, r̄), and so on. Thus, from
the root for the proposition pEX the strategy maps out the path ε, r, rr, rrr, rrr̄, ...
and the word (ḡ, r)(g, r)(g, r)(g, r̄)(ḡ, r̄)ω.

Let two tree paths be equivalent if they share a tail (equivalently, if one is the
tail of the other). Our interest will be in equivalence of mapped out tree paths.

There is a simple sufficient condition for two mapped out tree paths to be
equivalent: if they pass through the same node of the annotated computation tree
in the same automaton state, then they have the same future, and are therefore
equivalent. The condition is sufficient but not necessary6.

Example 5. In Figure 4.3b the blue and pink paths are equivalent, since they share
a tail. The sufficient condition fires in the node rrrr̄, where the tree paths meet in
the automaton state q3

The sufficient condition implies that we cannot have more non-equivalent tree
paths passing through a tree node than there are states in all existential word
automata, let us call this number k: k = sumEϕ∈Fexist |Qϕ|, where Qϕ are the states
of an NBW for ϕ. For each tree node, we assign unique numbers from {1, ..., k} to
equivalence classes, and thus any two non-equivalent tree paths that go through
the same tree node have different numbers. As this is an intermediate step in our
translation, we are wasteful with the labeling:

(1) for every node n, we map existential word automata states to numbers (IDs)
using id : Q→ {1, . . . , k}, we also use labels d : {1, . . . , k} → 2I (“direction
to take”) and succ : Q → Q (“successor to take”), such that succ(q) ∈
δ
(
q,
(
l(n), d(id(q))

))
, and

(2) we maintain the same state ID along the chosen direction:
idn(q) = idn·e(succn(q)), where the subscript denotes a node to which the
label belongs and e = dn(idn(q)).

Note that every annotated computation tree can be re-labeled in the above way.
Indeed: the item (1) alone can be viewed as a re-phrasing of the labeling dec that

6Recall that each mapped out tree path corresponds to at least one copy of the verifier that
ensures the path is accepting. When two verifiers go along the same tree path, it can be annotated
with different automata states (for example, corresponding to different automata). Then such
paths do not satisfy the sufficient condition, although they are trivially equivalent.

52

...

ḡ

g

g ḡ

ḡgḡg

g ḡ g ḡ g ḡ g ḡ

q0 7→(1,q1),1 7→r

q1 7→(1,q2),17→r
q0 7→(1,q1)

q2 7→(1,q3),1 7→r
q1 7→(1,q2)

q2 7→(1,q3)
q3 7→(1,q3),17→r̄

q0 7→(2,q1),27→r

q1 7→(2,q2),27→r
q0 7→(3,q1),3 7→r

q′0 7→(4,q′0),4 7→r

q′0 7→(4,q′0),47→r

q′0 7→(4,q′0),4 7→r

q′0 7→(4,q′0),47→r

pEX,pEG

pEX

pEX

pEX

Figure 4.4: A re-labeled computation tree. Notation “q0 7→ (1, q1)” means id(q0) =
1 and succ(q0) = q1, and “1 7→ r” means d maps 1 to {r}. Since the blue and
pink paths are equivalent, the label id maps the corresponding automata states in
the nodes to the same number, 1. The IDs of the green and yellow paths differ
implying that they are not equivalent and hence do not share the tail (their tails
cannot be seen in the figure).

we had before on page 49, and the requirement (2) is satisfiable because a tree path
maintains its equivalence class. This step is shown in Figure 4.2c, the labels are:
(out : O → B, p : F → B, id : Q→ {1, . . . , k}, d : {1, . . . , k} → 2I , succ : Q→ Q).

Figure 4.4 shows a re-labeled computation tree of Figure 4.3b.

Step D. In the new annotation with labels (out, p, id, d, succ), labeling d alone
maps out the tree path for each ID. The remainder of the information is mainly
there to establish that the corresponding word is accepted by the respective word
automaton (equivalently: satisfies the respective path formula). If we use only d,
then the only missing information is where the path starts and which path formula
it belongs to—the information originally encoded by p.

We address these two points by using numbered computation trees. Recall that
the annotated computation trees have a propositional labeling p : F → B that
labels nodes with subformulas. In the numbered computation trees, we replace p
for existential subformulas Fexist ⊆ F by labeling v : Fexist → {0, ..., k}, where for
every existentially quantified formula Eϕ ∈ Fexist and a tree node n:

• vEϕ,n = 0 encodes that no claim that Eϕ holds in n is made (similarly to the
proposition pEϕ being false in the annotated tree), whereas

• a value vEϕ,n ∈ {1, ..., k} requires that the word of a tree path with ID vEϕ,n

starting in n and that follows d(vEϕ,n) satisfies ϕ, i.e., the word corresponding
to n, n·dn(vEϕ,n), n·dn(vEϕ,n)·dn·dn(vEϕ,n)(vEϕ,n), ... satisfies ϕ (where dn denotes
d in node n).

Example 6. The tree in Figure 4.4 becomes a numbered computation tree if we
replace the propositional labels pEX and pEG with ID numbers as follows. The root
ε has vEX = 1 and vEG = 4, the left child r has vEX = 1, the node rr has vEX = 2, the
node rrr has vEX = 3. Note that id(q0) = vEX and id(q′0) = vEG whenever those vs
are non-zero. The nodes outside of the dashed path have vEX = vEG = 0, meaning
that no claims about satisfaction of the corresponding path formulas is made.

53

...

ḡ

g

g ḡ

ḡgḡg

g ḡ g ḡ g ḡ g ḡ

17→r
47→r

vEX=1,vEG=4

47→r
17→r
vEX=1

47→r
vEX=2

17→r
27→r

4 7→r
vEX=3

17→r̄
27→r
37→r

Figure 4.5: Numbered computation tree with redundant annotations removed.

Initially, we use ID labeling v in addition with (out, id, d, succ, puniv), where
puniv is a restriction of p on Funiv, and then there is no relevant change in the
way the (deterministic) verifier works. I.e., a numbered computation tree can be
turned into annotated computation tree, and vice versa, such that the numbered
tree is accepted iff the annotated tree is accepted.

Now we observe that the labelings id and succ are used only to witness that
each word mapped out by d is accepted by respective existential word automata.
I.e., id and succ make the verifier deterministic. Let us remove id and succ from
the labeling. We call such trees lean-numbered computation trees ; they have label-
ing (out : O → B, v : Fexist → {0, ..., k}, d : {1, ..., k} → 2I , puniv : Funiv → B). This
makes the verifier nondeterministic. We still have the property that every accept-
ing annotated computation tree can be turned into an accepting lean-numbered
computation tree, and vice versa. This step is shown in Figure 4.2d; an example
of a lean-numbered computation tree is in Figure 4.5.

Step E (the final step). We show how labeling (out, v, d, puniv) allows for using
LTL formulas instead of directly using automata for the acceptance check. The
encoding into LTL is as follows.

• For each existentially quantified formula Eϕ, we introduce the following LTL
formula (recall that vEϕ = 0 encodes that we do not claim that Eϕ holds in
the current tree node, and vEϕ 6= 0 means that Eϕ does hold and ϕ holds if
we follow vEϕ-numbered directions):∧

j∈{1,...,k}

G
[
vEϕ = j →

(
G dj → ϕ′

)]
, (4.1)

where ϕ′ is obtained from ϕ by replacing the subformulas of the form Eψ by
vEψ 6= 0 and the subformulas of the form Aψ by pAψ.

• For each subformula of the form Aϕ, we simply take

G
[
pAϕ → ϕ′

]
, (4.2)

where ϕ′ is obtained from ϕ as before.

54

¬g
pAG(vEF ḡ 6=0)

vEFḡ = vEGḡ = 2, d2 = ¬r
vEFg = 3, d3 = r t0

g vEFḡ = 2, d2 = r
vEGḡ = vEFg = 0

t1

r

r

¬r¬r

Figure 4.6: A Moore machine for Example 7. The witness for EG¬g is: vEGḡ(t0) =
2, we move along d2 = ¬r looping in t0, thus the witness is (t0)ω. The witness
for EF g: since vEFg(t0) = 3, we move along d3 = r from t0 to t1, where d3 is
not restricted, so let d3 = ¬r (not drawn) and then the witness is t0(t1)ω. The
satisfaction of AGEF¬g means that every state has vEFḡ 6= 0, which is true. In
t0 we have ¬g, so EF¬g is satisfied; for t1 we have vEFḡ(t1) = 2 hence we move

t1
r→ t0 and EF¬g is also satisfied.

• Finally, the overall LTL formula is the conjunction

Φ′ ∧
∧

Eϕ∈Fexist

Eq.4.1 ∧
∧

Aϕ∈Funiv

Eq.4.2 (4.3)

where the Boolean formula Φ′ is obtained by replacing in the original CTL∗

formula every Eϕ by vEϕ 6= 0 and every Aϕ by pAϕ.

Example 7. Let I = {r}, O = {g}. Consider the CTL formula

EG¬g ∧ AGEF¬g ∧ EF g.

The sum of states of individual NBWs is 5 (assuming the natural translations),
so we introduce integer propositions vEFḡ, vEGḡ, vEFg, ranging over {0, ..., 5}, and
five Boolean propositions d1, ..., d5; we also introduce the Boolean proposition
pAG(vEFḡ 6=0). The LTL formula is:

vEGḡ 6= 0 ∧ pAG(vEFḡ 6=0) ∧ vEFg 6= 0 ∧

∧
j∈{1...5}

G

 vEFḡ = j → (G dj → F¬g)

vEGḡ = j → (G dj → G¬g)

vEFg = j → (G dj → F g)

 ∧
G
[
pAG(vEFḡ 6=0) → G(vEFḡ 6= 0)

]
.

Figure 4.6 shows a system satisfying the LTL specification.

Remark 7 (We need propositions for universal subformulas). It is intuitively clear
that we need new propositions for existential subformulas. But it is tempting to
believe that we can skip introducing new propositions for universal subformulas
and directly use the subformulas instead of the propositions. This is wrong. Con-
sider the CTL∗ formula AFAG g. Our reduction produces the LTL formula

pAF ∧ G[pAF → F pAG] ∧ G[pAG → G g].

If we substitute the new propositions with what they express (pAF by F pAG and
pAG by G g), then we get FG g. But AFAG g is different from AFG g.

55

The whole discussion leads us to the theorem.

Theorem 11. Let I be the set of inputs and O be the set of outputs, and ΦLTL be
derived from a given ΦCTL∗ as described above. Then:

ΦCTL∗ is realisable ⇔ ΦLTL is realisable.

4.2.2 Complexity

The translated LTL formula ΦLTL, due to Eq. 4.1, in the worst case, can be ex-
ponentially larger than ΦCTL∗ , |ΦLTL| = 2Θ(|ΦCTL∗ |). Yet, the upper bound on the

size of UCWΦLTL
is 2Θ(|ΦCTL∗ |) rather than 2Θ(|ΦLTL|) = 22Θ(|ΦCTL∗ |) , because:

• the size of the UCW is additive in the size of the UCWs of the individual
conjuncts, and

• each conjunct UCW has almost the same size as a UCW of the corresponding
subformula, since, for every LTL formula ϕ, |UCWG[p→(Gd→ϕ)]| = |UCWϕ|+
1.7

Determinising UCWΦLTL
gives a parity game with up to 22Θ(|ΦCTL∗ |) states and

2Θ(|ΦCTL∗ |) priorities [78, 68, 77]. The recent quasipolynomial algorithm [26] for
solving parity games has a particular case for n states and log(n) many priorities,
where the time cost is polynomial in the number of game states. This gives us
O(22|ΦCTL∗ |)-time solution to the derived LTL synthesis problem. The lower bound
comes from the 2EXPTIME-completeness of the CTL∗ synthesis problem [76].

Theorem 12. Our solution to the CTL∗ synthesis problem via the reduction to
LTL synthesis is 2EXPTIME-complete.

Minimality

Although the reduction to LTL synthesis preserves the complexity class, it does
not preserve the minimality of the systems. Consider an existentially quantified
formula Eϕ. A system path satisfying the formula may pass through the same
system state more than once and exit it in different directions.8 Our encoding
forbids that.9 I.e., in any system satisfying the derived LTL formula, a system
path mapped out by an ID has a unique outgoing direction from every visited
state. As a consequence, such systems are less concise. This is illustrated in the
following example.

7To see this, recall that we can get UCWψ by treating NBW¬ψ as a UCW, and notice that
|NBWF[p∧Gd∧¬ϕ]| = |NBW¬ϕ|+ 1.

8E.g., in Figure 4.3a the system path t0t1t1(t0)ω, satisfying EX(g∧X(g∧F¬g)), double-visits
state t1 and exits it first in direction r and then in ¬r, where t0 is the system state on the left
and t1 is on the right.

9Recall that with Eϕ we associate a number vEϕ, such that whenever in a system state vEϕ

is non-zero, then the path mapped out by vEϕ-numbered directions satisfies the path formula ϕ.
Therefore whenever vEϕ-numbered path visits a system state, it exits it in the same direction
dvEϕ

.

56

¬g

v = 1
d1 = ¬r

t0

g d1 = r

t1

gt2 d1 = r

¬r

¬r

r
1

r

Figure 4.7: A smallest Moore machine satisfying the LTL formula from Example 8.

Example 8 (Non-minimality). Let I = {r}, O = {g}, and consider the CTL∗

formula
EX(g ∧ X(g ∧ F¬g))

The NBW automaton for the path formula has 5 states (Figure 4.1a), so we in-
troduce the integer proposition v ranging over {0, ..., 5} and Boolean propositions
d1, d2, d3, d4, d5. The LTL formula is

v 6= 0 ∧
∧

j∈{1...5}

G
[
v = j → (G dj → X(g ∧ X(g ∧ F¬g)))

]
A smallest system for this LTL formula is in Figure 4.7. It is of size is 3, while a
smallest system for the original CTL∗ formula is of size 2 (Figure 4.3a).

4.2.3 Bounded Reduction

While we have realisability equivalence for sufficiently large k, k is a parameter,
where much smaller k might suffice. In the spirit of Bounded Synthesis, it is
possible to use smaller parameters in the hope of finding a system. These systems
might be of interest in that they guarantee a limited entanglement of different
mapped out paths, as they cap the number of such paths that can go through the
same node of a tree. Such systems are therefore simple wrt. this metric, and this
metric is independent of the automaton representation. (As opposed to a lower
bound for k that depends on the existential automata.)

4.3 Checking Unrealisability of CTL∗

What does a witness of unrealisability for CTL∗ look like? I.e., when a formula
is unrealisable, is there an “environment model”, like in the LTL case, which
disproves any system model?

The LTL formula and the annotation shed light on this: the system for the
dualised case is a strategy how to choose original inputs (depending on the history
of v, d, p, and original outputs), such that any path in the resulting tree violates
the original LTL formula. I.e., the spoiler strategy is a tree, whose nodes are
labeled with original inputs, and whose directions are defined by v, d, p, and
original outputs.

57

Example 9. Consider an unrealisable CTL∗ specification: AG g ∧ EFX¬g with in-
puts {r} and outputs {g}. After reduction to LTL we get the specification: inputs
{r}, outputs {g, pAGg, vEFXḡ, d1, d2}, and the LTL formula

pAGg ∧ vEFXḡ 6= 0 ∧ G
[
pAGg → G g

]
∧
∧

j∈{1,2}

G
[
(vEFXḡ = j ∧ G dj)→ FX¬g

]
.

The dual specification is: the system type is Mealy, new inputs {g, pAGg, vEFXḡ, d1, d2},
new outputs {r}, and the LTL formula is the negated original LTL:

pAGg ∧ vEFXḡ 6= 0 ∧ G
[
pAGg → G g

]
→

∨
j∈{1,2}

F
[
(vEFXḡ = j ∧ G dj) ∧ GX g

]
.

This dual specification is realisable, and it exhibits, e.g., the following witness of
unrealisability: the output r follows d1 or d2 depending on input vEFXḡ. (The new
system needs two states. State 1 describes “I’ve seen vEFXḡ ∈ {0, 1} and I output r
equal to d1”; from state 1 we irrevocably go into state 2 once vEFXḡ = 2 and make
r equal to d2).

Although our encoding allows for checking unrealisability of CTL∗ (via du-
alising the converted LTL specification), this approach suffers from a very high
complexity. Recall that the LTL formula can become exponential in the size of a
CTL∗ formula, which could only be handled because it became a big conjunction
with sufficiently small conjuncts. After negating it becomes a large disjunction,
which makes the corresponding UCW doubly exponential in the size of the ini-
tial CTL∗ specification (vs. single exponential for the non-negated case). This
seems—there may be a more clever analysis of the formula structure—to make the
unrealisability check via reduction to LTL cost three exponents in the worst case
(vs. 2EXP by the standard approach).

What one could try is to let the new system player in the dualised game choose
a number of disjunctive formulas to follow, and allow it to revoke the choice finitely
many times. This is conservative: if following m different disjuncts in the dualised
formula is enough to win, then the new system wins.

Alternatively, one could try to synthesise environment model for parts of the
disjunction increasing them until all disjunctions are used. This is precise.

4.4 Experiments

We implemented the CTL∗ to LTL converter ctl to ltl.py inside PARTY [57].
PARTY also has two implementations of Bounded Synthesis [46], one encodes the
problem into SMT and another reduces the problem to safety games. Also, PARTY
has a CTL∗ synthesiser based on Bounded Synthesis idea that encodes the problem
into SMT (presented in Chapter 3). In this section we compare those three solvers,
where the first two solvers take LTL formulas produced by our converter. All logs
and the code are available in repository https://github.com/5nizza/party-elli,
the branch “cav17”.

Specifications. We created realisable arbiter-like CTL∗ specifications. The num-
ber after the specification name indicates the number of clients. All specifications

58

https://github.com/5nizza/party-elli

have LTL properties in the spirit of “every request must eventually be granted”
and the mutual exclusion of the grants, plus some CTL∗ properties. Below we
provide details.

• “res arbiter” has the properties:∧
i 6=j AG¬(gi ∧ gj) ∧

∧
i AG(ri → F gi) ∧∧

i AGEFG(¬gi).

• “loop arbiter” has the properties:∧
i 6=j AG¬(gi ∧ gj) ∧

∧
i AG(ri → F gi) ∧∧

i AGEFG(¬gi)∧∧
i EFG gi.

• “postp arbiter” has the properties:∧
i 6=j AG¬(gi ∧ gj) ∧

∧
i AG(ri → F gi) ∧∧

i ¬gi ∧∧
i AGEF(¬gi ∧ ri ∧ X(¬gi ∧ ri ∧X¬gi)).

• “prio arbiter” has the properties:
A
[
GF¬rm→∧

i 6=j G¬(gi ∧ gj) ∧ G¬(gi ∧ gm) ∧
∧
i G(ri → F gi) ∧ G(rm→ F gm)∧

G(rm→ X(
∧
i ¬gi U gm)

]
∧∧

i AGEFG(¬gi) ∧ AGEFG(¬gm).
(It additionally has the prioritised request input rm and grant output gm.)

• “user arbiter” contains only existential properties that specify different se-
quences of requests and grants.

LTL formula and automata sizes. Our experiments confirm that the LTL
formulas increase ≈ |Q| times when k increases from 1 to |Q|, just as described by
Eq. 4.1. But the increase does not incur the exponential blow up of the UCWs:
they also increase only ≈ |Q| times (just like the theory predicts).

Synthesis time. The table below compares different synthesis approaches for
the (realisable) CTL∗ specifications described above. The column |CTL∗| is the
size of the non-reduced AST of the CTL∗ formula, the column |LTL| has two
numbers: the size of the non-reduced AST of the LTL formula for k = 1 (k is
the number of witness IDs) and the size for k being the upper bound (the sum
of the number of states in all existential automata). The column |AHT | is the
sum of the number of states in existential and universal automata. The column
|UCW | is the number of states in the UCW of the translated LTL formula: we
show two numbers, for k = 1 and when it is the upper bound. Timings are in
seconds, the timeout is 3 hours10 (denoted “to”). “Time CTL∗” is the synthesis
time and [system size] required for CTL∗ synthesizer star.py, “time LTL(SMT)”
— for synthesizer elli.py which implements the original Bounded Synthesis for
LTL via SMT [46], “time LTL(game)” — for synthesizer kid.py which implements
the original Bounded Synthesis for LTL via reduction to safety games [46]. Both

10Except for the last specification “user arbiter1” for which the timeout was 1 hour.

59

“time LTL” columns have two numbers: when k is set to the minimal value for
which the LTL is realisable, and when k is set to the upper bound. The subscript
near the number indicates the value of k: e.g., to8 means the timeout on all values
of k from 1 to |Q| = 8; to12(3) means there was the timeout for k = |Q| = 12
and the last non-timeout was for k = 3; 201 means 20 seconds and the minimal
k is 1. The running commands were: “elli.py --incr spec”, “star.py --incr

spec”, “kid.py spec”.

|CTL∗| |LTL|
(k1:k|Q|)

|AHT| |UCW|
(k1:k|Q|)

time
CTL∗

time
LTL(SMT)
(kmin:k|Q|)

time
LTL(game)
(kmin:k|Q|)

res arbiter3 65 78 : 127 9 7 : 9 25 [5] 401 : 2602 71 : 202

res arbiter4 97 109 : 168 10 8 : 10 7380 [7] to1 301 : 602

loop arbiter2 49 105 : 682 12 11 : 41 2 [4] 203 : 1316 183 : to6(5)

loop arbiter3 80 183 : 1607 15 14 : 70 6360 [7] to8 to8

postp arbiter3 113 177 : 2097 19 15 : 114 3 [4] 21 : 173512 201 : to12(3)

postp arbiter4 162 276 : 4484 24 19 : to 2920 [5] 681 : to16(5) 701 : to16(2)

prio arbiter2 82 92 : 141 13 14 : 16 60 [5] 141 : 192 91 : 172

prio arbiter3 117 125 : 184 15 16 : 18 to 43181 : to2 261 : 562

user arbiter1 99 203 : 4323 23 23 : to 3 [5] to16 to16

When the minimal k is 1, the game-based synthesiser is the fastest in most of
the cases. However, it struggles to find a system when we set k to a “large” num-
ber (see the timeouts in rows 3–6). The LTL part of specifications “res arbiter”
and “prio arbiter” is known to be easier for the game-based synthesiser than for
the SMT-based ones—adding the simple resettability property does not change
this. For CTL∗ specifications whose minimal k is “large” (“loop arbiter” and
“user arbiter” that requires k > 4), the specialised CTL∗ synthesiser outperforms
both the game-based and SMT-based synthesisers for the translated LTL speci-
fications. Our preliminary conclusion is that for CTL∗ specifications that do not
require large k, the reduction to LTL synthesis is beneficial. (Currently we do not
know how to predict if a large k is required.)

System sizes. The reduction did not increase the system size in most of the cases
(for the cases “loop arbiter3”, “res arbiter4”, and “user arbiter1” we do not know
the minimal system size when synthesising from the LTL specification).

4.5 Conclusion

We presented the reduction of CTL∗ synthesis problem to LTL synthesis problem.
The reduction preserves the worst-case complexity of the synthesis problem, al-
though possibly at the cost of larger systems. The reduction allows the designer
to write CTL∗ specifications even when she has only an LTL synthesiser at hand.
We experimentally showed—on the small set of specifications—that the reduction
is practical when the number of existentially quantified formulas is small.

We briefly discussed how to handle unrealisable CTL∗ specifications. Whether
our suggestions are practical on typical specifications—this is still an open ques-
tion. A possible future direction is to develop a similar reduction for logics like
ATL* [2], and to look into the problem of satisfiability of CTL∗ [43].

60

Part II

Excursion Into
Parameterized Systems

Guarded and Token-ring Systems

61

Overview of Part II

Concurrent systems are hard to implement and even harder to debug. On the
other side, they are relatively easy to specify. Consider, for example, the arbiter
serving many clients. A possible specification is ∀i 6= j.G¬(gi ∧ gj)∧G(ri → F gi),
which says that, for every client, every request should be eventually granted, and
the grants are mutually exclusive. If a human implements such an arbiter, he
would try to come up with a basic block that handles a single client, and connect
such a block into a system, that handles as many clients as needed. On the other
side, the computer tries to synthesize a system as one monolithic block. This hides
the insight that a system for n+ 1 clients is very similar to a system for n clients.
This leads to the scalability problem, once we require a large number of clients.

The parameterized synthesis approach [50] addresses the issue. The idea is—
just like the human would do—to automatically synthesize a basic block that can
be arranged into a system of any desired size. There are several ways to arrange
such blocks into a system, depending on how they communicate with each other.
In this thesis part we will look into two system architectures.

The first architecture is inspired by cache coherence protocols found in modern
processors. Such a protocol is described by states, where transitions between states
happen depending on whether or not there is a processor in a particular state. I.e.,
the transitions are guarded. Chapter 5 studies guarded systems.

The second kind of systems is token-ring systems. In such a system, the single
token circulates in the system. A process possessing the token knows that no other
process has the token. Based on this information, the process can, for example,
raise the grant. If all processes raise the grant only when they posses the token,
then the grants will be mutually exclusive. Chapter 6 studies token-ring systems.

For both architectures we study their parameterized synthesis problems. The
parameterized synthesis problems asks, given a parameterized specification, to find
a process implementation, such that a system of any size composed of such pro-
cesses, satisfies the specification. The solution to the seemingly difficult problem—
we now ask for correctness of a system of any size—is based on the cutoff reduction:
to synthesize a process that works for all system sizes, it is enough to synthesize a
process that works in a system of a cutoff size. For example, for the specification
of the arbiter mentioned above, the cutoff for token-ring systems is 4. This means
that it is enough to find a process implementation that works in a system with 4
such processes. Once we find it, a system of size 5, 6, 7,... is also correct.

In Chapter 5 we prove cutoff results for guarded systems. Our results extend
the results of Emerson and Kahlon [38]. Our contribution concerns both param-
eterized synthesis and parameterized verification. We prove new cutoff results
that are applicable to a previously unconsidered setting of open systems with live-
ness properties under fairness assumptions. We also prove new cutoff results for
deadlock detection. The work is theoretical; it is yet to find its application.

In Chapter 6 on token-ring systems, we extend the cutoffs of Emerson and
Namjoshi [40] to a new setting of fully asynchronous systems and richer specifica-
tions. Then we apply them to an industrial arbiter protocol called AMBA. Thus,
we synthesize for the first time the AMBA protocol in the parameterized sense.

63

The chapters can be read in any order.

64

Chapter 5

Parameterized Guarded Systems

This chapter is based on joint work with S.Außerlechner and S.Jacobs [7, 6]

Abstract. Guarded protocols were introduced in a seminal paper by
Emerson and Kahlon (2000), and describe systems of processes whose
transitions are enabled or disabled depending on the existence of other
processes in certain local states. In this chapter we study parameter-
ized model checking and synthesis of guarded protocols, both aiming
at formal correctness arguments for systems with any number of pro-
cesses. Cutoff results reduce reasoning about systems with an arbitrary
number of processes to systems of a determined, fixed size. Our work
stems from the observation that existing cutoff results for guarded pro-
tocols (i) are restricted to closed systems, and (ii) are of limited use
for liveness properties because reductions do not preserve fairness. We
close these gaps and obtain new cutoff results for open systems with
liveness properties under fairness assumptions. Furthermore, we ob-
tain cutoffs for the detection of global and local deadlocks, which are
of paramount importance in synthesis. Finally, we prove tightness or
asymptotic tightness for the new cutoffs.

5.1 Introduction

Concurrent hardware and software systems are notoriously hard to get right. For-
mal methods like model checking or synthesis can be used to guarantee correctness,
but the state explosion problem prevents us from using such methods for systems
with a large number of components. Furthermore, correctness properties are of-
ten expected to hold for an arbitrary number of components. Both problems can
be solved by parameterized model checking and synthesis approaches, which give
correctness guarantees for systems with any number of components without con-
sidering every possible system instance explicitly.

While parameterized model checking (PMC) is undecidable in general [79],
there exists a number of methods that decide the problem for specific classes of
systems [47, 37, 40], as well as semi-decision procedures that are successful in
many interesting cases [64, 29, 53]. In this chapter, we consider the cutoff method

65

that can guarantee properties of systems of arbitrary size by considering only
systems of up to a certain fixed size, thus providing a decision procedure for PMC
if components are finite-state.

We consider systems that are composed of an arbitrary number of processes,
each an instance of a process template from a given, finite set. Process templates
can be viewed as synchronization skeletons [36], i.e., program abstractions that
suppress information not necessary for synchronization. In our system model, pro-
cesses communicate by guarded updates, where guards are statements about other
processes that are interpreted either conjunctively (“every other process satisfies
the guard”) or disjunctively (“there exists a process that satisfies the guard”).
Conjunctive guards can model atomic sections or locks, disjunctive guards can
model token-passing or to some extent pairwise rendezvous (cf. [38]).

This class of systems has been studied by Emerson and Kahlon [37], and cutoffs
that depend on the size of process templates are known for specifications of the
form ∀p̄. Φ(p̄), where Φ(p̄) is an LTL\X property over the local states of one or
more processes p̄. Note that this does not allow us to specify fairness assump-
tions, for two reasons: (i) to specify fairness, additional atomic propositions for
enabledness and scheduling of processes are needed, and (ii) specifications with
global fairness assumptions are of the form (∀p̄. fair(p̄)) → (∀p̄. Φ(p̄)). Because
neither is supported by [37], the existing cutoffs are of limited use for reasoning
about liveness properties.

Emerson and Kahlon [37] mentioned this limitation and illustrated it using the
process template on the figure on the right. Transitions from the initial state N

N T C
true ∀{T,N}

true

to the “trying” state T , and from the critical state C to
N are always possible, while the transition from T to C
is only possible if no other process is in C. The existing
cutoff results can be used to prove safety properties like
mutual exclusion for systems composed of arbitrarily many copies of this tem-
plate. However, they cannot be used to prove starvation-freedom properties like
∀p.AG(Tp → FCp), stating that every process p that enters its local state Tp will
eventually enter state Cp, because without fairness of scheduling the property does
not hold.

Also, Emerson and Kahlon [37] consider only closed systems. Therefore, in
this example, processes always try to enter C. In contrast, in open systems the
transition to T might be a reaction to a corresponding input from the environment
that makes entering C necessary. While it is possible to convert an open system
to a closed system that is equivalent under LTL properties, this comes at the cost
of a blow-up.

Motivation. Our work is inspired by applications in parameterized synthesis [50],
where the goal is to automatically construct process templates such that a given
specification is satisfied in systems with an arbitrary number of components. In
this setting, one generally considers open systems that interact with an uncontrol-
lable environment (user). Also, most specifications contain liveness properties that
cannot be guaranteed without fairness assumptions. Note that in the parameter-
ized setting liveness properties cannot be reduced to safety properties, because the
size of a system is not bounded a priori. Finally, we are interested in synthesizing

66

deadlock-free systems. Cutoffs are essential for parameterized synthesis, because
they enable a semi-decision procedure to parameterized synthesis.

Contributions.

• We show that existing cutoffs for model checking of LTL\X properties are
in general not sufficient for systems with fairness assumptions, and provide
new cutoffs for this case.

• We improve some of the existing cutoff results, and give separate cutoffs for
the problem of deadlock detection, which is closely related to fairness.

• We prove tightness or asymptotical tightness for all of our cutoffs, showing
that smaller cutoffs cannot exist with respect to the parameters we consider.

Moreover, all of our cutoffs directly support open systems, where each process may
communicate with an adversarial environment. This makes the blow-up incurred
by translation to an equivalent closed system unnecessary. Finally, we will show
in Sect. 5.4 how to integrate our size-dependent cutoffs into the parameterized
synthesis approach.

5.2 Related Work

In this work we extend the results of Emerson and Kahlon [37] who study PMC of
guarded protocols, but do not support fairness assumptions, nor provide cutoffs for
deadlock detection. In [38] they extended their work to systems with limited forms
of guards and broadcasts, and also proved undecidability of PMC of conjunctive
guarded protocols wrt. LTL (including X), and undecidability wrt. LTL\X for
systems with both conjunctive and disjunctive guards.

Bouajjani et al. [24] study parameterized model checking of resource allocation
systems (RASs). Such systems have a bounded number of resources, each owned
by at most one process at any time. Processes are pushdown automata, and can
request resources with high or normal priority. RASs are similar to conjunctive
guarded protocols in that certain transitions are disabled unless a processes has
a certain resource. RASs without priorities and where all the processes are finite
state Moore machines can be converted to conjunctive guarded protocols (at the
price of blow up), but not vice versa. The authors study parameterized model
checking wrt. LTL\X properties under certain fairness assumptions, and deadlock
detection. Their proofs are based on ideas of [37] (our proofs are also based on
ideas of [37]).

German and Sistla [47] considered global deadlocks and strong fairness prop-
erties for systems with pairwise rendezvous communication in a clique. In such
systems, processes communicate pairwise using messages: one process sends a mes-
sage and blocks until another process reads the message. Emerson and Kahlon [38]
have shown that disjunctive guard systems can be reduced to such pairwise ren-
dezvous systems. However, German and Sistla [47] do not provide cutoffs, nor do
they consider deadlocks for individual processes, and their specifications can talk
about one process only. Aminof et al. [4] have recently extended these results to

67

more general topologies, and have shown that for some decidable parameterized
model checking problems there are no cutoffs, even in cliques.

Many of the decidability results above have been surveyed in our book [21].

5.3 Preliminaries

Many definitions intersect with those defined in previous chapters, but to keep the
chapter self-contained we define them here.

Notation: B = {true, false} is the set of Boolean values, N is the set of natural
numbers (excluding 0), N0 = N∪{0}, [k] is the set {i ∈ N | i ≤ k} and [0..k] is the
set [k] ∪ {0} for k ∈ N. For a sequence x = x1x2 . . . denote the i-j-subsequence as
x[i :j], i.e., x[i :j] = xi . . . xj.

5.3.1 System Model

We consider systems A‖Bn, usually written (A,B)(1,n), consisting of one copy of
a process template A and n copies of a process template B, in an interleaving
parallel composition.We distinguish objects that belong to different templates by
indexing them with the template. E.g., for process template U ∈ {A,B}, QU is
the set of states of U . For this section, fix two disjoint finite sets QA, QB as sets
of states of process templates A and B, and a positive integer n.

Processes. A process template is a transition system U = (Q, init,Σ, δ) with

• Q is a finite set of states including the initial state init,

• Σ is a finite input alphabet,

• δ : Q× Σ× P(QA ∪̇QB)×Q is a guarded transition relation.

A process template is closed if Σ = ∅, and otherwise open.

By qi
e:g→ qj we denote a process transition from qi to qj for input e ∈ Σ and

guarded by guard g ∈ P(QA ∪̇ QB). We skip the input e and guard g if they are
not important or can be inferred from the context.

We define the size |U | of a process template U ∈ {A,B} as |QU |. A copy of a
template U will be called a U-process. Different B-processes are distinguished by
subscript, i.e., for i ∈ [1..n], Bi is the ith copy of B, and qBi

is a state of Bi. A
state of the A-process is denoted by qA.

For the rest of this subsection, fix templates A and B. We assume that ΣA ∩
ΣB = ∅. We will also write p for a process in {A,B1, . . . , Bn}, unless p is specified
explicitly. We often denote the set {B1, ..., Bn} as B.

Disjunctive and conjunctive systems. In a system (A,B)(1,n), consider the
global state s = (qA, qB1 , . . . , qBn) and global input e = (σA, σB1 , . . . , σBn). We
write s(p) for qp, and e(p) for σp. A local transition (qp, σp, g, q

′
p) ∈ δU of a process

p is enabled for s and e if the guard g is satisfied by the state s wrt. the process
p, written (s, p) |= g (defined below). The semantics of (s, p) |= g differs for

68

disjunctive and conjunctive systems:

In disjunctive systems: (s, p) |= g iff ∃p′ ∈ {A,B1, . . . , Bn} \ {p} : qp′ ∈ g.
In conjunctive systems: (s, p) |= g iff ∀p′ ∈ {A,B1, . . . , Bn} \ {p} : qp′ ∈ g.

Note that we check containment in the guard (disjunctively or conjunctively)
only for local states of processes different from p. A process is enabled for s and
e if at least one of its transitions is enabled for s and e, otherwise it is disabled.

Like Emerson and Kahlon [37], we assume that in conjunctive systems initA and
initB are contained in all guards, i.e., they act as neutral states. Furthermore, we
call a conjunctive system 1-conjunctive if every guard is of the form (QA ∪̇QB)\{q}
for some q ∈ QA ∪̇QB.

Then, (A,B)(1,n) is defined as the transition system (S, initS, E, δ) with

• set of global states S = QA ×Qn
B,

• global initial state initS = (initA, initB, . . . , initB),

• set of global inputs E = (ΣA)× (ΣB)n,

• and global transition relation δ ⊆ S × E × S with (s, e, s′) ∈ δ iff

i) s = (qA, qB1 , . . . , qBn),

ii) e = (σA, σB1 , . . . , σBn), and

iii) s′ is obtained from s by replacing one local state qp with a new local
state q′p, where p is a U -process with local transition (qp, σp, g, q

′
p) ∈ δU

and (s, p) |= g. Thus, we consider so-called interleaved systems, where
in each step exactly one process transits.

We say that a system (A,B)(1,n) is of type (A,B). It is called a conjunctive system
if guards are interpreted conjunctively, and a disjunctive system if guards are
interpreted disjunctively. A system is closed if all of its templates are closed.

Runs. A configuration of a system is a triple (s, e, p), where s ∈ S, e ∈ E, and
p is either a system process, or the special symbol ⊥. A path of a system is a
configuration sequence x = (s1, e1, p1), (s2, e2, p2), . . . such that, for all m < |x|,
there is a transition (sm, em, sm+1) ∈ δ based on a local transition of process pm.
We say that process pm moves at moment m. Configuration (s, e,⊥) appears
iff all processes are disabled for s and e. Also, for every p and m < |x|: either
em+1(p) = em(p) or process p moves at moment m. That is, the environment keeps
the input to each process unchanged until the process can read it.1

A system run is a maximal path starting in the initial state. Runs are either
infinite, or they end in a configuration (s, e,⊥). We say that a run is initializing
if every process that moves infinitely often also visits its init infinitely often.

1By only considering inputs that are actually processed, we approximate an action-based se-
mantics. Paths that do not fulfill this requirement are not very interesting, since the environment
can violate any interesting specification that involves input signals by manipulating them when
the corresponding process is not allowed to move.

69

Given a system path x = (s1, e1, p1), (s2, e2, p2), . . . and a process p, the local
path of p in x is the projection x(p) = (s1(p), e1(p)), (s2(p), e2(p)), . . . of x onto
local states and inputs of p. Similarly, we define the projection on two processes
p1, p2 denoted by x(p1, p2).

Deadlocks and fairness. A run is globally deadlocked if it is finite. An infinite
run is locally deadlocked for process p if there exists m such that p is disabled for all
sm′ , em′ with m′ ≥ m. A run is deadlocked if it is locally or globally deadlocked. A
system has a (local/global) deadlock if it has a (locally/globally) deadlocked run.
Note that the absence of local deadlocks for all p implies the absence of global
deadlocks, but not the other way around.

A run (s1, e1, p1), (s2, e2, p2), ... is unconditionally-fair if every process moves
infinitely often. A run is strong-fair if it is infinite and, for every process p, if p is
enabled infinitely often, then p moves infinitely often. We will discuss the role of
deadlocks and fairness in synthesis in Section 5.4.

Remark 8 (Am‖Bn). One usually starts with studying parameterized systems of
the form An (having one process template), then proceeds to systems of the form
Am‖Bn (having two templates) and Un1

1 ‖ . . . ‖Unm
m (having an arbitrary fixed num-

ber of templates). Our work studies systems A‖Bn, which have one A-process and
a parameterized number of B-processes, because the results for such systems can
be generalized to systems Un1

1 ‖ . . . ‖Unm
m (see [37] for details). This generalization

works for our results as well, except for the cutoffs for deadlock detection that are
restricted to 1-conjunctive systems of the form A ‖ Bn (Section 5.5).

5.3.2 Specifications

Fix templates (A,B). We consider formulas in LTL\X—LTL without the next-
time operator X—that are prefixed by path quantifiers E or A (for LTL and path
quantifiers see Section 2.3). Let h(A,Bi1 , . . . , Bik) be an LTL\X formula over
atomic propositions from QA ∪ ΣA and indexed propositions from (QB ∪ ΣB) ×
{i1, . . . , ik}. For a system (A,B)(1,n) with n ≥ k and every ij ∈ [1..n], satisfaction
of Ah(A,Bi1 , . . . , Bik) and Eh(A,Bi1 , . . . , Bik) is defined in the usual way.

Parameterized specifications. A parameterized specification is a temporal logic
formula with indexed atomic propositions and quantification over indices. We
consider formulas of the forms ∀i1, . . . , ik.Ah(A,Bi1 , . . . , Bik) and
∀i1, . . . , ik.Eh(A,Bi1 , . . . , Bik). For a given n ≥ k,

(A,B)(1,n) |= ∀i1, . . ., ik.Ah(A,Bi1 , . . ., Bik)

iff
(A,B)(1,n) |=

∧
j1 6=... 6=jk∈[1..n]

Ah(A,Bj1 , . . ., Bjk).

By symmetry of guarded systems (see [37]), the second formula is equivalent to
(A,B)(1,n) |= Ah(A,B1, . . . , Bk). The formula Ah(A,B1, . . . , Bk) is denoted by
Ah(A,B(k)), and we often use it instead of the original ∀i1, . . . , ik.Ah(A,Bi1 , ..., Bik).
For formulas with the path quantifier E, satisfaction is defined analogously and is
equivalent to satisfaction of Eh(A,B(k)).

70

Example 10. Consider the formula

∀i1, i2.A
(
G(ri1 → F gi1) ∧ G¬(gi1 ∧ gi2)

)
.

By our definition, its satisfaction by a system (A,B)(1,3) means

(A,B)(1,3) |= A

(
G(r1 → F g1) ∧ G(r2 → F g2) ∧ G(r3 → F g3)∧
G¬(g1 ∧ g2) ∧ G¬(g1 ∧ g3) ∧ G¬(g2 ∧ g3)

)
,

where g1 and r1 refer to the propositions g and r of the process B1, g2 and r2

belong to B2, and so on. By symmetry, the latter satisfaction is equivalent to

(A,B)(1,3) |= A

(
G(r1 → F g1) ∧ G(r2 → F g2)∧
G¬(g1 ∧ g2)

)
.

Note that this formula talks about processes B1 and B2, but does not mention B3.

Specification of fairness and local deadlocks. It is often convenient to express
fairness assumptions and local deadlocks as parameterized specifications. To this
end, define auxiliary atomic propositions movep and enp for every process p of
system (A,B)(1,n). At moment m of a given run (s1, e1, p1), (s2, e2, p2), . . ., let
movep be true whenever pm = p, and let enp be true if p is enabled for sm, em.
Note that we only allow the use of these propositions to define fairness, but not in
general specifications. Then, an infinite run is

• local-deadlock-free if it satisfies ∀p.GF enp, abbreviated as Φ¬dead,

• strong-fair if it satisfies ∀p.GF enp → GFmovep, abbreviated as Φstrong, and

• unconditionally-fair if it satisfies ∀p.GFmovep, abbreviated as Φuncond.

If f ∈ {strong, uncond} is a fairness notion and Ah(A,B(k)) a specification,
then we write Afh(A,B(k)) for A(Φf → h(A,B(k))). Similarly, we write Efh(A,B(k))
for E(Φf ∧ h(A,B(k))).

5.3.3 Model Checking and Synthesis Problems

Given a system (A,B)(1,n) and a specification Ah(A,B(k)), where n ≥ k. Then:

• the model checking problem is to decide whether (A,B)(1,n) |= Ah(A,B(k)),

• the deadlock detection problem is to decide whether (A,B)(1,n) does not have
global nor local deadlocks,

• the parameterized model checking problem (PMCP) is to decide whether
∀m ≥ n : (A,B)(1,m) |= Ah(A,B(k)), and

• the parameterized deadlock detection problem is to decide whether, for all
m ≥ n, (A,B)(1,m) does not have global nor local deadlocks.

For a given number n ∈ N and specification Ah(A,B(k)) with n ≥ k,

71

• the template synthesis problem is to find process templates A,B such that
(A,B)(1,n) |= Ah(A,B(k)) and (A,B)(1,n) does not have global deadlocks2

• the bounded template synthesis problem for a pair of bounds (bA, bB) ∈ N×N
is to solve the template synthesis problem with |A| ≤ bA and |B| ≤ bB.

• the parameterized template synthesis problem is to find process templates
A,B such that ∀m ≥ n : (A,B)(1,m) |= Ah(A,B(k)) and (A,B)(1,m) does not
have global deadlocks2.

Similarly, we define problems for specifications having E instead of A. The defini-
tions can be flavored with different notions of fairness.

5.4 Reduction Method and Challenges

We show how to use existing cutoff results of Emerson and Kahlon [37] to reduce
the PMCP to a standard model checking problem, and parameterized template
synthesis to template synthesis. We note the limitations of the existing results
that are crucial in the context of synthesis.

Reduction by Cutoffs

Cutoffs. A cutoff for a system type (A,B) and a specification Φ is a number
c ∈ N such that:

∀n ≥ c :
(
(A,B)(1,c) |= Φ ⇔ (A,B)(1,n) |= Φ

)
.

Similarly, a cutoff for deadlock detection for a system type (A,B) is a number
c ∈ N such that:

∀n ≥ c :
(
(A,B)(1,c) has a deadlock ⇔ (A,B)(1,n) has a deadlock

)
.

Here, “has a deadlock” means “there is a locally or globally deadlocked run”.
For the systems and specifications presented in this work, cutoffs can be com-

puted from the size of the process template B and the number k of copies of B
mentioned in the specification, and are given as expressions like |B|+ k + 1.

Remark 9. Our definition of a cutoff is different from that of Emerson and
Kahlon [37], and instead similar to, e.g., Emerson and Namjoshi [40]. The reason
is that we want the following property to hold for any (A,B) and Φ:

if n0 is the smallest number such that ∀n ≥ n0 : (A,B)(1,n) |= Φ, then
any c < n0 is not a cutoff, any c ≥ n0 is a cutoff.

We call n0 the tight cutoff. The definition of Emerson and Kahlon [37, page 2]
requires that ∀n ≤ c.(A,B)(1,n) |= Φ if and only if ∀n ≥ 1 : (A,B)(1,n) |= Φ, and
thus allows stating c < n0 as a cutoff if Φ does not hold for all n.

2Here we do not explicitly mention local deadlocks because they can be specified as a part of
Ah(A,B(k)).

72

Parameterized synthesis. We encourage the reader to revisit Chapter 2 on
page 24 to recall how bounded synthesis works in the case of non-distributed
systems. Now we adapt the procedure to guarded parameterized systems. In
parameterized model checking a cutoff allows us to check whether any “big” system
satisfies the specification by checking it in the cutoff system. A similar reduction
applies to the parameterized synthesis problem [50]. For guarded protocols, we
obtain the following semi-decision procedure for parameterized synthesis :

0. set initial bound (bA, bB) on the size of the process templates;

1. determine the cutoff for (bA, bB) and Φ;

2. solve the bounded template synthesis problem for cutoff, size bound, and Φ;

3. if successful, return (A,B), else increase (bA, bB) and goto (1).

This procedure was implemented inside our parameterized synthesis tool PARTY [57]
by Simon Außerlechner as a part of his Master Thesis [6].

Existing Cutoff Results

Emerson and Kahlon [37] have shown:

Theorem 13 (Disjunctive Cutoff Theorem). For closed disjunctive systems A‖Bn,
|B| + 2 is a cutoff (†) for formulas of the form Ah(A,B(1)) and Eh(A,B(1)), and
for global deadlock detection.

Theorem 14 (Conjunctive Cutoff Theorem). For closed conjunctive systems A‖Bn,
2 |B| is a cutoff (†) for formulas of the form Ah(A) and Eh(A), and for global
deadlock detection. For formulas of the form Ah(B(1)) and Eh(B(1)), 2 |B| + 1 is
a cutoff.

In the above theorems, h(A) (resp. h(B(1))) means that the formula talks about
the A-process only (resp. B1).

Remark 10. (†) Note that Emerson and Kahlon [37] proved these results for
a different definition of a cutoff (see Remark 9). Their results also hold for our
definition, except possibly for global deadlocks. For the latter case to hold with the
new cutoff definition, one also needs to prove the direction “global deadlock in the
cutoff system implies global deadlock in a large system” (later called Monotonicity
Lemma). In Sections 5.7.3 and 5.7.4, Sections 5.8.3 and 5.8.4, we prove these
lemmas for the case of general deadlock (global or local).

Challenge: Open Systems

For any open system S there exists a closed system S ′ such that S and S ′ cannot
be distinguished by LTL specifications (e.g., see Manna and Pnueli [65]). Thus,
one approach to PMC for open systems is to use a translation between open and
closed systems, and then use the existing cutoff results for closed systems.

73

While such an approach works in theory, it might not be feasible in practice:
since cutoffs depend on the size of the process templates, and the translation blows
up the process template, it also blows up the cutoffs. Thus, cutoffs that directly
support open systems are important.

Challenge: Liveness and Deadlocks under Fairness

We are interested in cutoff results that support liveness properties. Consider a
specification Φ = h(A,B(k)). In general, we would like to consider only runs where
all processes move infinitely often, i.e., use the unconditional fairness assumption
∀p.GFmovep and thus have AuncondΦ. However, this would mean that we accept all
systems that always go into a local deadlock, since then the assumption is violated
(i.e., there will be no unconditionally-fair runs). This is especially undesirable in
synthesis, because the synthesizer often tries to violate the assumptions to satisfy
the specification. To avoid this, we require the absence of local deadlocks. But local
deadlocks may appear due to unfair scheduling. Therefore we require the absence of
local deadlocks under the strong fairness assumption, i.e., we require satisfaction of
the formula AstrongΦ¬dead =

(
∀p.(GF enp → GFmovep)

)
→ ∀p.GF enp. This formula

can be roughly read as “the absence of local deadlocks under fair scheduling”. Since
absence of global deadlocks and absence of local deadlocks under strong fairness
imply unconditional fairness, we can safely use AuncondΦ.

In summary, for a parameterized specification Φ, we consider satisfaction of

“all runs are infinite” ∧ AstrongΦ¬dead ∧ AuncondΦ.

This is equivalent to “all runs are infinite”∧Astrong(Φ¬dead ∧Φ), but by considering
the form above we can separate the tasks of deadlock detection and of model
checking LTL\X-properties, and obtain modular cutoffs. (The phrase “all runs
are infinite” is another way of saying “all runs have no global deadlocks”.)

5.5 New Cutoff Results

We present new cutoff results that extend Theorems 13 and 14. The new and
previous results are summarized in the table below.

h(A,B(k))
no fairness

deadlock detection
no fairness

h(A,B(k))
uncond. fairness

deadlock detection
strong fairness

Disjunctive |B|+ k + 1 2|B| − 1 2|B|+ k − 1 2|B| − 1

Conjunctive k + 1 2|B| − 2 (∗) k + 1 (∗) 2|B| − 2 (∗)

The table distinguishes between disjunctive and conjunctive systems (in rows).
In the columns, we consider satisfaction of properties h(A,B(k)) and the existence
of deadlocks, with and without fairness assumptions. All results hold for open
systems, and for both path quantifiers A and E. Cutoffs depend on the size of
process template B and the number k ≥ 1 of B-processes a property talks about.

74

Results marked with a (∗) are for a restricted class of systems: for conjunc-
tive systems with fairness, we require infinite runs to be initializing, i.e., all non-
deadlocked processes return to init infinitely often.3 Additionally, the cutoffs for
deadlock detection in conjunctive systems only support 1-conjunctive systems.

All cutoffs in the table are tight—no smaller cutoff can exist for this class of
systems and properties—except for the case of deadlock detection in disjunctive
systems without fairness. There, the cutoff is asymptotically tight, i.e., it must
increase linearly with the size of the process template.

Note that the table does not describe all possible combinations: for example,
we do not consider satisfaction of h(A,B(k)) on strong-fair runs. But the results
in the table are the most interesting, from our view, for parameterized synthesis.

In the following sections we prove the results.

5.6 Proof Structure

The proofs for the cutoff results, new and original, are based on two lemmas,
Monotonicity and Bounding [37]. When combined together, the lemmas give a
cutoff. We state the lemmas, and discuss them in the context of deadlock detec-
tion and fairness. The detailed proofs are in Sections 5.7 and 5.8. Note that we
only consider properties of the form h(A,B(1))—the proof ideas extend to general
properties h(A,B(k)) without difficulty. Similarly, in most cases the proof ideas
extend to open systems without major difficulties—mainly because when we con-
struct a simulating run, we have the freedom to choose the input that is needed.
Only for the case of deadlock detection we have to handle open systems explicitly.

1) Monotonicity lemma: if a behavior is possible in a (conjunctive or disjunc-
tive) system with n ∈ N copies of B, then it is also possible in a (conjunctive or
disjunctive resp.) system with one additional process:

(A,B)(1,n) |= Eh(A,B(1)) =⇒ (A,B)(1,n+1) |= Eh(A,B(1)),

and if a deadlock is possible in (A,B)(1,n), then it is possible in (A,B)(1,n+1).

Discussion. The lemma is easy to prove for properties Eh(A,B(1)) in both dis-
junctive and conjunctive systems, by letting the additional process stay in its
initial state initB forever (see [37]). This cannot disable transitions with disjunc-
tive guards, as these check for existence of a local state in another process (and we
do not remove any processes), and it cannot disable conjunctive guards since they
contain initB by assumption. However, this construction violates fairness, since the
new process never moves. This can be resolved in the disjunctive case by letting
the additional process mimic all transitions of an existing process. But in general
this does not work in conjunctive systems (due to the non-reflexive interpretation
of guards). For this case and for deadlock detection, the proof is not trivial and
may only work for n ≥ c, for some lower bound c ∈ N. The following sections
provide the details.

3This assumption is in the same flavor as the restriction that initA and initB appear in all
conjunctive guards. Intuitively, the additional restriction makes sense since conjunctive systems
model shared resources, and everybody who takes a resource should eventually release it.

75

2) Bounding lemma: there exists a number c ∈ N such that a behavior is
possible in a system with c copies of B if it is possible in a system with n ≥ c
copies of process B:

(A,B)(1,c) |= Eh(A,B(1)) ⇐= (A,B)(1,n) |= Eh(A,B(1)),

and a deadlock is possible in (A,B)(1,c) if it is possible in (A,B)(1,n).

Discussion. For disjunctive systems, the main difficulty is that removing processes
might falsify guards of the local transitions of A or B1 in a given run. To address
this, Emerson and Kahlon [37] came up with so-called flooding construction (de-
scribed later). For conjunctive systems, removing processes from a run is easy
for the case of infinite runs, since a transition that was enabled before cannot be-
come disabled. Here, the difficulty is in preserving deadlocks, because removing
processes may enable processes that were deadlocked before. The next sections
explain how to address this.

Tightness. Recall from Section 5.4 that c is a tight cutoff iff c is a cutoff and
there are templates (A,B) and a property Φ, such that

(A,B)(1,c−1) 6|= Φ and (A,B)(1,c) |= Φ.

For deadlock detection this is equivalent to: (A,B)(1,c−1) does not have a deadlock
but (A,B)(1,c) does. To prove tightness, we provide a template (A,B) and a
property.

The next sections contains all the proofs of the results in the table. For each
row and column, we prove monotonicity and bounding lemmas, as well as tight-
ness. Note that for simplicity the proofs are for the case of h(A,B1), while the
generalization to the case h(A,B(k)) follows.

5.7 Proof Techniques for Disjunctive Systems

5.7.1 LTL\X Properties without Fairness: Existing Con-
structions

We revisit the main techniques of the original proof of Theorem 13 [37].

Lemma 15 (Monotonicity: Disj, LTL\X, Unfair). For disjunctive systems:

∀n ≥ 1 :

(A,B)(1,n) |= Eh(A,B1) ⇒ (A,B)(1,n+1) |= Eh(A,B1).

Proof. Given a run x of (A,B)(1,n), we construct a run y of (A,B)(1,n+1): copy x
into y and keep the additional process in the initial state.

As for the bounding lemma, we construct an infinite run y of (A,B)(1,c) with
y |= h(A,B(1)), based on an infinite run x of (A,B)(1,n) with n > c and x |=
h(A,B(1)). The idea is to copy local runs x(A) and x(B1) into y, and construct
runs of other processes in a way that enables all transitions along x(A) and x(B1).
The latter is achieved with the flooding construction.

76

Flooding construction [37]. Given a run x = (s1, e1, p1), (s2, e2, p2) . . . of
(A,B)(1,n), let VisitedB(x) be the set of all local states visited by B-processes in x,
i.e., VisitedB(x) = {q ∈ QB | ∃m∃i. sm(Bi) = q}.

For every q ∈ VisitedB(x) there is a local run of (A,B)(1,n), say x(Bi), that
visits q first, say at moment mq. Then, saying that process Biq of (A,B)(1,c) floods
q means:

y(Biq) = x(Bi)[1 :mq](q)
ω.

In words: the run y(Biq) is the same as x(Bi) until moment mq, and after that the
process never moves.

The construction achieves the following. If we copy local runs of A and B1

from x to y, and in y for every q ∈ VisitedB(x) introduce one process that floods q,
then: if in x at some moment m there is a process in state q′, then in y at moment
m there will also be a process (different from A and B1) in state q′. Thus, every
transition of A and B1, which is enabled at moment m in x, will also be enabled
in y.

Lemma 16 (Bounding: Disj, LTL\X, Unfair). For disjunctive systems:

∀n ≥ |B|+ 2 : (A,B)(1,|B|+2) |= Eh(A,B1) ⇐ (A,B)(1,n) |= Eh(A,B1).

The proof of the lemma is from [37, Lemma 4.1.2]. We recapitulate it to intro-
duce the notions of “a process floods a state”, destutter, interleave, and “process
mimics another process”, which are used in our proofs later.

Proof idea. The lemma is proved by copying local runs x(A) and x(B1), and flood-
ing all states in VisitedB(x). To ensure that at least one process moves infinitely
often in y, we copy one additional (infinite) local run from x. Finally, it may hap-
pen that the resulting collection of local runs violates the interleaving semantics
requirement. To resolve this, we add stuttering steps into local runs whenever two
or more processes move at the same time, and we remove global stuttering steps
in y. Since the only difference between x(A,B1) and y(A,B1) are stuttering steps,
y and x satisfy the same LTL\X-properties h(A,B(1)). Since |VisitedB(x)| ≤ |B|,
we need at most 1 + |B|+ 1 copies of B in (A,B)(1,c).

Proof. Let c = |B| + 2 and n ≥ c. Let x = (s1, e1, p1), (s2, e2, p2) . . . be a run
of (A,B)(1,n) that satisfies Eh(A,B1). We construct a run y of the cutoff system
(A,B)(1,c) with y(A,B1) ' x(A,B1).

Let Visited(x) be the set of all visited states by B-processes in run x: Visited(x) =
{q | ∃m∃i : sm(Bi) = q}.

Construct the run y of (A,B)(1,c) as follows.

a. We copy runs of A and B1 from x to y: y(A) = x(A), y(B1) = x(B1);

b. Since x is infinite, it has at least one infinitely moving process, denoted B∞.
Devote one unique process B∞ in (A,B)(1,c) that copies the behaviour of B∞
of (A,B)(1,n): y(B∞) = x(B∞).

77

c. For every q ∈ Visited, there is a process of (A,B)(1,n), denoted Bi, that visits
q first, at moment denoted mq. Then devote one unique process in (A,B)(1,c),
denoted Biq , that floods q: set y(Biq) = x(Bi)[1 :mq](q)

ω. In words: the run
y(Biq) repeats exactly that of x(Bi) till moment mq, after which the process
is never scheduled.

d. Let any other process Bi of (A,B)(1,c) not used in the previous steps (if any)
mimic the behavior of B1 of (A,B)(1,c): y(Bi) = y(B1).

The figure illustrates the construction. On the left is (A,B)(1,n) and on the right
is (A,B)(1,|B|+2) (i.e., (A,B)(1,5), since |B| = 3 in the figure).

A1 B1 B2 Bn−1Bn

∞

. . .

A1 B1 B2 B3 B4 B5

∞

The correctness follows from the observation that any transition of any process
at any moment m of y was done by some process in x at moment m, and hence
is enabled at m. Also note that, if ≥ 2 processes transit simultaneously in y, then
the guards of their transitions will be enabled even if both of them are removed
from the state space. Note that it is possible that in y:

• more than one process transits at the same moment. Then, interleave the
transitions of such processes, namely arbitrarily sequentialize them.

• at some moment no processes move. Then remove elements of the run y –
the resulting run is denoted destutter(y).

This construction uses |Visited|+ 2 ≤ |B|+ 2 copies of B (ignoring case (d)).

Tightness 1 (Disj, LTL\X, Unfair). The cutoff in Lemma 16 is tight. I.e., for any
k there exist process templates (A,B) with |B| = k and LTL\X formula h(A,B1)
such that:

(A,B)(1,|B|+2) |= Eh(A,B1) and (A,B)(1,|B|+1) 6|= Eh(A,B1).

Proof. The idea of the proof relies on the subtleties of the definition of a run: it
is infinite (thus not globally deadlocked), and in each step of a run exactly one
process moves.

Consider the templates from Figure 5.1 and let Eh(A,B1) = E(F 3B1∧FG(2B1∧
endA)). In words: there exists a run in a system where process B1 visits 3B and
process B1 with A eventually always stay in 2B and endA.

We need one process in every state of B to enable the transitions of A to allA.
Only when A in allA, B1 can move 3B → 1B, and then at some point to 2B. After
B1 moves 3B → 1B, A moves allA → endA, which requires process Bi 6=1 in 3B.
Finally, to make the run infinite, there should be at least two processes in the
state kB. Hence, every infinite run satisfying the formula needs at least |B| + 2
B-processes.

78

1A . . . allA endA
∃{1B} ∃{|B|B} ∃{3B}

Template A

1B2B 3B . . . |B|B
∃{1B} ∃{1B} ∃{3B} ∃{|B| −1B}

∃{|B|B}∃{allA}

Template B

Figure 5.1: Templates for proving Tightness 1

5.7.2 LTL\X Properties with Fairness: New Constructions

As for the case without fairness, proving the monotonicity lemma is simple.

Lemma 17 (Monotonicity: Disj, LTL\X, Fair). For disjunctive systems:

∀n ≥ 1 :

(A,B)(1,n) |= Euncond h(A,B1) =⇒ (A,B)(1,n+1) |= Euncond h(A,B1),

Proof. In run x of (A,B)(1,n) with n ≥ 1 all processes move infinitely often. Hence
let the run y of (A,B)(1,n+1) copy x, and let the new process mimic an infinitely
moving B process of (A,B)(1,n).

To prove the bounding lemma, we introduce two new constructions. We need
new constructions, because the flooding construction does not preserve fairness,
and also cannot be used to construct deadlocked runs, since it does not preserve
disabledness of transitions of processes A or B1.

Consider the proof task of the bounding lemma for disjunctive systems with
fairness: given an unconditionally fair run x of (A,B)(1,n) with x |= h(A,B(1)), we
want to construct an unconditionally fair run y of (A,B)(1,c) with y |= h(A,B(1)).
In contrast to unfair systems, we need to ensure that all processes move infinitely
often in y. The insight is that after a finite time all processes will start looping
around some set Visitedinf of states. We construct a run y that mimics this. To
this end, we introduce two constructions. Flooding with evacuation is similar to
flooding, but instead of keeping processes in their flooding states forever it evacu-
ates the processes into Visitedinf. Fair extension lets all processes move infinitely
often without leaving Visitedinf.

Flooding with evacuation. Given a subset F ⊆ B and an infinite run x =
(s1, e1, p1) . . . of (A,B)(1,n), define

Visitedinf
F (x) = {q |∃ infinitely many m : sm(Bi) = q for some Bi ∈ F} (5.1)

Visitedfin
F (x) = {q |∃ only finitely many m : sm(Bi) = q for some Bi ∈ F} (5.2)

Let q ∈ Visitedfin
F (x). In run x there is a moment fq when q is reached for the first

time by some process from F , denoted Bfirstq . Also, in run x there is a moment
lq such that: slq(Blastq) = q for some process Blastq ∈ F , and st(Bi) 6= q for all
Bi ∈ F , t > lq—i.e., when some process from F is in state q for the last time

in x. Then, saying that process Biq of (A,B)(1,c) floods q ∈ Visitedfin
F (x) and then

evacuates into Visitedinf
F (x) means:

y(Biq) = x(Bfirstq)[1 :fq] · (q)(lq−fq+1) · x(Blastq)[lq :m] · (q′)ω,

79

where q′ is the state in Visitedinf
F (x) that x(Blastq) reaches first, at some moment

m ≥ lq. In words, process Biq mimics process Bfirstq until it reaches q, then does
nothing until process Blastq starts leaving q, then it mimics Blastq until it reaches

Visitedinf
F (x).

The construction ensures: if we copy local runs of all processes not in F from
x to y, then all transitions of y are enabled. This is because, for any process p
of (A,B)(1,c) that takes a transition in y at any moment, the set of states visible
to process p is a superset of the set of states visible to the original process in
(A,B)(1,n) whose transitions process p copies.

Fair extension. Here, we consider a path x that is the postfix of an uncondition-
ally fair run x′ of (A,B)(1,n), starting from the moment where no local states from
Visitedfin

B (x′) are visited anymore. We construct a corresponding unconditionally-
fair path y of (A,B)(1,c), where no local states from Visitedfin

B (x′) are visited.
Formally, let n ≥ 2|B|, and x an unconditionally-fair path of (A,B)(1,n) such

that Visitedfin
B (x) = ∅. Let c ≥ 2|B|, and s′1 a state of (A,B)(1,c) with

• s′1(A1) = s1(A1), s′1(B1) = s1(B1);

• for every q ∈ Visitedinf
B2..Bn

(x)\Visitedinf
B1

(x), there are two processes Biq , Bi′q of

(A,B)(1,c) that start in q, i.e., s′1(Biq) = s′1(Bi′q) = q;

• for every q ∈ Visitedinf
B2..Bn

(x)∩Visitedinf
B1

(x), there is one processBiq of (A,B)(1,c)

that starts in q;

• for some q? ∈ Visitedinf
B2..Bn

(x) ∩ Visitedinf
B1

(x), there is one additional process

of (A,B)(1,c), different from any in the above, called Bi′
q?

, that starts in q?;

and

• any other process Bi of (A,B)(1,c) starts in some state of Visitedinf
B2..Bn

(x).

Note that, if Visitedinf
B2..Bn

(x) ∩ Visitedinf
B1

(x) = ∅, then the third and fourth pre-
requisite are trivially satisfied.

The fair extension extends state s′1 of (A,B)(1,c) to an unconditionally-fair path
y = (s′1, e

′
1, p
′
1) . . . with y(A1, B1) = x(A1, B1) as follows.

(a) y(A1) = x(A1), y(B1) = x(B1).

(b) For every q ∈ Visitedinf
B2..Bn

(x)\Visitedinf
B1

(x): in run x there is Bi ∈ {B2..Bn}
that starts in q and visits it infinitely often. Let Biq and Bi′q of (A,B)(1,c)

mimic Bi in turns: first Biq mimics Bi until it reaches q, then Bi′q mimics Bi

until it reaches q, and so on.

(c) Arrange the states of Visitedinf
B2..Bn

(x)∩Visitedinf
B1

(x) in some order (q?, q1, . . . , ql).
The processes Bi′

q?
, Biq? , Biq1

, . . . , Biql
behave as follows. Start with Bi′

q?
:

when B1 enters q? in y, it carries4 Bi′
q?

from q? to q1, then carries Biq1
from

q1 to q2, . . . , then carries Biql
from ql to q?, then carries Biq? from q? to q1,

then carries Bi′
q?

from q1 to q2, then carries Biq1
from q2 to q3, and so on.

4“Process B1 starting at moment m carries process Bi from q to q′” means: process Bi mimics
the transitions of B1 starting at moment m at q until B1 first reaches q′.

80

(d) Any other Bi of (A,B)(1,c), starting in q ∈ Visitedinf
B2..Bn

(x), mimics Biq .

Note that parts (b) and (c) of the construction ensure that there is always at least
one process in every state from Visitedinf

B2..Bn
(x). This ensures that the guards of all

transitions of the construction are satisfied. Excluding processes in (d), the fair
extension uses up to 2|B| copies of B.5

Now we are ready to prove the bounding lemma.

Lemma 18 (Bounding: Disj, LTL\X, Fair). For disjunctive systems:

∀n > 2|B| :
(A,B)(1,2|B|) |= Euncond h(A,B1) ⇐= (A,B)(1,n) |= Euncond h(A,B1),

Proof. Let c = 2 |B|. Given an unconditionally-fair run x of (A,B)(1,n), we con-
struct an unconditionally-fair run y of the cutoff system (A,B)(1,c) such that
y(A,B1) is stuttering equivalent to x(A,B1).

Note that in x there is a moment m such that all local states that are visited
after m are in Visitedinf

B (x).
The construction has two phases. In the first phase, we apply flooding for

states in Visitedinf
B (x), and flooding with evacuation for states in Visitedfin

B (x):

(a) y(A) = x(A), y(B1) = x(B1);

(b) for every q ∈ Visitedinf
B2..Bn

(x)\Visitedinf
B1

(x), devote two processes of (A,B)(1,c)

that flood q;

(c) for some q? ∈ Visitedinf
B2..Bn

(x) ∩ Visitedinf
B1

(x), devote one process of (A,B)(1,c)

that floods q?;

(d) for every q ∈ Visitedfin
B2..Bn

(x), devote one process of (A,B)(1,c) that floods q

and evacuates into Visitedinf
B2..Bn

(x); and

(e) let other processes (if any) mimic process B1.

The phase ensures that at moment m in y, there are no processes in Visitedfin
B (x),

and all the pre-requisites of the fair extension are satisfied.
The second phase applies the fair extension, and then establishes the inter-

leaving semantics as in the bounding lemma in the non-fair case. The overall
construction uses up to 2|B| copies of B.

Tightness 2 (Disj, LTL\X, Fair). The cutoff in Lemma 18 is tight. I.e., for any
k there exist process templates (A,B) with |B| = k and LTL\X formula h(A,B1)
such that:

(A,B)(1,2|B|) |= Eh(A,B1) and (A,B)(1,2|B|−1) 6|= Eh(A,B1).

Proof. Consider process templates A,B from Figure 5.2 and the property E true.

5A careful reader may notice that, if |Visitedinf
B1

(x)| = 1 and |Visitedinf
B2..Bn

(x)| = |B|, then the
construction uses 2|B| + 1 copies of B. But one can slightly modify the construction for this
special case, and remove process Bi′

q?
from the pre-requisites.

81

1A . . . allA
∃{1B} ∃{kB}

Template A

1B 2B . . . kB
∃{1B} ∃{2B} ∃{k − 1B}

∃{1B} ∃{2B} ∃{kB}

Template B

Figure 5.2: Templates for proving Tightness 2

5.7.3 Deadlocks without Fairness: Updated Constructions

Lemma 19 (Monotonicity: Disj, Deadlocks, Unfair). For disjunctive systems:

∀n ≥ |B|+ 1 : (A,B)(1,n) has a deadlock ⇒ (A,B)(1,n+1) has a deadlock.

Proof. Given a deadlocked run x of (A,B)(1,n), we build a deadlocked run of
(A,B)(1,n+1). If the run x is locally deadlocked, then it has at least one infinitely
moving process, thus let the additional process mimic that process. If the run x
is globally deadlocked run, then due to n > |B| in some state there are at least
two processes deadlocked. Thus, let the new process mimic a process deadlocked
in that state—the run constructed will also be globally deadlocked.

Lemma 20 (Bounding: Disj, Deadlocks, Unfair). For disjunctive systems:

• with c = |B|+ 2 and any n > c:

(A,B)(1,c) has a local deadlock ⇐ (A,B)(1,n) has a local deadlock;

• with c = 2|B| − 1 and any n > c

(A,B)(1,c) has a global deadlock ⇐ (A,B)(1,n) has a global deadlock;

• with c = 2|B| − 1 and any n > c:

(A,B)(1,c) has a deadlock ⇐ (A,B)(1,n) has a deadlock.

Proof idea. First, consider the case of global deadlocks. The insight is to divide
deadlocked local states into two disjoint sets, dead1 and dead2, as follows. Given a
globally deadlocked run x of (A,B)(1,n), for every q ∈ dead1, there is a process of
(A,B)(1,n) deadlocked in q with input i, that has an outgoing transition guarded
“∃q”—hence, adding one more process into q would unlock the process. In contrast,
q ∈ dead2 if any process deadlocked in q stays deadlocked after adding more
processes into q. Let us denote the set of B-processes deadlocked in dead1 by D1.
Finally, abuse the definition in Eq. 5.2 and denote by Visitedfin

B\D1
(x) the set of states

that are visited by B-processes not in D1 before reaching a deadlocked state.
Given a globally deadlocked run x of (A,B)(1,n) with n ≥ 2|B|−1, we construct

a globally deadlocked run y of (A,B)(1,c) with c = 2|B| − 1 as follows.

• We copy from x into y the local runs of processes in D1 ∪ {A};

• flood every state of dead2; and

82

• for every q ∈ Visitedfin
B\D1

(x), flood q and evacuate into dead2.

The construction ensures: (1) for any moment and any process in y, the set of local
states that are visible to the process includes all the states that were visible to the
corresponding process in (A,B)(1,n) whose transitions we copy; (2) in y, there is a
moment when all processes deadlock in dead1 ∪ dead2.

For the case of local deadlocks, the construction is slightly more involved, since
we also need to copy the behaviour of an infinitely moving process.

Proof. Given a (globally or locally) deadlocked run of (A,B)(1,n), we construct
(globally or locally) deadlocked run of (A,B)(1,c), where c depends on the nature
of the given run. We do this using the construction template.

Let B = {B1, ..., Bn}. The template depends on the set C ⊆ {B1, ..., Bc} and
is as follows.

a. Set y(A) = x(A);

b. for every Bi ∈ C, set y(Bi) = x(Bi);

c. for every q ∈ Visitedinf
B\C(x), devote one process of (A,B)(1,c) that floods q;

d. for every q ∈ Visitedfin
B\C(x), devote one process of (A,B)(1,c) that floods q and

then evacuates into Visitedinf
B\C(x); and

e. let other processes (if any) mimic some process from (c).

1) Local deadlock. We distinguish three cases:

1a) A deadlocks, B1 moves infinitely often;

1b) A moves infinitely often, B1 deadlocks; and

1c) A neither deadlocks nor moves infinitely often, B1 deadlocks, B2 moves in-
finitely often.

1a: “A deadlocks, B1 moves infinitely often”.
Let c = |B| + 1, and C = {B1}. Note that Visitedinf

B2..Bn
(x) 6= ∅. The resulting

construction uses |Visitedfin
B2..Bn

(x)|+ |Visitedinf
B2..Bn

(x)|+ 1 ≤ |B|+ 1 copies of B.

1b: “A moves infinitely often, B1 deadlocks”.
Let c = |B| + 1, and C = {B1}. Let q⊥ be the state in which B1 deadlocks.

Instantiate the construction template.
Process B1 of (A,B)(1,c) is deadlocked in y starting from some moment d,

because any state it sees (in Visitedinf
A,B2..Bn

(x)) was also seen by B1 in (A,B)(1,n)

in x at some moment d′ ≥ d (note that d′ may be not the same moment as d).

1c: “A neither deadlocks nor moves infinitely often, B1 deadlocks, B2 moves
infinitely often”.

Instantiate the construction template with c = |B|+ 2 and C = {B1, B2}.
Finally, |B| + 2 is a (possibly not tight) cutoff for local deadlock detection

problem.

83

1B 2B . . . kB
∃{1B} ∃{2B} ∃{k − 1B}

∃{kB}

Figure 5.3: Templates for proving Tightness 3

2) Global deadlock. Let x = (s1, e1, p1)...(sd, ed,⊥) be a globally deadlocked
run of (A,B)(1,n) with n ≥ c.

Let us abuse the definition of Visitedinf
F (x) and Visitedfin

F (x), in Eq. 5.1 and 5.2
resp., and adapt it to the case of finite runs. To this end, given a finite run x =
(s1, e1, p1)...(sd, ed,⊥), extend it to the infinite sequence (s1, e1, p1)...(sd, ed,⊥)ω,
and apply the definition of Visitedinf

F (x) and Visitedfin
F (x) to the sequence.

Let D1 be the set of processes deadlocked in unique states: ∀p ∈ D1@p′ 6= p :
sd(p

′) = sd(p). Instantiate the construction template with C = D1 and c = 2|B|−1.
6

3) Deadlocks. As the cutoff for the deadlock detection problem we take the
largest cutoff in (1)–(2), namely, 2|B| − 1, but it may be not tight—finding the
tight cutoffs for local deadlock and for deadlock detection problems is an open
problem.

Tightness 3 (Disj, Deadlocks, Unfair). The cutoff c = 2|B| − 1 for deadlock
detection in disjunctive systems is asymptotically optimal but possibly not tight.
I.e., for any k there are templates (A,B) with |B| = k such that:

(A,B)(1,|B|−1) does not have a deadlock, but (A,B)(1,|B|) does.

Proof. Figure 5.3 illustrates templates (A,B) to prove the asymptotic optimality
of cutoff 2|B| − 1 for deadlock detection problem. Template A is any that never
deadlocks. The system has a local deadlock only when there are at least |B| copies
of B, which is a constant factor of 2|B| − 1.

5.7.4 Deadlocks with Fairness: New Constructions

Lemma 21 (Monotonicity: Disj, Deadlocks, Fair). For disjunctive systems, on
strong-fair or finite runs:

∀n ≥ |B|+ 1 : (A,B)(1,n) has a deadlock ⇒ (A,B)(1,n+1) has a deadlock.

Proof. See proof of Lemma 19.

Lemma 22 (Bounding: Disj, Deadlocks, Fair). For disjunctive systems, on strong-
fair or finite runs:

62|B| − 1 copies is enough, because: Visitedfin
B\C(x) ∩ Visitedinf

B\C(x) = ∅, Visitedinf
B\C(x) ∩

Visitedinf
C (x) = ∅, and if Visitedfin

B\C(x) 6= ∅, then Visitedinf
B\C(x) 6= ∅.

84

• with c = 2|B| − 1 and any n > c:

(A,B)(1,c) has a local deadlock ⇐ (A,B)(1,n) has a local deadlock;

• with c = 2|B| − 1 and any n > c

(A,B)(1,c) has a global deadlock ⇐ (A,B)(1,n) has a global deadlock;

• with c = 2|B| − 1 and any n > c:

(A,B)(1,c) has a deadlock ⇐ (A,B)(1,n) has a deadlock.

The proofs are similar to that of Lemma 20 (the case without fairness): the
case of global deadlocks is exactly the same, the case of local deadlocks differ—we
additionally use the fair extension to ensure the resulting run is fair.

Proof. If (A,B)(1,n) has a global deadlock, then the fairness does not influence the
cutoff, and the proof from Lemma 20, case “Global Deadlocks”, applies and gives
the cutoff 2|B| − 1. Hence below consider only the case of local deadlocks.

Given a strong-fair deadlocked run x of (A,B)(1,n), we first construct a strong-
fair deadlocked run y of (A,B)(1,c) with c = 2|B| and then argue that c can be
reduced to 2|B| − 1. The construction is similar to that in Lemma 20 – the
differences originate from the need to infinitely move non deadlocked processes.

Let dead<2(x) be the set of deadlocked states in the run x that are only dead-
locked if there is no other process in the same state, and let D1 be the set of
processes deadlocked in the run x in dead<2(x). Let dead2(x) be the set of states
that are deadlocked in the run x even if there is another process in the same state.

We note the following:

• |D1| = |dead<2(x)| ≤ |B|;

• dead<2(x) ∩ dead2(x) = ∅;

• Visitedfin
B\D1

(x) ∩ dead<2(x) 6= ∅ is possible, because a state from Visitedfin
B\D1

(x)

can first be visited by a process in B\D1, and later be deadlocked because
of the process in D1;

• dead2(x) ⊆ Visitedinf
B\D1(x), and hence Visitedfin

B\D1
(x) ∩ dead2(x) = ∅.

The construction has two phases. The first phase is as follows.

a. For every p ∈ {A} ∪ D1, set y(p) = x(p);

b. for every q ∈ dead2(x), devote one process of (A,B)(1,c) that floods it;

c. for every q ∈ Visitedinf
B\D1

(x)\dead2(x), devote two processes of (A,B)(1,c) that
flood it;

d. for every q ∈ Visitedfin
B\D1

(x), devote one process of (A,B)(1,c) that floods it

and then evacuates into Visitedinf
B\D1

(x); and

85

e. let other processes (if any) mimic some process from (c).

After this phase all B processes will be in Visitedinf
B\D1

(x) ∪ dead<2(x).

The second phase applies to processes in Visitedinf
B\D1

(x)\dead2(x) the fair exten-

sion7.
How many processes does the construction use? Note that the sets dead<2(x)∪

Visitedfin
B\D1

(x), dead2(x), Visitedinf
B\D1

(x)\dead2(x) are disjoint, thus:

|Visitedfin
B\D1

(x)|+ |dead<2(x)|+ |dead2(x)|+ 2|Visitedinf
B\D1

(x)\dead2(x)| ≤ (5.3)

2|Visitedfin
B\D1

(x) ∪ dead<2(x)|+ |dead2(x)|+ 2|Visitedinf
B\D1

(x)\dead2(x)| ≤ (5.4)

|B|+ |Visitedfin
B\D1

(x) ∪ dead<2(x)|+ |Visitedinf
B\D1

(x)\dead2(x)| ≤ 2|B|

Let us reduce the estimate to ≤ 2|B| − 1:

• assume that dead2(x) = ∅ (otherwise, Eq.5.3 and the sets disjointness give
2|B| − 1); and

• assume that Visitedfin
B\D1

(x) 6= ∅ (the other case together with eq.5.4, the sets

disjointness, and the first item gives 2|B| − 1);

• hence, the construction in step (d) evacuates the process in q ∈ Visitedfin
B\D1

(x)

into Visitedinf
B\D1

(x)\dead2(x). Hence modify step (c) of the construction and for

q devote a single process of (A,B)(1,c) that floods it. This will give ≤ 2|B|−1.

This concludes the proof.

Tightness 4 (Disj, Deadlocks, Fair). The cutoff c = 2|B|−1 for deadlock detection
in disjunctive systems on strong-fair or finite runs is tight. I.e., for any k there
are templates (A,B) with |B| = k such that:

(A,B)(1,2|B|−2) does not have a deadlock, but (A,B)(1,2|B|−1) does.

Proof. Figure 5.4 shows process templates (A,B) such that any system (A,B)(1,n)

with n ≤ 2|B| − 2 does not deadlock on strong-fair runs, but larger systems do.

5.8 Proof Techniques for Conjunctive Systems

5.8.1 LTL\X Properties Without Fairness: Existing Con-
structions

The Monotonicity Lemma is proven [37] by keeping the additional process in the
initial state.

7The fair extension requires the run x to be unconditionally-fair, but here we have a run in
which all processes that are not deadlocked move infinitely often. To adapt the construction to
this case: copy local runs of processes {A} ∪ D1, and do not extend local runs of processes that
are in a state in dead2.

86

. . .

rA

∃{1B} ∃{k − 1B}

∃{kB}

Template A

1B . . . kB
∃{1B} ∃{k − 1B}

∃{1B} ∃{kB}

∃{rA}

Template B

Figure 5.4: Templates (A,B) used in Tightness 4.

Lemma 23 (Monotonicity: Conj, LTL\X, Unfair). For conjunctive systems,

∀n ≥ 1 : (A,B)(1,n) |= Eh(A,B1) ⇒ (A,B)(1,n+1) |= Eh(A,B1).

Proof. Let the new process stutter in init state.

To prove the Bounding Lemma, Emerson and Kahlon [37] suggest to simply
copy the local runs x(A) and x(B1) into y. In addition, we may need one more
process that moves infinitely often to ensure that an infinite run of (A,B)(1,n) will
result in an infinite run of (A,B)(1,c). All transitions of copied processes will be
enabled because removing processes from a conjunctive system cannot disable a
transition that was enabled before.

Lemma 24 (Bounding: Conj, LTL\X, Unfair). For conjunctive systems,

∀n ≥ 2 : (A,B)(1,2) |= Eh(A,B1) ⇐ (A,B)(1,n) |= Eh(A,B1).

The proof is inspired by the first part of the proof of [37, Lemma 5.2].

Proof. Let x = (s1, e1, p1)(s2, e2, p2) . . . be a run of (A,B)(1,n). Note that, by the
semantics of conjunctive guards, the transitions along any local run of x will also
be enabled in any system (A,B)(1,c) with c ≤ n, where the processes exhibit a
subset of the local runs of x. Thus, we obtain a run of (A,B)(1,c) by copying a
subset of the local runs of x, and removing elements of the new global run where
all processes stutter.

Then, based on an infinite run x of the original system, we construct an infinite
run y of the cutoff system. Let y(A) = x(A) and y(B1) = x(B1). The second copy
of template B in (A,B)(1,2) is needed to ensure that the run y is infinite, i.e.,
at least one process moves infinitely often. If both x(A) and x(B1) eventually
deadlock, then there exists a process Bi of (A,B)(1,n) that makes infinitely many
moves, and we set y(B2) = x(Bi). Otherwise, we set y(B2) = x(B2).

Tightness 5 (Conj, LTL\X, Unfair). The cutoff c = 2 is tight for parameterized
model checking of properties Eh(A,B1) in the 1-conjunctive systems, i.e., there is
a system type (A,B) and property Eh(A,B1) which is not satisfied by (A,B)(1,1)

but is by (A,B)(1,2).

Proof. Figure 5.5 shows templates (A,B), Eh(A,B1) = EF b. An infinite run that
satisfies the formula needs one copy of B that stays in the initial state, and one
that moves into b.

87

∀¬1B

Template A

1B

Template B

Figure 5.5: Templates used to prove Tightness 5

5.8.2 LTL\X Properties with Fairness: New Constructions

In this section, subscript i in path quantifiers, Ei and Ai, denotes the quantification
over initializing runs.

The proof of the Bounding Lemma is the same as in the non-fair case, noting
that, if the original run is unconditional-fair, then so will be the resulting run.

Lemma 25 (Bounding: Conj, LTL\X, Fair). For unconditionally-fair initializing
runs of conjunctive systems:

∀n ≥ 1 :

(A,B)(1,1) |= Euncond h(A,B1) ⇐ (A,B)(1,n) |= Euncond h(A,B1).

Proof. Given an unconditionally-fair [initializing] run x of (A,B)(1,n) with n > c
construct an unconditionally-fair [initializing] run y in the cutoff system (A,B)(1,1):
copy the local runs of processes A, B1.

Proving the Monotonicity Lemma is more difficult, since the fair extension
construction from disjunctive systems does not work for conjunctive systems—if
an additional process mimics the transitions of an existing process then it disables

transitions of the form q
“ ∀¬q”→ q′ or q

“ ∀¬q′”→ q′. Hence, we add the restriction of
initializing runs, which allows us to construct a fair run as follows. The additional
process Bn+1 “shares” a local run x(Bi) with an existing process Bi of (A,B)(1,n+1):
one process stutters in initB while the other makes transitions from x(Bi), and
whenever x(Bi) enters initB (this happens infinitely often), the roles are reversed.
Since this changes the behavior of Bi, Bi should not be mentioned in the formula,
i.e., we need n ≥ 2 for a formula h(A,B(1)).

Lemma 26 (Monotonicity: Conj, LTL\X, Fair). For unconditionally-fair initial-
izing runs of conjunctive systems:

∀n ≥ 2 :

(A,B)(1,n) |= Euncond,i h(A,B1) ⇒ (A,B)(1,n+1) |= Euncond,i h(A,B1).

Proof. Given a unconditionally-fair initializing run x of (A,B)(1,n), we construct a
unconditionally-fair initializing run y in (A,B)(1,n+1), with one additional process
p. First, copy all local runs of all processes of (A,B)(1,n) from the run x into
y. Then, let process p′ stutter in init until some other process p 6= B1 enters
init. Then, exchange the roles of processes p′ and p: let p stutter in init, while
p′ takes the transitions of p from the original run, until it enters init. And so
on. In this way, we continue to interleave the run between p′ and p, and obtain
a unconditionally-fair initializing run for all processes, with y(A,B1) = x(A,B1).
Thus, if (A,B)(1,n) |= Eh(A,B1), then (A,B)(1,n+1) |= Eh(A,B1).

88

initA 1A

Template A

initB 1B 2B
∀¬1B ∀¬1A

∀¬2B

Template B

Figure 5.6: Templates used to prove Tightness 6

Tightness 6 (1-Conj, LTL\X, Fair). The cutoff c = 2 is tight for parameter-
ized model checking of Eh(A,B1) on unconditionally-fair initializing runs in 1-
conjunctive systems, i.e., there is a system type (A,B) and property Eh(A,B1)
which is satisfied by (A,B)(1,1) but not by (A,B)(1,2).

Proof. Figure 5.6 shows templates (A,B); Eh(A,B1) = EFG(binit → a1).

5.8.3 Deadlocks Without Fairness: Updated Constructions

Lemma 27 (Monotonicity: Conj, Deadlocks, Unfair). For conjunctive systems:

∀n ≥ 1 : (A,B)(1,n) has a deadlock ⇒ (A,B)(1,n+1) has a deadlock.

Proof. Given a deadlocked run x of (A,B)(1,n), we construct a deadlocked run of
(A,B)(1,n+1). Let y copy run x, and keep the new process in init. If x is globally
deadlocked and d is the moment when the deadlock happens in x, then schedule
the new process arbitrarily after moment d. Thus, it is possible that the newly
constructed system run is only locally deadlocked, while the original run is globally
deadlocked.

As for the Bounding Lemma, in the case of global deadlock detection, Emerson
and Kahlon [37] suggest to copy a subset of the original local runs. For every local
state q that is present in the final state of the run, we need at most two local
runs that end in this state. In the case of local deadlocks, our construction uses
the fact that systems are 1-conjunctive. In 1-conjunctive systems, if a process is
deadlocked, then there is a set of states DeadGuards that all need to be populated
by other processes in order to disable all transitions of the deadlocked process.
Thus, the construction copies: (i) the local run of a deadlocked process, (ii) for
each q ∈ DeadGuards, the local run of a process that is in q at the moment of the
deadlock, and (iii) the local run of an infinitely moving process.

Lemma 28 (Bounding: 1-Conj, Deadlocks, Unfair). For 1-conjunctive systems:

• with c = 2|QB\{init}| and any n > c 8

(A,B)(1,c) has a global deadlock ⇐ (A,B)(1,n) has a global deadlock;

• with c = |QB\{init}|+ 2 and any n > c:

(A,B)(1,c) has a local deadlock ⇐ (A,B)(1,n) has a local deadlock;

8This statement also applies to systems without restriction to 1-conjunctive guards.

89

• with c = 2|QB\{init}| and any n > c:

(A,B)(1,c) has a deadlock ⇐ (A,B)(1,n) has a deadlock.

Proof. The proof is inspired by the second part of the proof of [37, Lemma 5.2],
but in addition to global we consider local deadlocks.

Global deadlocks. Let c = 2|QB\{init}|). Let run x = (s1, e1, p1) . . . (sd, ed,⊥) of
(A,B)(1,n) with n > c be globally deadlocked. We construct a globally deadlocked
run y in (A,B)(1,c) as follows.

a. For every q ∈ sd \ {init}:

– if sd has two processes in state q, then devote two processes of (A,B)(1,c)

that mimic the behaviour of the two of (A,B)(1,n) correspondingly;

– otherwise, sd has only one process in state q, then devote one process
of (A,B)(1,c) that mimics the process of (A,B)(1,n);

b. for every process of (A,B)(1,c) not used in the construction (if any): let it
mimic an arbitrary B-process of (A,B)(1,n) that was not yet used in the
construction in item (a) nor (b).

The construction uses ≤ 2|QB\{init}| processes B. Note that the proof does not
assume that the system is 1-conjunctive.

Local deadlocks. Let c = |QB\{init}|+2. Let run x = (s1, e1, p1) . . . of (A,B)(1,n)

with n > c be locally deadlocked. We will construct a run y of (A,B)(1,c) where
at least one process deadlocks and exactly one process moves infinitely often.

Wlog. we distinguish three cases:

1. A moves infinitely often in x, and B1 deadlocks;

2. A deadlocks, and B1 moves infinitely often; and

3. A neither deadlocks nor moves infinitely often, B1 deadlocks, B2 moves in-
finitely often.

1. “A moves infinitely often in x, and B1 deadlocks”.
Let q⊥, e⊥ be the deadlocked state and input of B1 in x, and let d be the

moment from which B1 is deadlocked.
Let DeadGuards = {q1, . . . , qk} be the set of states such that for every qi ∈

DeadGuards there is an outgoing transitions from q⊥ with e⊥ guarded “∀¬qi”,
and assume DeadGuards 6= ∅ (if it is empty, then we keep every process in init
until someone reaches q⊥ and then schedule the rest arbitrarily). (Recall that
qi ∈ QB ∪̇QA.)

The construction is as follows.

a. y(A) = x(A), y(B1) = x(B1).

b. For each q ∈ DeadGuards, at moment d in x there is a process pq in state q.
If pq ∈ {B1, ..., Bn}, then let one process of (A,B)(1,c) mimic it till moment
d, and then stutter in q.

90

c. Let other processes of (A,B)(1,c) (if any) stay in init.

The construction uses (if ignore (c)) ≤ |QB\{init}|+ 1 processes B.

Note: the assumption of 1-conjunctive systems implies that, in order to dead-
lock B1, we need a process in each state in BlockGuards. This implies that having
a process in each state of BlockGuards does not disable any A’s transition after
moment d.

2. “A deadlocks, and B1 moves infinitely often”: use the construction from (1).

3. “A neither deadlocks nor moves infinitely often, B1 deadlocks, B2 moves in-
finitely often”. Use the construction from (1), and additionally: y(B2) = x(B2).
Thus, the construction uses (if ignore (c)) ≤ |QB\{init}|+ 2 processes B.

Deadlocks. Take the higher value among the cases considered above c = 2|QB\
{init}|: if x is locally deadlocked then the Monotonicity Lemma ensures that there
is a deadlocked run in (A,B)(1,c).

Tightness 7 (1-Conj, Deadlocks, Unfair). The cutoff c = 2|B| − 2 is tight for
parameterized deadlock detection in the 1-conjunctive systems, i.e., for any k there
is a system type (A,B) with |B| = k such that there is a deadlock in (A,B)(1,2|B|−2),
but not in (A,B)(1,2|B|−3).

Proof. Figure 5.7 provides templates (A,B) that proves the observation. In the
figure the edge with ∀¬b1, . . . ,∀¬bk denotes edges with guards ∀¬b1, . . . ,∀¬bk. To
get the global deadlock we need at least two processes in each bi ∈ {b1, . . . , bk}.
Note that the system does not have local deadlocks.

∀¬1B ... ∀¬kB

Template A

init1B

. . .

kB
∀¬1B, ...,∀¬kB ∀¬1B, ...,∀¬kB

∀¬1B, ...,∀¬kB

Template B

Figure 5.7: Templates used to prove Tightness 7

5.8.4 Deadlocks with Fairness: New Constructions

The Monotonicity Lemma is proven by keeping process Bn+1 in the initial state,
and copying the runs of deadlocked processes. If the run of (A,B)(1,n) is globally
deadlocked, then process Bn+1 may keep moving in the constructed run, i.e., the
run may be only locally deadlocked. In the case of a local deadlock in (A,B)(1,n),
we distinguish two cases: there is an infinitely moving B-process, or all B-processes
are deadlocked (and thus A moves infinitely often). In the latter case, we use the
same construction as in the global deadlock case (the correctness argument uses
the fact that systems are 1-conjunctive, runs are initializing, and there is only one
process of type A). In the former case, we copy the original run, and let Bn+1

share a local run with an infinitely moving B-process.

91

Lemma 29 (Monotonicity: Conj, Deadlocks, Fair). For 1-conjunctive systems on
strong fair initializing or finite runs:

∀n ≥ 1 : (A,B)(1,n) has a deadlock ⇒ (A,B)(1,n+1) has a deadlock.

Proof. Let x be a globally deadlocked or locally deadlocked strong-fair initializing
run of (A,B)(1,n). We will build a globally deadlocked or locally deadlocked strong-
fair initializing run of (A,B)(1,n+1).

If x is finite, then y is the copy of x, and the new process stays in initB until
every process becomes deadlocked, and then is scheduled arbitrarily. Note that y
constructed this way may be locally deadlocked rather than globally deadlocked
as x is.

Now consider the case when x is locally deadlocked strong-fair initializing.
Let D be the set of deadlocked B-processes in x, and d be the moment when

the processes become deadlocked.
Consider the case Visitedinf

B\D(x) 6= ∅: copy x into y, and let the new process
Bn+1 wait in initB and interleave the roles with a process B that moves infinitely
often in x, as described in the proof of Lemma 26.

Consider the case Visitedinf
B\D(x) = ∅: every B process of (A,B)(1,n) is deadlocked

and thus D = B. Define

DeadGuards=
{
q | ∃Bi ∈ D with a transition guarded “ ∀¬q” in (sd(Bi), ed(Bi))

}
.

Note that QA ∩ DeadGuards = ∅, because A visits infinitely often initA and we
consider 1-conjunctive systems. Hence, copy x into y, and let the new process Bn+1

wait in initB until every process B1, ..., Bn become deadlocked, and then schedule
Bn+1 arbitrarily.

As for the Bounding Lemma, we use a construction that is similar to that of
properties under fairness for disjunctive systems (Sect. 5.7.2): in the setup phase,
we populate some “safe” set of states with processes, and then we extend the
runs of non-deadlocked processes to satisfy strong fairness, while ensuring that
deadlocked processes never get enabled.

Lemma 30 (Bounding: 1-Conj, Deadlocks, Fair). For 1-conjunctive systems on
strong-fair initializing or finite runs:

• with c = 2|QB\{init}| and any n > c:

(A,B)(1,c) has a global deadlock ⇐ (A,B)(1,n) has a global deadlock;

• with c = 2|QB\{init}|+ 1 and any n > c (when |QB| > 2):

(A,B)(1,c) has a local deadlock ⇐ (A,B)(1,n) has a local deadlock;

• with c = 2|QB\{init}| and any n > c:

(A,B)(1,c) has a deadlock ⇐ (A,B)(1,n) has a deadlock.

92

Proof. Global deadlocks. c = 2|QB \{initB}|, see Lemma 28, the fairness does
not matter on finite runs.

Local deadlocks. Let c = 2|QB \{initB}|. Let x = (s1, e1, p1) . . . be a locally
deadlocked strong-fair intitializing run of (A,B)(1,n) with n > c. We construct a
locally deadlocked strong-fair initializing run y of (A,B)(1,c).

Let D be the set of deadlocked processes in x. Let d be the moment in x
starting from which every process in D is deadlocked.

Let dead(x) be the set of states in which processes D of (A,B)(1,n) are dead-
locked.

Let dead2(x) ⊆ dead(x) be the set of deadlocked states such that: for every
q ∈ dead2(x), there is a process P ∈ D with sd(P) = q and that for input e≥d(P)
has a transition guarded with “∀¬q”. Thus, a process in q is deadlocked with
ed(P) only if there is another process in q in every moment ≥ d.

Let dead1(x) = dead(x)\dead2(x). I.e., for any q ∈ dead1(x), there is a process P
of (A,B)(1,n) which is deadlocked in sd(P) = q with input ed(P), and no transitions
from q with input ed(P) are guarded with “∀¬q”.

Define

DeadGuards=
{
q | ∃Bi ∈ D with a transition guarded “ ∀¬q” in (sd(Bi), ed(Bi))

}
.

Figure 5.8 illustrates properties of sets DeadGuards, dead1, dead2, Visitedinf
B\D(x).

Let us assume DeadGuards 6= ∅—the other case is straightforward.
The construction has two phases, the setup and the looping phase.
In the setup phase, we copy from x into y:

a. y(A) = x(A);

b. for every q ∈ dead1: devote one process of (A,B)(1,c) that copies a process of
(A,B)(1,n) deadlocked in q;

c. for every q ∈ dead2 \ Visitedinf
B\D(x): devote two processes of (A,B)(1,c) that

copy the behaviour of two processes of (A,B)(1,n) that deadlock in q;

d. for every q ∈ dead2 ∩Visitedinf
B\D(x): in x, there is a process, Binf

q ∈ B\D, that

visits q infinitely often, and there is a process, B⊥q ∈ dead2, deadlocked in q.
Then:

1. devote one process of (A,B)(1,c) that copies the behaviour of B⊥q , and

2. devote one process of (A,B)(1,c) that copies the behaviour of Binf
q until

it reaches q at a moment after d, and then provide the same input as
B⊥q receives at moment d. This will deadlock the process;

e. for every q ∈ DeadGuards\dead: note that q ∈ Visitedinf
B\D(x) and, thus, there

is a process, Binf
q ∈ B\D, that visits q infinitely often. Devote one process of

(A,B)(1,c) that copies the behaviour of Binf
q until it reaches q at a moment

after d;

93

Figure 5.8: Venn diagram for sets DeadGuards, dead1, dead2, Visitedinf
B\D(x):

(q1) dead1∩DeadGuards∩Visitedinf
B\D(x) 6= ∅ is possible: in x, there is a process

deadlocked in state q1, there is a non-deadlocked process that visits q1

infinitely often, and there is a process deadlocked in a state q 6= q1 with
a transition guarded “∀¬q1”

(q3) dead1∩DeadGuards\Visitedinf
B\D(x) 6= ∅ is possible: similarly to q1, except

that no non-deadlocked processes visit q3 infinitely often

(q2) dead1 \ (Visitedinf
B\D(x) ∪ DeadGuards) 6= ∅ is possible: in x, there is a

process deadlocked in state q2, no other processes visit q2 infinitely often,
and no processes are deadlocked with a transition guarded “∀¬q2”

(q4) DeadGuards\dead 6= ∅ is possible: there is a process deadlocked in a
state q 6= q4 with a transition guarded “∀¬q4”

(q5) dead2 ∩Visitedinf
B\D(x)∩DeadGuards 6= ∅ is possible: there is at least one

process deadlocked in q5 with a transition guarded “∀¬q5”, and some
non-deadlocked process visits q5 infinitely often (this process does not
deadlock in q5, because in q5 it receives an input different from that of
the deadlocked processes)

(q6) dead2∩DeadGuards\Visitedinf
B\D(x) 6= ∅ is possible: similarly to q5, except

no non-deadlocked processes visit q6 infinitely often

94

f. if DeadGuards \ dead 6= ∅ or A ∈ D, then devote one process that stays in
initB. The process will be used in the looping phase to ensure that the run
y is infinite, and that every process of (A,B)(1,c) used in (e) moves infinitely
often (and thus y is strong-fair); and

g. let any other process of (A,B)(1,c) (if any) copy behaviour of a process of
(A,B)(1,n) that was not used in the construction so far (including this step).

The setup phase ensures: in every state q ∈ dead, there is at least one process
deadlocked in q at moment d in y. Now we need to ensure that the non-deadlocked
processes described in steps (e) and (f) move infinitely often, which is done using
the looping extension described bellow.

The looping phase is applied to processes in (e) and (f) only9.
Order arbitrarily DeadGuards\dead = (q1, . . . , qk) ⊆ Visitedinf

B\D(x). Note that

initB 6∈ (q1, ..., qk). Let P be the set of processes of (A,B)(1,c) used in steps (e) or
(f). Note that |P| = |(q1, ..., qk)|+ 1.

The looping phase is: set i = 1, and repeat infinitely the following.

• Let Pinit ∈ P be the process that is currently in initB, and Pqi ∈ P – in qi.

• Let Bqi ∈ Visitedinf
B\D(x) be a process of (A,B)(1,n) that visits qi and initB

infinitely often. Let Pinit of (A,B)(1,c) copy transitions of Bqi on some path
initB → . . . → gi, then let Pgi copy transitions of Bqi on some path gi →
. . .→ initB. For copying we consider only the paths of Bqi that happen after
moment d.

• i = i⊕ 1.

The number of copies of B that the construction uses in the worst case is (i.e.,
the item (g) is not used, and we assume QB > 2, DeadGuards\dead = ∅, and
A ∈ D):

1(f) + 2|dead2|(c),(d) + |dead1|(b) ≤ 2|QB\{initB}|+ 1.

Deadlocks. The largest value of c among those for “Local Deadlocks” and for
“Global Deadlocks” can be used as the sought value of c for the case of general
deadlocks. But it will not be the smallest one. In the proof of the case “Local
Deadlocks”, in the setup phase, item (e) can be modified for the case when A ∈ D:
since we do not need to ensure that y is infinite, we avoid allocating a process in
state initB. For a given locally deadlocked strong-fair run, the setup phase may
produce the globally deadlocked run, but that is allright for the case of general
deadlocks. With this note, for the general case c = 2|QB\{initB}|.

Tightness 8 (1-Conj, Deadlocks, Fair). The cutoff c = 2|B| − 2 is tight for
deadlock detection on strong-fair initializing or finite runs in the 1-conjunctive
systems, i.e., for any k > 2 there is a system type (A,B) with |B| = k such
that there is a strong-fair initializing deadlocked run in (A,B)(1,2|B|−2), but not in
(A,B)(1,2|B|−3).

Proof. Consider the same templates as in Tightness 7.
9If there are no such processes, then the setup phase produces the sought run y.

95

5.9 Conclusion

We have extended the cutoffs for guarded protocols of Emerson and Kahlon [37]
to support local deadlock detection, fairness assumptions, and open systems. In
particular, our results imply the decidability of the parameterized model checking
problem for this class of systems and specifications, which to the best of our
knowledge was unknown before. Furthermore, the cutoff results can easily be
integrated into the parameterized synthesis approach [50].

Since conjunctive guards can model atomic sections and read-write locks, and
disjunctive guards can model pairwise rendezvous (for some classes of specifica-
tions, see [38]), our results apply to a wide spectrum of systems models. But the
expressive power of the model comes at a high cost: cutoffs are linear in the size
of a process, and are shown to be tight (with respect to this parameter). For
conjunctive systems, our new results are restricted to systems with 1-conjunctive
guards, effectively only allowing to model a single shared resource. We conjecture
that our proof methods can be extended to systems with more general conjunctive
guards, at the price of bigger cutoffs. We leave this extension and the question of
finding cutoffs that are independent of the size of processes for future research.

We did preliminary experiments [6] by implementing the synthesizer inside our
parameterized synthesizer PARTY [57]. It is a possible future work to find and
apply it to real-world applications.

96

Chapter 6

Parameterized Token Rings

This chapter is based on joint work with R.Bloem and S.Jacobs [54, 57, 20]

Abstract. Parameterized synthesis was recently proposed as a way to
circumvent the poor scalability of current synthesis tools. The method
uses cutoff results in token rings to reduce the problem to bounded
distributed synthesis, and ultimately to a sequence of SMT problems.
But experiments show that the size of the specification is a major issue.
In this chapter we (1) propose several optimizations of the approach,
and (2) perform a parameterized synthesis case study on the industrial
arbiter protocol AMBA.

In the first part of this chapter, we optimize the reduction of the
parameterized to distributed synthesis. To this end, we refine the cutoff
reduction using modularity and abstraction. The evaluation, using our
specially developed parameterized synthesizer PARTY, shows that the
optimizations lead to several orders of magnitude speed-ups.

In the second part, we perform parameterized synthesis case study
on the industrial arbiter protocol AMBA. The AMBA protocol has
been used as a benchmark for many reactive synthesis tools, because
it is hard to synthesize an implementation that can serve a large num-
ber of clients. We show how to use parameterized synthesis to obtain a
component that serves a single master, and can be arranged in a ring of
arbitrarily many components. We describe new tricks—a cutoff exten-
sion tailored for AMBA and decompositional synthesis—that together
with the previously described optimizations allowed us to synthesize a
component with 14 states in about 1 hour.

6.1 Introduction

By automatically generating correct implementations from a temporal logic specifi-
cation, reactive synthesis tools can relieve system designers from tedious and error-
prone tasks like low-level manual implementation and debugging. This great ben-
efit comes at the cost of high computational complexity of synthesis, which makes
synthesis of large systems an ambitious goal. For instance, Bloem et al. [15] synthe-
size an arbiter for the ARM AMBA Advanced High Performance Bus (AHB) [5].

97

The results, obtained using RATSY [19], show that both the size of the implemen-
tation and the time for synthesis increase steeply with the number of masters that
the arbiter can handle. This is unexpected, since an arbiter for n + 1 masters is
very similar to an arbiter for n masters, and manual implementations grow only
slightly with the number of masters. While recent results show that synthesis time
and implementation size can be improved in standard LTL synthesis tools [46, 48],
the fundamental problem of increasing complexity with the number of masters can
only be solved by adapting the synthesis approach itself.

To this end, Jacobs and Bloem [50] introduced the parameterized synthesis
approach. A simple example of a parameterized specification is the following LTL
specification of a simple arbiter:

∀i 6= j. G¬(gi ∧ gj)∧
∀i. G(ri → F gi).

In parameterized synthesis, we synthesize a building block that can be cloned to
form a system that satisfies such a specification, for any number of components.

Jacobs and Bloem [50] showed that parameterized synthesis is undecidable in
general, but semi-decision procedures can be found for classes of systems with cut-
offs, i.e., where parameterized verification can be reduced to verification of a system
with a bounded number of components. They presented a semi-decision procedure
for token-ring networks, building on results by Emerson and Namjoshi [40], which
show that for the verification of parameterized token rings, a cutoff of 5 is suffi-
cient for a certain class of specifications. Following these results, parameterized
synthesis reduces to distributed synthesis in token rings of (up to) 5 identical pro-
cesses. To solve the resulting problem, a modification of the SMT encoding of the
distributed bounded synthesis problem by Finkbeiner and Schewe [46] was used.

Experiments with the parameterized synthesis method [50] revealed that only
very small specifications could be handled with this encoding. For example, the
simple arbiter presented before can be synthesized in a few seconds for a ring of
size 4, which is the sufficient cutoff for this specification. However, synthesis does
not terminate within 2 hours for a specification that also excludes spurious grants,
in a ring of the same size. Furthermore, the previously proposed method uses
cutoff results of Emerson and Namjoshi [40] and therefore inherits a restricted
language support and cannot handle specifications in assume-guarantee style [15].
This precludes the approach from being applied to the AMBA protocol.

In this chapter we address both issues.
In the first part of the chapter (Section 6.4), we optimize the reduction of the

parameterized to distributed synthesis. We use the fact that (a) token-ring sys-
tems consist of isomorphic processes, (b) different properties may require different
cutoffs, and (c) when model checking the behaviours of some fixed processes, the
behaviours of the others can be abstracted. The evaluation, using our specially
developed parameterized synthesizer PARTY, show that the optimizations lead to
several orders of magnitude speed-ups.

In the second part of the chapter (Section 6.5), we perform parameterized
synthesis case study on the industrial arbiter protocol AMBA. The AMBA protocol
has been used as a benchmark for many reactive synthesis tools, because it is hard

98

to synthesize an implementation that can serve a large number of clients. We
show how to use parameterized synthesis to obtain a component that serves a
single master, and can be arranged in a ring of arbitrarily many components. We
describe new tricks—a cutoff extension tailored for AMBA and decompositional
synthesis—that together with the previously described optimizations allowed us
to synthesize a component with 14 states in about 1 hour.

The chapter starts with definitions in Section 6.2, where we introduce token-
ring systems, parameterized specifications and problems. Then we state known
cutoff results and a slight generalization. Section 6.4 describes the SMT encoding
of the bounded synthesis for token-ring systems, followed by optimizations and ex-
periments. Then we proceed to the AMBA case study (Section 6.5). We describe
the protocol and its parameterized specification. Section 6.5.2 contains the main
contribution: (1) we rewrite the specification into the form feasible to parameter-
ized synthesis and (2) we extend the known cutoffs to handle the resulting AMBA
specification. In Section 6.5.3 on experiments, we describe the crucial optimization
“decompositional synthesis” and report synthesis timings.

6.2 Definitions

6.2.1 Token-ring Systems

In this section we define token ring systems—the LTS that consists of replicated
copies of a process connected in a uni-directional ring. Transitions in a token ring
system are either internal or synchronized (in which one process sends the token
to the next process along the ring). The token starts in a non-deterministically
chosen process.

We start by recalling a (non-deterministic) labeled transition system. A labeled
transition system (LTS) is a tuple (I, O,Q,Q0, δ, out) where I is the set of inputs,
O is the set of outputs disjoint from I, Q is the set of states, Q0 ⊆ Q is the set of
initial states, δ ⊆ Q × 2I × Q is the transition relation, and out : Q → 2O is the
output function (also called state-labeling function).

Fix two disjoint sets: a set Opr of process template output variables that con-
tains two distinguished output variable, snd and tok, and a set Ipr of process tem-
plate input variables that contains a distinguished input variable rcv. We always
assume that Ipr and Opr are disjoint.

Process template. A process template P is an LTS (Ipr,Opr, Q,Q0, δ, out, Aloc):

i) The state set Q is finite and can be partitioned into two non-empty disjoint
sets: Q = T ∪̇NT . States in T are said to have the token.

ii) The initial state set is Q0 = {ιt, ιn} for some ιt ∈ T, ιn ∈ NT .

iii) The output function is out : Q→ 2Opr and it satisfies:

• for every t ∈ NT : tok 6∈ out(t) and for every t ∈ T : tok ∈ out(t),
• for every t ∈ Q: snd ∈ out(t)→ t ∈ T .

99

iv) Let Σpr = 2Ipr . Let Σrcv
pr = {i ∈ Σpr | rcv ∈ i}, Σ¬rcv

pr = Σpr \ Σrcv, T snd = {q ∈
Q | snd ∈ out(q)}, T¬snd = T \ T snd. Then the transition function:

δ ⊆ T snd×Σ¬rcv
pr ×NT ∪ NT×Σrcv

pr ×T ∪ NT×Σ¬rcv
pr ×NT ∪ T¬snd×Σ¬rcv

pr ×T.
(6.1)

Also, δ is non-terminating: for every q ∈ NT and every i ∈ Σpr there exists

q
i→ q′; and for every q ∈ T and every i ∈ Σ¬rcv

pr there exists q
i→ q′.

†) Aloc is a fairness condition over Ipr ∪Opr. We require that on every infinite
path from an initial state and satisfying Aloc, from any state with the token,
q ∈ T , the process reaches a state q′ where it sends the token. (In LTL this
can be written as Aloc → G(tok→ F snd).) We call this requirement (†). We
omit Aloc in the LTS tuple when it is not important.

Ring topology R. A ring is a directed graph R = (V,E), where the set of vertices
is V = {1, . . . , k} for some k ∈ N, and the set of edges is E = {(i, imod|V |+ 1) | i ∈
V }. We will skip “mod|V |” and write i+ 1. Vertices are called process indices.

Token-ring system PR. Fix a ring topology R = (V,E).
Let Isys = (Iloc×V) ∪̇ Iglob be the system input variables, where local inputs Iloc

and global inputs Iglob are such that Ipr = Iloc ∪̇ Iglob. For system input in ∈ 2Isys ,
let in(v) = {i ∈ in | i ∈ Iloc × {v} ∪ Iglob} denote the input to process v (including
global inputs).

Let Osys = Opr × V be the system output variables. For (p, i) in Osys or in
Isys \ Iglob we write pi.

Given a process template P = (Ipr,Opr, Q,Q0, δ, out) and a token ring topology
R = (V,E), the token-ring system PR is the LTS (Isys,Osys, S, S0,∆, Out):

• The set S of global states is QV , i.e., all functions from V to Q. If s ∈ QV is
a global state then s(i) denotes the local state of the process with index i.

• The set of global initial states S0 contains all s0 ∈ QV
0 in which exactly one

of the processes has the token.

• The labeling Out(s) : S → 2Osys is: for every s ∈ S: pi ∈ Out(s) iff p ∈
out(s(i)), for p ∈ Opr and i ∈ V .

Finally, we define the global transition relation ∆. In a fully asynchronous token
ring, a subset of the processes can make a transition in each step of the system.
Thus, ∆ consists of the following set of transitions:

• An internal transition is an element (s, in, s′) of S×2Isys×S, for which there
are process indices M ⊆ V such that

i) for all v ∈M : snd 6∈ out(s(v)) and rcv 6∈ in(v),

ii) for all v ∈M : s(v)
in(v)→ s′(v) is a transition of P , and

iii) for all u ∈ V \M : s(u) = s′(u).

100

1

24

3

snd1

r1

rcv1

r2

g2
snd2

rcv3

rcv2snd4

rcv4

snd3

r4

g4

g3

r3

g1

Figure 6.1: Token ring system with 4 processes. Every process has input r and
output g. Additionally, every process has input rcv and output snd that are used
for passing the token. Thus, Ipr = {r, rcv} and Opr = {g, snd}. In this example,
Iglob is empty.

• A token-passing transition is an element (s, in, s′) of S × 2Isys × S for which
there are two process indices v and w = v + 1 and process indices M ⊂ V
with {v, w} ⊆M such that

i) snd ∈ out(s(v)), and ∀u ∈M \ {v} : snd 6∈ out(s(u))—i.e., only process
v sends the token,

ii) rcv ∈ in(w) and for all u ∈ M \ {w}: rcv 6∈ in(u)—i.e., only process w
receives the token,

iii) for every u ∈M : s(u)
in(u)→ s′(u) is a transition of P , and

iv) for every u ∈ V \M : s′(u) = s(u).

Special cases of the fully asynchronous token ring are the synchronous token
ring and the interleaving token ring. In a synchronous token ring, M = V for
internal and token-passing transitions, i.e., at each step all the processes simulta-
neously make a transition. In an interleaving token ring, M = {v} for some v ∈ V
for internal transitions, and M = {v, w} for (v, w) ∈ E for token-passing transi-
tions, i.e., at each moment either exactly one process makes an internal transition,
or one process sends a token to the next process.

An example of processes arranged in a token ring is in Figure 6.1.

System runs. Fix a ring topology R = (V,E) and a process template P . A
run of a token ring system PR = (Isys,Osys, S, S0,∆, Out) is a maximal-finite or
infinite sequence x = (s1, in1,M1)(s2, in2,M2) . . ., where:

• s1 ∈ S0, sk ∈ S and ink ∈ 2Isys for any k ≤ |x|,

• for all k < |x| : (sk, ink, sk+1) ∈ ∆,

• for all k < |x|: Mk is the set of processes transiting in (sk, ink, sk+1) (see M
in the definition of ∆).

101

6.2.2 Parameterized Systems

The parameterized ring is the function R : n 7→ R(n), where n ∈ N and R(n)
is the ring with n vertices. A parameterized token-ring system is a function PR :
n 7→ PR(n), where n ∈ N and P is a given process template. To disambiguate,
we explicitly write “parameterized [fully asynchronous][interleaving][synchronous]
token-ring system”.

6.2.3 Parameterized Specifications

Parameterized specification is a tuple 〈Ipr, Iglob,Opr,Φ〉, where Ipr is a set of process
template inputs (global and local), Iglob is a set of global inputs, Opr is a set of
process template outputs, and Φ is an indexed LTL formula over Ipr and Opr.
Intuitively, an indexed LTL formula is an LTL formula with indexed variables
and quantification over indices. Below we define indexed LTL and its sublogic,
prenex-indexed LTL.

Indexed LTL

Syntax. Let Vars denote the set of variable names (that will be used as process
indices). Let cond be a Boolean formula over atoms of the form x = y or x = y+1,
for arbitrary x, y from Vars. Then an indexed LTL formula Φ over Ipr, Iglob, and
Opr has the grammar:

Φ = ∀v.(cond→ Φ) | ∃v.(cond ∧ Φ) |
Φ ∧ Φ | ¬Φ |
e | iv | ov | Φ U Φ | Xv Φ

where v ∈ Vars, i ∈ Iloc, o ∈ Opr, e ∈ Iglob. We will write ∀x 6= y : Φ instead of
∀x∀y : (x 6= y)→ Φ, and ∃x 6= y : Φ instead of ∃x∃y : x 6= y ∧ Φ.

Semantics. We define the semantics for sentence formulas only: a formula Φ is a
sentence iff every variable v mentioned in the formula is in the scope of a quantifier
over that variable. E.g., rx is not a sentence, while ∀x : rx is.

Let Φ be a sentence. Let PR be a token-ring system with R = (V,E) and π be
an infinite run of the system. Define π |= Φ iff π |= ΦV (this satisfaction is defined
later), where ΦV is constructed from Φ as follows.

1. Replace every single-quantified subformula ∀v.φ of Φ with
∧
i∈V φ[v 7→ i];

replace every single-quantified subformula ∃v.φ with
∨
i∈V φ[v 7→ i]. Here

φ[v 7→ i] denotes the formula φ in which v is substituted by i. E.g., rx[x 7→ 5]
is r5.

2. Repeat step (1) until all quantifiers disappear. The resulting formula is ΦV .
Note that conditions cond like x 6= y get simplified into true or false.

E.g., ∃x∃y.x 6= y ∧ gx ∧ gy becomes
∨

(x,y)∈V×V .x 6= y ∧ gx ∧ gy.
Definition of “system satisfies Φ”. Fix a P = (Ipr,Opr, Q,Q0, δ, out), global
inputs Iglob, and a token ring R = (V,E). Let Φ be an indexed LTL over Ipr,

102

Opr, and Iglob. Then PR |= Φ iff for every infinite system run π: π |= Φ. An
infinite system run π = (s1, in1,M1)(s2, in2,M2)... ∈ (S×2Isys×2V)ω satisfies Φ iff
(Out(s1), in1)(Out(s2), in2)... |= ΦV . The latter satisfaction is standard except for
the operator X. Given a v ∈ V and the original run, (Out(s1), in1)(Out(s2), in2)... |=
Xv ϕ iff (Out(si), ini)(Out(si+1), ini+1)... |= ϕ where i is the second1 smallest i such
that v ∈ Mi. Intuitively, Xv ϕ requires ϕ to hold on the suffix run that skips one
transition of the process v and that starts with v transiting. In formulas of the
form ∀i.(...Xi ...), we usually skip the subscript in Xi and write X. (The next
operator Xi presented here is inspired by the action-based semantics from [40].)

Prenex-indexed LTL

Let us abbreviate by ∀xcond.φ the formula ∀x.cond → φ, and by ∃xcond.φ the
formula ∃x.cond ∧ φ. When the quantifier is not important, we write Qxcond.φ.

An indexed LTL formula Φ is prenex-indexed iff it is of the form

Qv1
condv1 ...Qv

k
cond

vk
: φ.

We call Φ k-indexed, because it has k quantifiers. Let LTL\X refer to LTL formulas
that do not use X.

Note that prenex-indexed LTL is not as expressive as (non-prenex) indexed
LTL. For example, formula F ∀x.px does not have an equivalent prenex-indexed
form.

Most of existing and our cutoff results are restricted to prenex-indexed LTL
formulas with the empty set of global inputs.

Remark 11 (∀i.Ai → ∀j.Gj is not prenex-indexed). In the previous section we
defined “a system satisfies an indexed LTL formula”. If we use the path quantifier
A explicitly, then, as usually, a system satisfies an LTL formula ϕ, sys |= ϕ, is
equivalent to sys |= Aϕ, where ϕ is treated as a path formula of CTL∗. Now
consider ∀i.Ai → ∀j.Gj. If rewritten with the path quantifier A, it is A(∀i.Ai →
∀j.Gj). There is no way to turn it into the form Qv1...QvkAφ and this formula is
not prenex-indexed.

6.2.4 Parameterized Synthesis Problem

The parameterized synthesis problem (for token rings) is:

Given: parameterized specification 〈Ipr, Iglob,Opr,Φ〉
Return: process template P = (Ipr,Opr, Q, q0, δ, out) such that for every n: PR(n) |=
Φ, or “unrealizable” if no such template exists.

We can similarly define the parameterized model checking problem, in which
the process template is given as input.

Furthermore, we will use the variants of these problems, which ask whether
all systems larger than a given n0 satisfy the formula. We call such problems
parameterized>n0 .

1Why “second”, not the first one? This is the consequence of the fact that we group the input
to be read with the current output. E.g., Xv rv should refer to rv read when transiting from the
next state rather than referring to rv read when transiting into the next state.

103

The parameterized synthesis for token rings is undecidable [50], even for prenex
2-indexed specifications without global inputs:

Theorem 31 ([50], Theorem 3.5). The parameterized synthesis problem of inter-
leaving token rings, without global inputs, formulas ∀i 6= j.ϕ(i, j), is undecidable,
where ϕ(i, j) is an LTL\X formula over processes i, j.

This result follows from the undecidability of synthesis of distributed systems with
two processes [73]. The problem is decidable for prenex 1-indexed specifications.

6.3 Reduction by Cutoffs

The definition of a cutoff is the same as in Section 5.4 on page 72, we repeat it
here for completeness. A cutoff for parameterized specification 〈Ipr, Iglob,Opr,Φ〉
and process template P = (Ipr,Opr, Q,Q0, δ, out) is a number c ∈ N such that

∀n ≥ c.
(
PR(c) |= Φ ⇔ PR(n) |= Φ

)
.

Cutoffs reduce the parameterized synthesis and model checking problems to
their non-parameterized variants. E.g., if the cutoff is 2 then the answer to the
parameterized>2 model checking problem “∀n > 2 : PR(n) |= Φ” is the same as the
answer to the non-parameterized model checking problem “PR(2) |= Φ”.

Known Cutoffs

In a seminal paper [39, 40] Emerson and Namjoshi proved the following cutoff
results.

Theorem 32 ([40]). Let P = (Ipr,Opr, Q,Q0, δ, out, Aloc) be a process template,
Iglob = ∅ (no global inputs), 〈Ipr,Opr,Φ〉 a parameterized specification. Assume that
the scheduler is interleaving. Then c is a cutoff depending on Φ:

• c = 2 for ∀i. φ(i),

• c = 3 for ∀i.∀jj=i+1. φ(i, i+ 1),

• c = 4 for ∀i.∀ji 6=j. φ(i, j),

• c = 5 for ∀i.∀ji 6=j.∀kk=i+1. φ(i, i+ 1, j).

The above cutoff results are restricted to token-ring architectures and do not
allow for specifications of the more general k-indexed form. Later in [3] we ex-
tended the results to more general networks (directed graphs), where the processes
can control the directions in which to send and receive the token, and systems can
pass more than one token. The paper also studied k-indexed CTL∗ properties,
also with a bounded alternation depth of path quantifiers.

104

6.4 Bounded Synthesis of Parameterized Token

Rings

6.4.1 SMT Encoding

We encourage the reader to revisit Chapter 2 on page 24 to recall how bounded
synthesis works in the case of non-distributed systems. We adapt the encoding to
the case of (distributed) token ring systems as follows.

Let us start with SMT constraint about a process template.

SMT constraints for a process template. Let us encode the definition of
process template from Section 6.2.1 on page 100:

• Introduce a special output tok : T → B such that tok(t) holds iff t ∈ T
(recall that we divide the states Q = T ∪̇ NT). Let us encode Eq. 6.1 (on
page 100), which specifies: a process template can send the token only if it
has the token; sending the token means a process template loses the token;
if a process template receives the token and currently does not have it, then
it has the token after the transition.

∀i.G

 sndi → toki
toki → (sndi ↔ X¬toki)
¬toki → (rcvi ↔ X toki)

 (6.2)

• What is left is the condition (†) from the process template definition. We
introduce the following LTL formula:

∀i. (Aloc)i → G(toki → F sndi), (6.3)

i.e., a process does not lock the token if the fairness condition Aloc is satisfied.

SMT constraints for a system. Now let us encode particularities of (dis-
tributed) token-ring systems.

• We compose the system transition function out of process transition func-
tions. Note that all processes share the same transition function; the input
arguments to the function reflect for what process it is used. To account for
scheduling, we introduce additional system inputs sch1, ..., schk (where k is
the number of processes in a ring), and require that a process i ∈ {1, ..., k}
can transit only when schi is true (and hence a process does not see its inputs
when it is not scheduled).

• The scheduler model (asynchronous/synchronous/interleaving) defines the
constraints on the scheduling variables sch1, ..., schk. For synchronous token
rings, all scheduling variables are set to true. For interleaving scheduling,
exactly one of the scheduling variables is set to true, except for the token-
passing transitions where the two processes transit simultaneously. For asyn-
chronous scheduling, any number (including zero) of the scheduling variables
can be true. To specify fair scheduling (for the interleaving or asynchronous

105

snd

snd¬snd

¬rcv
¬rcv

rcv

¬rcv

Figure 6.2: Process template synthesized from the specification of a simple arbiter
(Example 11). There are two initial states, with and without the token. The
blue-filled states have the token, the double state has g, the others have ¬g. The
process template grants whenever it has the token (except for the initial state),
ignoring the request. The exclusivity of the token ensures the mutual exclusion of
the grants.

cases), we use the constraint
∧
i GF schi. This constraint is added as the

assumption to the original formula, when we translate the formula into an
automaton.

• To ensure that the topology is the token ring (where every process sends the
token to its single neighbor), we manipulate process input snd and output
rcv in the natural way. For example, if process i is ready to send the token,
i.e., it is in a state t and snd(t) holds, then once it is scheduled we set rcvi+1

to true. I.e., sndi is connected to rcvi+1:

G[sndi ↔ rcvi+1]

Thus, given an LTL formula ϕ, we want to synthesize a token-ring system that
satisfies:

∀i.(GF schi ∧ G(sndi ↔ rcvi+1)) → ϕ ∧ ∀i


G[sndi → toki]
G[toki → (sndi ↔ X¬toki)]
G[¬toki → (rcvi ↔ X toki)]
(Aloc)i → G(toki → F sndi)


(6.4)

Example 11. Consider a specification of a simple arbiter. A process template has
inputs I = {r, rcv}, outputs O = {g, snd}, the original parameterized LTL formula
specifying the arbiter is:

∀i 6= j. G¬(gi ∧ gj)
∀i. G(ri → F gi) ∧ ¬gi.

By Theorem 32, the cutoff is 4. We set Aloc = true, instantiate the above for-
mula, and synthesise a token-ring system. The process synthesised using our tool
PARTY [57] is in Figure 6.2.

6.4.2 Optimizations

In this section we describe high-level optimizations that are not specific to the SMT
encoding. The first two optimizations, incremental solving and modular generation

106

of constraints, are sound and complete. The third, specification strengthening, is
based on automatic rewriting of the specification and introduces incompleteness.
The last optimization, hub-abstraction is sound and complete.

Incremental Solving

Theorem 32 states that it is sufficient to synthesize a token ring of cutoff size c.
However, a solution for a smaller number of processes can still be correct in bigger
rings. We propose to proceed incrementally, synthesizing first a ring of size 1, then
2, ..., up to c. After synthesizing a process that works in a ring of size n, we check
whether it satisfies the specification also in a ring of size n+ 1. Only if the result
is negative, we start to synthesize a ring of size n+ 1.

Modular Constraints for Conjunctive Properties

A useful property of the SMT encoding for parameterized synthesis is that we can
separate conjunctive specifications into their parts, generate constraints for the
parts separately, and then search for a solution that satisfies the conjunction of all
constraints. In the following, for a parameterized specification ϕ and a number of
processes k, let C(ϕ, k) be the set of SMT constraints generated by the bounded
synthesis procedure. Note that C(ϕ, k) is of the form ∃P (...). When a process
template P is given, let “P |= C(ϕ, k)” mean that the constraints C(ϕ, k) are
satisfied when instantiated with the process P .

Theorem 33. Let ϕ1 and ϕ2 be prenex-indexed formulas such that n1 is a cutoff
for ϕ1 and n2 is a cutoff for ϕ2. Then:

P |= C(ϕ1, n1) ∧ C(ϕ2, n2) ⇒ PR(k) |= ϕ1 ∧ ϕ2 for every k ≥ max(n1, n2).

The theorem allows us to use different cutoffs for sub-parts of a formula. By
conjoining the resulting constraints of all parts, we obtain an SMT problem such
that every solution satisfies the complete formula. For example, for a formula

∀i 6= j. G¬(gi ∧ gj)
∀i. G(ri → F gi),

we generate constraints for a ring of size 4 for the first conjunct, and we generated
constraints for a ring of size 2 for the second conjunct. This is useful for formulas
where the local (1-indexed) part is more complex than the global part, like our
more complex arbiter examples.

Specification Strengthening and Handling Assumptions

To handle specifications in assume-guarantee style, we strengthen them in two
rewriting steps, which are sound but incomplete. This turns them into the prenex-
indexed form (the only form, for which we know how to do parameterized synthe-
sis).

Consider a formula in assume-guarantee style AL∧AS → GL∧GS, where each
of the conjuncts is in the prenex-indexed form, and L and S denote respectively

107

liveness and safety. Notice that this formula, as a whole, is not in prenex-indexed
form, since it contains process quantifiers inside the path quantifier A (if written
explicitly, it says A(∀i...→ ∀j...), which is 2-indexed but not prenex -indexed).

Safety-liveness assumptions. Our first strengthening is based on the intuition
that often AL is not needed to obtain GS, so we strengthen the formula to (AS →
GS) ∧ (AL ∧ AS → GL). This step is incomplete for specifications where the
system can falsify liveness assumptions AL and therefore ignore guarantees, or if
the assumptions AS ∧ AL are unrealizable but AS is realizable. Both of the cases
often hint at the problems with the specification2.

Localizing assumptions. Consider a 2-indexed formula in assume-guarantee
style, ∀iAi → ∀jGj, where Ai and Gj refer to process i and j respectively. Orig-
inally, we want to plug this formula into Eq. 6.4 and synthesize for the resulting
formula. Instead, we localize it—turn (∀i...)→ (∀j...) into ∀i(...→ ...)—and get:

∀i :
(
GF schi ∧ G(sndi ↔ rcvi+1)

)
→


G[sndi → toki]
G[toki → (sndi ↔ X¬toki)]
G[¬toki → (rcvi ↔ X toki)]
Ai → G(toki → F sndi)
Ai ∧ GF toki → Gi

 (6.5)

A few notes:

• This formula implies the original formula Eq.6.4 where we set ϕ = ∀iAi →
∀iGi and Aloc = Ai. Setting Aloc = Ai—requiring G(toki → F sndi) to hold
under the assumption Ai—is reasonable: it says that if the environment
violates the assumption Ai, then we are not required to release the token.
Note that if token releasing is required despite Ai, then the rewriting is
unsound (it may result in incorrect solutions wrt. Eq.6.4).

• In this formula, the non-technical part (where the technical part encodes
the token-ring properties) is in the prenex -indexed fragment. Indeed, the
non-technical part corresponds to ∀i. (Ai∧GF toki → Gi), which is prenex 1-
indexed LTL formula. In contrast, the original formula ∀i.Ai → ∀j.Gj is not
prenex-indexed, because it corresponds to A(∀i.Ai → ∀j.Gj), if we explicitly
write the path quantifier A. Hence for the new formula we can use the cutoff
results of Theorem 32, but we could not for the original one.

• Adding ∀i GF toki to the first constraint is crucial. Otherwise, the final for-
mula becomes too restrictive and we may miss solutions. The reason why
GF toki may prevent this is that GF toki may work as a local trigger of a

2The well known class of GR1 specifications [15], which can be used to describe industrial
systems, does not use liveness assumptions for safety guarantees. Furthermore, for GR1 spec-
ifications Klein and Pnueli [59] describe a similar separation of safety guarantees from liveness
assumptions. They introduce “well separated” assumptions, which are such that the system
cannot falsify them at any state, and show that “well separation” of assumptions is sufficient for
the rewriting to be sound. Incomplete cases represent specifications where the system can falsify
assumptions and ignore guarantees.

108

violation of an assumption. This is confirmed in the “Pnueli” arbiter exper-
iment, where a violation of one of the assumptions Ai prevents fair token
passing in the ring, falsifying GF tokj for all j 6= i.

• Filiot et al. [45] describe a similar rewriting heuristic, in the context of mono-
lithic synthesis. Our version differs in that we add GF toki assumptions before
localization to prevent missing the solutions.

Hub-abstraction

Inspired by the work [30], we introduce the hub abstraction optimization. Recall
that for 1-indexed properties ∀i.ϕ(i), a cutoff is 2, meaning that it is enough to
consider a token ring system with two processes. Furthermore, by symmetry of
the processes, it holds that PR(2) |= ∀i.ϕ(i)⇔ PR(2) |= ϕ(1) (for details, see [40]).
The hub abstraction suggests to replace the process P2 of a system with the hub
process whose whole purpose is to pass the token. This may reduce the state space,
because we replace the original process P2 by the small hub process. We emulate
the hub process using the environment assumptions, thus considering only one real
process. The assumptions are:

(1) if the process does not have the token, then the environment eventually sends
the token (raises the input rcv): G(¬tok→ F rcv),

(2) if the process has the token, then the environment does not send the token:
G(tok→ ¬rcv).

The final formula to synthesize is:

(
GF sch∧G(¬tok→ F rcv)∧G(tok→ ¬rcv)

)
→ ϕ∧


G[snd→ tok]
G[tok→ (snd↔ X¬tok)]
G[¬tok→ (rcv↔ X tok)]
Aloc → G(tok→ F snd)


(6.6)

Note that the assumption (1) states that the token cannot get stuck in the hub
process (and thus in the original process that the hub abstracts). This does not
always hold, because we only require to pass the token if Aloc holds. This means
that the hub-abstraction is not sound wrt. Eq.6.4, i.e., there is a process P (and
Aloc) and ∀i.ϕ(i) such that P |= Eq.6.6 but PR(2) 6|= Eq.6.4.

However, we will use the hub abstraction in the context of assume-guarantee 1-
indexed specifications in the form of Eq.6.5 (“∀i.Ai∧GF toki → Gi”). Since Eq.6.5
only requires the guarantee to hold on paths where the token is passed infinitely
often, the following result holds.

Theorem 34. For every process template P and LTL formula ϕ of the form
A→ G:

P |= Eq.6.6 (where Aloc = A) ⇒ PR(2) |= Eq.6.5.

Furthermore, we can replace GF sch with true, which can introduce unsoundness
wrt. Eq.6.5. But this step is sound for formulas where the environment cannot
violate guarantees by not scheduling a process. This is true for all examples we
consider in the next section.

109

6.4.3 Evaluating Optimizations

For the evaluation of optimizations we developed an automatic parameterized syn-
thesis tool PARTY [57]. The tool and the benchmarks are available at https:

//github.com/5nizza/Party/. PARTY

(1) identifies the cutoff of a given LTL specification,

(2) adds token-ring specific guarantees and assumptions to the specification,

(3) translates the modified specification into a UCT using LTL3BA [8],

(4) for a given cutoff and system size bound, builds the SMT constraints,

(5) solves the constraints using SMT solver Z3 v.4.1 [34]. If the solver reports
unsatisfiability, then no model for the current bound exists, and the tool goes
to step 4 and increases the bound until the user interrupts execution or a
model is found. A model synthesized represents a Moore machine that can
be copied to form a token-ring system of any size.

We run the experiments on a single core of a Linux machine with two 4-core
2.66 GHz Intel Xeon processors and 64 GB RAM. Reported times in tables include
all the steps of the tool. For long running examples, SMT solving contributes most
of the time. Timings reported in tables are timings of one particular run, although
we observed that the behaviour of optimizations timings does not change much on
different runs.

For the evaluation of optimizations we run the tool, with different sets of op-
timizations enabled, on three examples: a simple arbiter, a full arbiter, and a
“Pnueli” arbiter. All benchmarks contain the mutual exclusion property ∀i 6=
j.G¬gi ∧ gj, for which a cutoff is 4 according to Theorem 32. We show solving
times in Table 6.1. The horizontal axis of the table has columns for token rings
of different sizes. Each successive optimization below includes previous optimiza-
tions.

Incremental solving. Solving times can be sped up considerably by synthesizing
a ring of size 2, then checking whether the solution is correct for a ring of size 4. For
instance, for the full arbiter, the general solution was found in ≈24 seconds when
synthesizing a ring of size 2 (time from the “original” row in Table 6.1). Checking
if the solution is correct for a ring of size 4 takes additional ≈ 30 seconds, thus
reducing the synthesis time from more than 2 hours (column “full4” in the same
row) to ≈ 54 seconds. Times for incremental solving are not given in the table,
because its contribution is small when optimizations “strengthening”, “modular”,
and “async hub” are applied.

Strengthening. This version refers to two optimizations described in Section 6.4.2:
localizing of assume-guarantee properties and rewriting liveness assumptions from
properties with safety guarantees. Formula rewriting significantly reduces the size
of the automaton: for example, the automaton corresponding to the “Pnueli” ar-
biter in a ring of size 4 reduces its size from 1700 to 31 states (from 41 to 16 for
the full arbiter).

110

https://github.com/5nizza/Party/
https://github.com/5nizza/Party/

Table 6.1: Effect of optimizations on synthesis time (in seconds, t/o=2h)

simple4 full2 full3 full4 pnueli2 pnueli3 pnueli4 pnueli5 pnueli6

original 3 24 934 t/o 23 6737 t/o t/o t/o
strengthening 1 6 81 638 2 13 90 620 6375
modular 1 4 8 13 2 4 11 49 262
async hub 1 2 2 5 2 3 9 37 236
sync hub 1 1 2 4 2 3 8 42 191

total speedup 3 20 102 ≥103 10 103 ≥103 ≥102 ≥40

Modular. In this version, constraints for formulas of the form φi ∧ φi,j are gen-
erated separately for local properties φi and for global properties φi,j, using the
same symbols for transition and output functions. Constraints for φi are gener-
ated for a ring of size 2, and constraints for φi,j for a ring of size 4. These sets of
constraints are then conjoined in one query and given to the SMT solver. Such
separate generation of constraints leads to smaller automata and queries, resulting
in approximately 10x speed up.

Hub abstractions. By replacing one of the processes in a ring of size 2 with
assumptions on its behavior, we reduce the synthesis of a ring of size two to the
synthesis of a single process. In row “async hub” the process is synthesized in an
asynchronous setting, while in row “sync hub” the process is assumed to be always
scheduled. On these examples, the speed up is insignificant.

6.4.4 Discussion

We showed how optimizations of the SMT encoding, along with modular applica-
tion of cutoff results, strengthening and abstraction techniques, leads to a signif-
icant speed-up of parameterized synthesis. Experimental results show speed-ups
of more than three orders of magnitude for some examples.

In the next section, we use these optimizations to tackle AMBA specification.
This will not work out of the box and we will introduce more tricks specifically
tailored to the AMBA.

6.5 AMBA Protocol Case Study

We demonstrate how to synthesize a parameterized implementation of the AMBA
AHB, with guaranteed correctness for any number of masters. To this end, we
translate the LTL specification of the AMBA AHB (as found in [51]) into a version
that is suitable for parameterized synthesis in token rings, and address several
challenges with respect to theoretical applicability and practical feasibility:

• We show how to localize global input and output signals (those that cannot
be assigned to one particular master). This is necessary since our approach
is based on the replication of components that act only on local information.

111

• We extend the cutoff results to fully asynchronous timing model and systems
with two process templates.

• We describe further optimizations that make synthesis feasible, in particular
based on the insight that the AMBA protocol features three different types
of accesses, and the control structures for these accesses can be synthesized
step-by-step.

6.5.1 Description of the AMBA Protocol

ARMs Advanced Microcontroller Bus Architecture (AMBA) [5] is a communication
bus for a number of masters and clients on a microchip. One of the crucial parts
of AMBA is the Advanced High-performance Bus (AHB), a system bus for the
efficient connection of processors, memory, and devices.

For convenience, the input signals are depicted in red color and the outputs
are blue.

The bus arbiter ensures that only one master accesses the bus at any time.
Masters send hbusreq to the arbiter if they want access, and receive hgrant
if they are allowed to access it. Masters can also ask for different kinds of locked
transfers that cannot be interrupted.

The exact arbitration protocol for AMBA is not specified. Our goal is to
synthesize a protocol that guarantees safety and liveness properties. According to
the specification, any device that is connected to the bus will react to an input
with a delay of one time step. I.e., we are considering Moore machines. In the
following, we introduce briefly which signals are used to realize the arbiter of this
bus for masters.

Requests and grants. The identifier of the master which is currently active is
stored in the n+ 1-bit signal hmaster[n:0], with n chosen such that the number
of masters fit into n+1 bits. To request the bus, master i raises signal hbusreq[i].
The arbiter decides who will be granted the bus next by raising signal hgrant[i].
When the client raises hready, the bus access starts at the next tick, and there
is an update hmaster[n:0] := i, where hgrant[i] is currently active.

Locks and bursts. A master can request a locked access by raising both hbus-
req[i] and hlock[i]. In this case, the master additionally sets hburst[1:0] to
either single (single cycle access), burst4 (four cycle burst) or incr (unspec-
ified length burst). For a burst4 access, the bus is locked until the client has
accepted 4 inputs from the master (each signaled by raising hready). In case of
a incr access, the bus is locked until hbusreq[i] is lowered. The arbiter raises
hmastlock if the bus is currently locked.

LTL specification. The original natural-language specification [5] has been trans-
lated into a formal specification in the GR(1) fragment of LTL before in [51, 15, 48].
Figure 6.3 shows the environment assumptions and system guarantees from [51]
that serve as the basis for our parameterized specification. The full specification
is (A1 ∧ . . . ∧ A4)→ (G1 ∧ . . . ∧G11).

Challenges. The AMBA specification has global inputs and outputs (those are
without “[i]”), distinguishes 0 from non-0 processes (G10.1 and G11), has the

112

Assumptions :

G (hmastlock ∧ hburst = incr)→ XF¬hbusreq[hmaster] (A1)

GF hready (A2)

∀i : G hlock[i]→ hbusreq[i] (A3)

∀i : ¬hbusreq[i] ∧ ¬hlock[i] ∧ ¬hready (A4)

Guarantees :

G ¬hready→ X¬start (G1)

G (hmastlock ∧ hburst = incr ∧ start)
→ X(¬startW (¬start ∧ hbusreq[hmaster])) (G2)

G (hmastlock ∧ hburst = burst4 ∧ start ∧ hready)
→ X(¬startW [3](¬start ∧ hready)) (G3.1)

G (hmastlock ∧ hburst = burst4 ∧ start ∧ ¬hready)
→ X(¬startW [4](¬start ∧ hready)) (G3.2)

∀i : G hready→ (hgrant[i]↔ X(hmaster = i)) (G4)

G hready→ (locked↔ X(hmastlock)) (G5)

∀i : G X¬start→
(

(hmaster = i↔ X(hmaster = i))
∧ (hmastlock↔ Xhmastlock)

)
(G6)

∀i : G (decide ∧ Xhgrant[i])→ (hlock[i]↔ X(locked)) (G7)

∀i : G ¬decide →
(

hgrant[i]↔ Xhgrant[i]
∧ locked↔ X locked

)
(G8)

∀i : G hbusreq[i]→ F(¬hbusreq[i] ∨ hmaster = i) (G9)

∀i 6= 0 : G ¬hgrant[i]→ (¬hgrant[i] W hbusreq[i]) (G10.1)

G (decide ∧ (∀i : ¬hbusreq[i]))→ Xhgrant[0] (G10.2)

hgrant[0] ∧ (∀i 6= 0 : ¬hgrant[i]) ∧ hmaster = 0 ∧ ¬hmastlock
∧decide ∧ start (G11)

Figure 6.3: Specification of the AMBA AHB [51], in the GR(1) fragment of LTL.
The inputs are: hburst, hbusreq[i], hready, and hlock[i]. The outputs are:
hmastlock, hmaster, start, decide, locked, and hgrant[i].

assume-guarantee form A(∀i.A1 ∧ ... ∧ A4 → ∀i.G1 ∧ ... ∧ G11) (thus not in the
prenex-indexed form), has the process quantification inside a temporal operator in
G10.2 G(∀i... → ...), and requires a synchronous mode of execution (all processes
transit simultaneously). Thus we cannot apply the cutoff results (Theorem 32 on
page 104) for parameterized synthesis. The next section shows how to handle this.

6.5.2 Handling the AMBA Specification

This section shows how to rewrite the AMBA specification into a form admissible
to the parameterized synthesis. We not only rewrite the specification, but also
extend the cutoff results [40] to the resulting class of specifications. Note that the
resulting specification is not the same as the original AMBA (but closely resembles
it), due to constraints of the token-ring architecture. (For example, token rings
cannot ensure immediate granting of a client, because the token has to travel to the
corresponding process first.) The resulting specification describes a round-robin
arbiter with different granting schemes and one special process.

113

Special 0-process: two process templates (A,B)

The specification distinguishes between master number 0 and all other masters.
We support this by synthesizing two different process implementations, A for the
0-process and B for non-0 processes: the A-process serves master 0 and the B-
processes serve the other masters. We denote a token-ring system composed of
one A process and n copies of B using the notation (A,B)(1,n). The modified
parameterized synthesis problem is to find (A,B) such that ∀n : (A,B)(1,n) |= Φ.
Later we will separate the specification into two parts: one will talk about process
A, another will talk about B-processes.

Localizing global outputs

The AMBA specification has global outputs hmastlock, hmaster, start, de-
cide, and locked. They depend on the global state of the system, which is not
handled by the work on parameterized model checking of token ring systems [40, 3].
To overcome this, we introduce local versions of the global outputs and build global
outputs from them:

• hmaster = i whenever hmaster[i] is high, and

• for every global output glob from {hmastlock, start,decide, locked},
glob = ∃i. tok[i] ∧ globi.

We replace each global output with its local version, e.g., start is replaced
by start[i]. Note that the limited communication interface (via token passing)
does not make AMBA specification unrealizable, although processes cannot access
the value of global outputs when they do not possess the token. Intuitively, this
is because the token is the shared resource that guarantees mutual exclusion of
grants, and therefore the values of these global signals should always be controlled
by the process that has the token. In particular, outputs decide and start are
used to decide when to raise a grant and when to start and end a bus access3, which
should only be done when the token is present. Similarly, signals hmastlock and
hmaster should be controlled by the process that currently controls the bus (and
hence has the token).

Finally, we mentioned many times that the token should be used to ensure
the mutual exclusion of grants. Let us explicitly add this requirement into the
specification, namely we add G12: ∀i.hgrant[i]→ tok[i]. (The original formula
contains only an implicit mutual exclusion property: G4 defines how hmaster is
updated by the hgrant[i] signals, which can only be satisfied if hgrant[i] are
mutually exclusive.)

Splitting the specification into two & other small rewritings

Once we localized global outputs, we can talk about splitting the AMBA speci-
fication into two parts. At first, each part will be in the assume-guarantee form,

3The original AMBA specification [5] does not have these signals—they were introduced to
simplify the formalization of the specification [51].

114

where the assumptions talk about all the processes (the only A and all B), but
the guarantees will be separated into (i) guarantees for the B-processes and (ii)
guarantees for the process A.

After the localization, guarantees G10.1 and G10.2 become:

∀i 6= 0:G ¬hgrant[i]→ (¬hgrant[i] W hbusreq[i]) (G10.1)

G (decide[0] ∧ ∀i.¬hbusreq[i])→ Xhgrant[0] (G10.2)

Thus, G10.1 is used for B-processes, while G10.2 is used for the process A. Let us
talk more about G10.2, because it has two issues.

The first issue with G10.2 is that it requires an immediate reaction to a situation
when no process receives a bus request. This is unrealizable in token rings, because
mutual exclusion of the grants requires possession of the token, and the token
transmission takes time. We modify G10.2 to allow the process A to wait for the
token and then immediately react:

G
(
¬tok[0] ∧ Xtok[0] ∧ ∀i.¬hbusreq[i]→ Xhgrant[0]

)
.4

The second issue with G10.2 is the quantifier ∀i inside the temporal operator
G (such specifications were not studied in parameterized model checking of token
rings). It requires the process A to know about inputs of all B-processes, as it
needs to react to a situation where hbusreq[i] is low for every process. To get
rid of the nesting G(∀i...), we introduce a new global input no req, and add the
assumption ∀i.G(hbusreq[i]→ ¬no req). Then G10.2 becomes:

G (¬tok[0] ∧ Xtok[0] ∧ no req)→ Xhgrant[0]).

This strengthens the specification, because the environment can set ¬no req even
when there are no requests. This concludes the discussion of G10.2.

The last asymmetric property is the guarantee G11. We split it into two parts:

• G11.1: ¬hgrant[i] ∧ ¬hmastlock[i] for B-processes and

• G11.2: tok[0]→ hgrant[0] ∧ hmaster[0] ∧ ¬hmastlock[0] (for A).

Localizing global inputs

The AMBA specification in Figure 6.3 uses global inputs hburst,hready, and
no req that we introduced in the previous section.

First, we introduce local versions hburst[i], hready[i], and no req[i], and
add the assumption ∀i 6= j. loci = locj for loc ∈ {hburst,hready,no req}.

4Maybe you expected to see G (decide[0] ∧ (∀i : ¬hbusreq[i]) ∧ Xtok[0])→ Xhgrant[0]),
but this makes the specification unrealizable due to the token ring requirement G(tok→ F send):
the environment falsifies it by making ∀i : ¬hbusreq[i] true whenever the process raises decide
(and hence the process should continue granting and cannot release the token). To regain realiz-
ability one could add additional assumptions (something like GF(decide∧¬no req)). Instead,
we decided to change slightly the specification.

115

This rewriting does not change the specification. The specification becomes

A
(
∀i 6= ji,j∈{A,B1,...,Bn}.Φ(i, j) → ∀k ∈ {B1, ..., Bn}.Ψ(k)

)
∧

A
(
∀i 6= ji,j∈{A,B1,...,Bn}.Φ

′(i, j) → Ψ′(A)
)
,

where each Φ(i, j) and Φ′(i, j) talk about propositions of processes i and j, and
Ψ(k) and Ψ′(A) talk about propositions of process k and A respectively. Note that
Ψ 6= Ψ′ because we split the guarantees for B-processes and the process A (the
assumptions also slightly differ, so we use Φ and Φ′). Now the specification does
neither have global inputs nor global outputs.

Second, we drop the newly introduced assumptions. This means that the orig-
inal global inputs hburst, hready, and no req may have different values for
different processes, i.e., they are not “global” anymore. This strengthens the spec-
ification, because dropping the assumptions enables more environment behaviors
(and the formula is universal A(...)). The resulting specification becomes

A
(
∀i ∈ {A,B1, ..., Bn}.Φ(i) → ∀j ∈ {B1, ..., Bn}.Ψ(j)

)
∧

A
(
∀i ∈ {A,B1, ..., Bn}.Φ′(i) → Ψ′(A)

)
.

(6.7)

Figures 6.4 and 6.5 define Φ, Ψ, Φ′, and Ψ′. We stress that Φ(i) and Φ′(i) has to
be conjoined over all B-processes and the process A to form the assumptions.

Resulting parameterized specification and cutoffs

We still cannot apply the cutoff results to the specification in Eq.6.7, because it
is in the assume-guarantee form (and thus is not prenex-indexed) and has the
synchronous timing model.

To handle the synchronous timing model, we synthesize a more general case
of fully asynchronous systems (those work under all ranges of schedulers from the
synchronous to the interleaving one). This represents a more difficult synthesis
task, but if the synthesizer finds such a system, then the system works in the
synchronous setting too (because we have universal properties).

To handle the assume-guarantee issue, we localize the assumptions as described
in Eq.6.5 on page 108, by strengthening A(∀i.φ(i) → ∀j.ψ(j)) into A

(
∀i.(φ(i) ∧

GF toki → ψ(i))
)

where Ai in Eq.6.5 is φ(i). The final specifications are (in LTL):

for B-processes: ∀i ∈ {B1, ..., Bn}.Φ(i) ∧ GF toki → Ψ(i) and Aloc = Φ,

for the process A: Φ′(A) → Ψ′(A) and Aloc = Φ′,

(6.8)
where Φ, Φ′, Ψ, and Ψ′ are defined in Figures 6.4 and 6.5 (Recall that Aloc is a
formula over process propositions such that G[tok ∧ Aloc → F snd)], see definitions
on page 99.)

Let us prove cutoffs for specifications of the above form. The parameterized
synthesis problem can be separated into two: find (A,B) such that

∀n : (A,B)(1,n) |= ∀i ∈ {B1, ..., Bn}.Φ(i) → Ψ(i) ∧
∀n : (A,B)(1,n) |= Φ′(A)→ Ψ′(A),

116

Assumptions Φ(i):

G ((hmastlock[i] ∧ (hburst[i] = incr) ∧ hmaster[i])→ XF¬hbusreq[i]) (A1)

GF ready[i] (A2)

G hlock[i]→ hbusreq[i] (A3)

¬hbusreq[i] ∧ ¬hlock[i] ∧ ¬ready[i] (A4)

Guarantees Ψ(i):

G ¬ready[i]→ X¬start[i] (G1)

G (hmastlock[i] ∧ hburst[i] = incr ∧ start[i])
→ X(¬start[i] W (¬start[i] ∧ hbusreq[i])) (G2)

G (hmastlock[i] ∧ hburst[i] = burst4 ∧ start[i] ∧ ready[i])
→ X(¬start[i] W [3](¬start[i] ∧ ready[i])) (G3.1)

G (hmastlock[i] ∧ hburst[i] = burst4 ∧ start[i] ∧ ¬ready[i])
→ X(¬start[i] W [4](¬start[i] ∧ ready[i])) (G3.2)

G ready[i]→ (hgrant[i]↔ Xhmaster[i]) (G4)

G ready[i]→ (locked[i]↔ Xhmastlock[i]) (G5)

G X¬start[i]→
(

hmaster[i]↔ Xhmaster[i]
∧ hmastlock[i]↔ Xhmastlock[i]

)
(G6)

G (decide[i] ∧ Xhgrant[i])→ (hlock[i]↔ X locked[i]) (G7)

G ¬decide[i] →
(

hgrant[i]↔ Xhgrant[i]
∧ locked[i]↔ X locked[i]

)
(G8)

G hbusreq[i]→ F(¬hbusreq[i] ∨ hmaster[i]) (G9)

G ¬hgrant[i]→ (¬hgrant[i] W hbusreq[i]) (G10.1)

¬hgrant[i] ∧ ¬hmastlock[i] (G11.1)

G hgrant[i]→ tok[i] (G12)

Figure 6.4: Parameterized AMBA specification for B-processes: assumptions Φ(i)
and guarantees Ψ(i). G10.2 is omitted, since it is only needed for the process A.

Assumptions Φ′(i):

as before: A1, A2, A3, A4

new: G hbusreq[i]→ ¬no req[i] (A6)

Guarantees Ψ′(0):

as before: G1, G2, G3, G4, G5, G6, G7, G8, G9, G12 (where i = 0)

removed: G10.1, G11.1

modified: G(no req[0] ∧ ¬tok[0] ∧ Xtok[0])→ Xhgrant[0]) (G10.2)

modified: tok[0]→ hgrant[0] ∧ hmaster[0] ∧ ¬hmastlock[0] (G11.2)

Figure 6.5: Parameterized AMBA specification for the process A: modifications
wrt. Figure 6.4. The index 0 denotes the process A.

117

B1
A B1 B2

…

B
n

A

stutter

stutter

A B(,)(1,1) A B(,) n(1,)

Figure 6.6: Constructing a run of a cutoff system from a run of a large system.
Vertical lines depict (local) paths of the processes, the horizontal lines mean the
token transmission. The process A starts with the token.

where Aloc is either Φ or Φ′.

Theorem 35. Given two process templates, A = (Ipr,Opr, Q
A, QA

0 , δ
A, outA, AAloc)

and B = (Ipr,Opr, Q
B, QB

0 , δ
B, outB, ABloc), and let Iglob = ∅ (no global inputs).

Assume that initially the process A has the token. Then a cutoff is (1, 1) (one
A-process and one B-process) for the following PMCPs:

(1) ∀n : (A,B)(1,n) |= AAloc ∧ GF tokA → ψ(A),

(2) ∀n : (A,B)(1,n) |= ∀i : ABloc,i ∧ GF toki → ψ(Bi).

where ABloc,i is ABloc with all propositions subscripted with i, ψ(p) is an LTL formula
over propositions of a process p ∈ {A,B1, ..., Bk}.

Proof idea. The proof is inspired by the original proof [40].

Item (1). Fix an arbitrary n > 1 and let ϕ(A) = AAloc ∧ GF tokA → ψ(A). We
prove that

(A,B)(1,1) |= ϕ(A) ⇔ (A,B)(1,n) |= ϕ(A).

Consider direction ⇒. After contra-positioning:

(A,B)(1,1) 6|= ϕ(A) ⇐ (A,B)(1,n) 6|= ϕ(A).

Given a system run of (A,B)(1,1) that satisfies ¬ϕ(A), we build a system run
of (A,B)(1,n) that satisfies ¬ϕ(A). The construction is in Figure 6.6. We copy
the behaviors of processes A and B1 until before B1 sends the token. At this
moment, we postpone sending the token by B1 and stutter5 it, while the process
A continues execution until it gets into state ready to receive the token. Then
B1 transmits the token to process A. After that we move process B1 into state

5 To “stutter a process p” means “not to schedule it”. As a result, a stuttered process neither
reads inputs nor changes its state. In the figures it is shown by repeating a state.

118

B1
A B1 B2

A

A B(,)(1,1) A B(,)(1,2)

stutter stutter

stutter

Figure 6.7: Constructing a run of a system (A,B)(1,2) from a run of a cutoff system
(A,B)(1,1). Vertical lines depict (local) paths of the processes, the horizontal lines
mean the token transmission. The process A starts with the token.

�, while A stutters in . Now we are in the original situation and repeat the
construction. Since the property talks about process A only, the resulting run
satisfies it. Finally, we assumed that the processes of the large system pass the
token infinitely often. If some process Bx ∈ {B1, ..., Bn} holds the token forever,
then we use its behavior for B1 in the cutoff system (this may require to insert
stuttering steps into behaviors of B1 and A of the cutoff system, to synchronize
their (finitely many) token transmissions).

Consider direction ⇐. After contra-positioning:

(A,B)(1,1) 6|= ϕ(A) ⇒ (A,B)(1,n) 6|= ϕ(A).

Given a system run of (A,B)(1,n) that satisfies ¬ϕ(A), we build a system run of
(A,B)(1,1) that satisfies ¬ϕ(A). Figure 6.7 shows how to construct a run of a
system that has one more B process than the cutoff system. By repeating the
construction we can add the necessary n− 1 B-processes. The construction works
as follows. The new process B2 copies the behavior of B1 until before B1 receives
the token (i.e., up to the state). Then it stutters in awaiting for the token from
process B1. After that it copies B1 behavior from state till �, while processes
A and B1 stutter. Then B2 sends the token to A and we return to the original
situation. Finally, the case of B1 or A holding the token forever is straightforward.

Item (2). Consider the case ∀i.ϕ(Bi). First, we use the symmetry argument: for
every n,

(A,B)(1,n) |= ∀i.ϕ(Bi) ⇔ (A,B)(1,n) |= ϕ(B1).

It holds because, for every Bi and system run that satisfies ¬ϕ(Bi), we can con-
struct a run that satisfies ¬ϕ(B1). The latter is possible because all B-processes
start without the token and ϕ is 1-indexed6.

6In contrast, the symmetry argument will not work for properties of the form ∀i.ϕ(A,Bi),
because B1, Bn, and Bx∈{2,...,n−1} have different “relation” to A. For example, take the formula

119

After applying the symmetry argument, we can use the very same constructions
as in item (1), see Figures 6.6 and 6.7. Let us only note the case when the token
is stuck in some process. As for the construction in Figure 6.7, this is simple:
the token will be stuck in A or in B1 in the large system too. Consider the case
in Figure 6.6, when the token gets stuck in some process Bd for d 6= 1. This is
the only place in the proof where we use the peculiar structure of the formula to
verify: ABloc,1 ∧ GF tok1 → ψ(B1). Recall that the contra-position negates it and
gives ABloc,1 ∧ GF tok1 ∧ ¬ψ(B1). Thus, in the large system the process B1 receives
the token infinitely often, and we can simply ignore the case7.

Let us note that without the assumption “A starts with token” the construc-
tions break. We conjecture that in this case a cutoff increases to (1, 2).

6.5.3 Experiments

In this section, we describe optimizations that are crucial for the synthesis of the
parameterized AMBA, and present synthesis timings and resulting implementa-
tions. Most of the optimizations were already described in Section 6.4.2. One
interesting and not previously described optimization is “Decompositional synthe-
sis”, where the specification is synthesized incrementally, starting from a subset of
the properties. It is this optimization that allowed us to synthesize the AMBA.

Prototype. Our prototype is based on our tool Party [57], a synthesizer of
parameterized token rings. Party is written in Python, uses LTL3BA [8] for
automata translation and Z3 [34] for SMT solving. The prototype and specification
files can be found at https://github.com/5nizza/Party/ (branch ‘amba-gr1’). The
experiments were run on a x86 64 machine with 2.6GHz CPU, 12GB RAM, Ubuntu OS.

Synchronous hub abstraction (Section 6.4.2). Synchronous hub abstraction can be
applied to 1-indexed specifications. It lets the environment simulate all but one process,
and always schedules this process. Thus, the synthesizer searches for a process template
in the synchronous setting with additional assumptions on the environment, namely: (i)
the environment sends the token to the process infinitely often, and (ii) the environment
never sends the token to the process if it already has it. The synchronous hub abstraction
is sound and complete for 1-indexed properties. After applying this optimization any
monolithic synthesis method can be applied to the resulting specification (in the form
of Eq.6.6 on page 109).

Hardcoding states with and without the token [54, Section4]. The number
of states with and without the token in a process template defines the degree of the
parallelism in a token ring. Parallelism increases with the number of states that do not
have the token. In the AMBA case study, any grants related action depends on having
the token. Thus we divide the states in the process template: (a) one state does not
have the token, while (b) all other states have the token. We do this by hardcoding the
tok output function.

∀i.G(tokA → tokAWtoki). The (wrongly applied) symmetry argument would produce G(tokA →
tokAWtok1), which says that the token moves from A to B1 (trivially true in every system), but
the original formula does not hold.

7We did consider the case in other proof branches, to avoid relying on the peculiarity of
the formula. We conjecture that in the case of (more general) properties of the form ∀i.ϕ(Bi)
(without GF toki), the cutoff increases to (1, 2).

120

https://github.com/5nizza/Party/

Addit. assumptions time #states
Ghlock

Ghburst = burst4
16min. 10

Ghburst = burst4 13sec. 13

– (Full Specification) 1min. 14

Table 6.2: Results for non-0 process.

Addit. assumptions time #states
Ghlock

Ghburst = burst4
3h. 11

Ghburst = burst4 1min. 11

– (Full Specification) 1m30s. 12

Table 6.3: Results for 0-process
(bursts reduced: 3/4→ 2/3).

Decompositional synthesis of different grant schemes. The idea of the decom-
positional synthesis is: synthesize a subset of the properties, then synthesize a larger
subset using the model from the previous step as the basis. Consider an example of the
synthesis of the non-0-process of AMBA. The flow is:

1. Assume that every request is a locked request of type burst4, i.e., add the as-
sumption G(hlock[i] ∧ hburst = burst4) to the specification. This implicitly
removes guarantee G2 and assumption A1 from the specification. Synthesize the
model. The resulting model has 10 states (states t0, .., t9 with their outputs, as well
as transitions between them that satisfy the added assumption, are in Figure 6.8).

2. Use the model found in the previous step as the basis: assert the number of states,
values of output functions in these states, transitions for inputs that satisfy the
previous assumption. Transitions for inputs that violate the assumption from step
1 are not asserted, and thus are left to be synthesized.

Now relax the assumptions: allow locked and non-locked burst4 requests, i.e.,
replace the previous assumption with G(hburst = burst4). Again, this implic-
itly removes G2 and A1. In contrast to the last step, now guarantee G3 is not
necessarily ‘activated’ if there is a request.

Synthesize the model. This may require increasing the number of states (and it
does, in the case of non-0 process)—add new states and keep assertions on all the
previous states.

3. Assert the transitions of the model found, as in the previous step.
Remove all added assumptions and consider the original specification. Synthesize
the final model.

Although for AMBA this approach was successful, it is not clear how general it is.
For example, it does not work if we start with locked burst4 and hready always high,
and then try to relax it. Also, the separation into sets of properties to be synthesized
was done manually.

Results. Synthesis times are in Tables 6.2 and 6.3, the model synthesized for non-
0 process is in Figure 6.8. The table has timings for the case when all optimizations
described in this section are enabled — it was not our goal to evaluate the optimizations
separately, but to find a combination that works for the AMBA case study.

For the 0-process we considered a simpler version with burst lengths reduced to 2/3
instead of the original 3/4 ticks. With the original length, the synthesizer could not find
a model within 2 hours (it hanged checking 11 state models, while the model has at least
12 states).

Without the decompositional approach, the synthesizer could not find a model for
for non-0 process of the AMBA specification within 5 hours.

121

locked
hgrant
hmaster
hmastlock

(t8)

-hready

locked
hgrant
hmaster
hmastlock

(t9)

hready

-hready

locked
hgrant
hmaster
decide

hmastlock
(t3)

hready

sends
(t6)

decide
(t0)

locked
hgrant
hmaster
start

hmastlock
(t7)

hlock
-hready
hbusreq
'single'

hlock
-hready
hbusreq
'single'

locked
hgrant
hmaster
hmastlock

(t2)

'burst4'

hready
hbusreq
'single'

-hlock
'single'

locked
hgrant
hmaster
hmastlock

(t13)'incr'

locked
hgrant
(t4)

hready

-hready

hmaster
hmastlock

(t5)

-hready

sends
start
(t1)

hready

hready

-hready

prev
-hbusreq

prev
hbusreq
hlock

-prev

hgrant
decide
(t11)

prev
hbusreq
-hlock

hmaster
decide
(t10)

hready -hready

-hready
-hbusreq

-hready
hbusreq
hlock

-hready
hbusreq
-hlock

hmaster
start
(t12)hready

hready -hready
hready
-hbusreq
'incr'

-hready
-hbusreq
'incr'

-hbusreq
'burst4'

-hbusreq
'single'

hbusreq

Figure 6.8: Synthesized model of non-0-processes (after manual simplification).
Circle green state (t0) is without the token, other states are with the token. The
initial state is t0. States are labeled with their active outputs. Edges are la-
beled with inputs, a missing input variable means “don’t care”. ‘Burst4’ means
hburst = burst4, ‘incr’ means hburst = incr, ‘single’ means neither of them.
In the first step of decompositional synthesis states t0, .., t9 were synthesized, in
the second t10, .., t12 were added, in the final step state t13 was added.

6.5.4 Discussion

We have shown that parameterized synthesis in token rings can be used to solve bench-
mark problems of significant size, in particular the well-known AMBA AHB specification
that has been used as a synthesis benchmark for a long time. To achieve this goal, we
slightly extended the cutoff results that parameterized synthesis is based on, and used
a number of optimizations in the translation of the specification and the synthesis pro-
cedure itself to make the process feasible.

This is the first time that the AMBA case study, or any other realistic case, has been
solved by an automatic synthesis procedure for the parameterized case. However, some of
the steps in the procedure are manual or use an ad-hoc solution for the specific problem
at hand, like the limited extension of cutoff results for global inputs, the construction of
suitable functions to convert local to global outputs, or the decompositional synthesis
for different grant schemes. Generalizing and automating these approaches is a possible
future work.

Our synthesized implementation is such that the size of the parallel composition
grows only linearly with the number of components. Thus, for this case study our
approach does not only solve the problem of increasing synthesis time for a growing
number of components, but also the problem of implementations that need an exponen-
tial amount of memory in the number of components. We pay for this small amount of
memory with a less-than-optimal reaction time, as processes have to wait for the token
in order to grant a request. This restriction could be remedied by extending the param-
eterized synthesis approach to different system models, e.g., processes that coordinate
by guarded transitions [38], or communicate via broadcast messages [44].

122

locked
hgrant
hmaster
hmastlock

(t8)

-hready

locked
hgrant
hmaster
decide

hmastlock
(t4)

hready

locked
hgrant
hmaster
hmastlock

(t9)

hready
-hready

locked
hgrant
(t6)

-hready

locked
hgrant
hmaster
start

hmastlock
(t3)

hready

sends
start
(t7)

decide
(t0)

hmaster
hmastlock

(t5)
hready

-hready

hmaster
(t2)

hready -hready

hready
'burst'

-hready
'burst'

'single'

locked
hgrant
hmaster
hmastlock
(t11)

'incr'
prev

hbusreq
hlock

prev
-noreq
-hbusreq
hready

-prev

hgrant
(t10)

otherwise hgrant
hmaster
start
decide
(t1)

hready

-hready

-hbusreq

hbusreq

Figure 6.9: Synthesized model of 0-processes (after manual simplification). Circle
state (t0) is without the token, other states are with the token. The initial state
is t1. States are labeled with their active outputs. Edges are labeled with inputs,
a missing input variable means “don’t care”. ‘Burst’ means hburst = burst3
(recall we decreased the length of bursts for 0 process), ‘incr’ means hburst =
incr, ‘single’ means neither of them. In the first step of decompositional synthesis
states t0, .., t10 were synthesized, in the second only transitions were synthesized,
but no new states added, in the final step t11 was added.

6.6 Conclusion

In this chapter, we studied the parameterized synthesis of token-ring systems from the
applied perspective. The starting point was the original approach of Bloem and Ja-
cobs [50], which could be applied only to toy specifications. We suggested several opti-
mizations that made it applicable to larger “made-up” specifications. Then we tackled
the real-life specification, that of the AMBA bus protocol, and suggested further opti-
mizations. This required us to extend the theory behind the approach. In the end, we
synthesized a solution for the AMBA specification in the parameterized sense, for the
first time ever.

123

124

Bibliography

[1] SYNTCOMP. http://www.syntcomp.org/, 2017.

[2] Rajeev Alur, Thomas Henzinger, and Orna Kupferman. Alternating-time temporal
logic. In Journal of the ACM, pages 100–109. IEEE Computer Society Press, 1997.

[3] B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking of
token-passing systems. In VMCAI, volume 8318 of LNCS, pages 262–281. Springer,
2014.

[4] B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model
checking of rendezvous systems. In CONCUR, volume 8704 of LNCS, pages 109–
124. Springer, 2014.

[5] ARM Ltd. AMBA specification (rev.2). Available from www.arm.com, 1999.

[6] S. Außerlechner. Parameterized Synthesis of Guarded Systems (Master Thesis).
TU Graz Library, May 2015. Available at https://diglib.tugraz.at/download.
php?id=576a77d1edae0&location=browse.

[7] Simon Außerlechner, Swen Jacobs, and Ayrat Khalimov. Tight cutoffs for guarded
protocols with fairness. In Barbara Jobstmann and K. Rustan M. Leino, editors,
VMCAI, volume 9583 of LNCS, pages 476–494. Springer, 2016.

[8] Tomás Babiak, Mojmı́r Kret́ınský, Vojtech Rehák, and Jan Strejcek. LTL to Büchi
automata translation: Fast and more deterministic. In TACAS, volume 7214 of
LNCS, pages 95–109. Springer, 2012.

[9] Christel Baier and Joost-Pieter Katoen. Principles of model checking, volume
26202649. MIT press Cambridge, 2008.

[10] Nathalie Bertrand, John Fearnley, and Sven Schewe. Bounded Satisfiability
for PCTL. In Patrick Cégielski and Arnaud Durand, editors, CSL, volume 16
of LIPICS, pages 92–106, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[11] Tewodros Beyene, Swarat Chaudhuri, Corneliu Popeea, and Andrey Rybalchenko.
A constraint-based approach to solving games on infinite graphs. SIGPLAN Not.,
49(1):221–233, January 2014.

[12] Tewodros Awgichew Beyene. Temporal Program Verification and Synthesis as Horn
Constraints Solving. PhD dissertation, Technical University of Munich, 2015.

[13] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfia-
bility: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands, The Netherlands, 2009.

125

http://www.syntcomp.org/
https://diglib.tugraz.at/download.php?id=576a77d1edae0&location=browse
https://diglib.tugraz.at/download.php?id=576a77d1edae0&location=browse

[14] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. Horn
clause solvers for program verification.

[15] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

[16] Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs. Synthesis of self-
stabilising and byzantine-resilient distributed systems. In Swarat Chaudhuri and
Azadeh Farzan, editors, CAV, volume 9779 of Lecture Notes in Computer Science,
pages 157–176. Springer, 2016.

[17] Roderick Bloem, Krishnendu Chatterjee, Swen Jacobs, and Robert Könighofer.
Assume-guarantee synthesis for concurrent reactive programs with partial informa-
tion. In Christel Baier and Cesare Tinelli, editors, TACAS, pages 517–532, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[18] Roderick Bloem, Hana Chockler, Masoud Ebrahimi, and Ofer Strichman. Synthe-
sizing non-vacuous systems. In Ahmed Bouajjani and David Monniaux, editors,
VMCAI, pages 55–72, Cham, 2017. Springer International Publishing.

[19] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek, Robert
Könighofer, Marco Roveri, Viktor Schuppan, and Richard Seeber. Ratsy - a new
requirements analysis tool with synthesis. In CAV, volume 6174 of LNCS, pages
425–429. Springer, 2010.

[20] Roderick Bloem, Swen Jacobs, and Ayrat Khalimov. Parameterized synthesis case
study: AMBA AHB. In SYNT, volume 157 of EPTCS, pages 68–83, 2014.

[21] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut
Veith, and Josef Widder. Decidability of Parameterized Verification. Synthesis Lec-
tures on Distributed Computing Theory. Morgan & Claypool Publishers, September
2015. 170 pages.

[22] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut
Veith, and Josef Widder. Decidability in parameterized verification. SIGACT News,
47(2):53–64, 2016.

[23] Roderick Bloem, Sven Schewe, and Ayrat Khalimov. CTL* synthesis via LTL
synthesis. In SYNT Workshop. EPTCS, 2017.

[24] A. Bouajjani, P. Habermehl, and T. Vojnar. Verification of parametric concurrent
systems with prioritised FIFO resource management. Formal Methods in System
Design, 32(2):129–172, 2008.

[25] J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

[26] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. Deciding parity games in quasipolynomial time. In Hamed Hatami, Pierre
McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 252–263. ACM, 2017.

[27] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, January 1981.

126

[28] Alonzo Church. Logic, arithmetic, and automata. In International Congress of
Mathematicians (Stockholm, 1962), pages 23–35. Institute Mittag-Leffler, Djur-
sholm, 1963.

[29] E. M. Clarke, M. Talapur, and H. Veith. Proving ptolemy right: The environment
abstraction framework for model checking concurrent systems. In TACAS, volume
4963 of LNCS, pages 33–47. Springer, 2008.

[30] E. M. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decom-
position. In CONCUR, volume 3170 of LNCS, pages 276–291. Springer, 2004.

[31] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logic of Programs,
pages 52–71. Springer, 1981.

[32] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2):244–263, 1986.

[33] Emanuele De Angelis, Alberto Pettorossi, and Maurizio Proietti. Synthesizing con-
current programs using answer set programming. Fundamenta Informaticae, 120(3-
4):205–229, 2012.

[34] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963
of LNCS, pages 337–340. Springer, 2008.

[35] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud
Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 — a framework for LTL
and ω-automata manipulation. In Proceedings of the 14th International Symposium
on Automated Technology for Verification and Analysis (ATVA’16), volume 9938
of Lecture Notes in Computer Science, pages 122–129. Springer, October 2016.

[36] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program., 2(3):241–266, 1982.

[37] E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few.
In CADE, volume 1831 of LNCS, pages 236–254. Springer, 2000.

[38] E. A. Emerson and V. Kahlon. Model checking guarded protocols. In LICS, pages
361–370. IEEE Computer Society, 2003.

[39] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In Proc. Principles of
Programming Languages, pages 85–94, 1995.

[40] E. A. Emerson and K. S. Namjoshi. On reasoning about rings. Foundations of
Computer Science, 14:527–549, 2003.

[41] E. Allen Emerson and Joseph Y. Halpern. ‘Sometimes’ and ‘Not Never’ Revisited:
On Branching versus Linear Time Temporal Logic. J. ACM, 33(1):151–178, January
1986.

[42] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and
logics of programs. SIAM J. Comput., 29(1):132–158, September 1999.

127

[43] E. Allen Emerson and A. Prasad Sistla. Deciding full branching time logic. Infor-
mation and Control, 61(3):175 – 201, 1984.

[44] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast
protocols. In LICS, pages 352–359. IEEE Computer Society, 1999.

[45] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Antichains and compo-
sitional algorithms for LTL synthesis. Form. Methods Syst. Des., 39(3):261–296,
2011.

[46] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. STTT, 15(5-6):519–539,
2013.

[47] S. M. German and A. P. Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992.

[48] Yashdeep Godhal, Krishnendu Chatterjee, and Thomas A. Henzinger. Synthesis of
amba ahb from formal specification: a case study. STTT, 15(5-6):585–601, 2013.

[49] S. Jacobs and R. Bloem. Parameterized synthesis. In TACAS, volume 7214 of
LNCS, pages 362–376. Springer, 2012.

[50] S. Jacobs and R. Bloem. Parameterized synthesis. Logical Methods in Computer
Science, 10:1–29, 2014.

[51] Barbara Jobstmann. Applications and Optimizations for LTL Synthesis. PhD thesis,
Graz University of Technology, 2007.

[52] Marcin Jurdziński. Small progress measures for solving parity games. In Annual
Symposium on Theoretical Aspects of Computer Science, pages 290–301. Springer,
2000.

[53] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in parameterized
concurrent programs. In CAV, volume 6174 of LNCS, pages 645–659. Springer,
2010.

[54] A. Khalimov, S. Jacobs, and R. Bloem. Towards efficient parameterized synthesis.
In VMCAI, volume 7737 of LNCS, pages 108–127. Springer, 2013.

[55] Ayrat Khalimov. Specification format for reactive synthesis problems. In Proceed-
ings Fourth Workshop on Synthesis, SYNT 2015, San Francisco, CA, USA, 18th
July 2015., pages 112–119, 2015.

[56] Ayrat Khalimov and Roderick Bloem. Bounded synthesis for streett, rabin, and ctl*.
In Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part II, volume 10427 of Lecture Notes in Computer Science, pages
333–352. Springer, 2017.

[57] Ayrat Khalimov, Swen Jacobs, and Roderick Bloem. Party parameterized synthesis
of token rings. In Computer Aided Verification, pages 928–933. Springer, 2013.

[58] P. Klampfl, R. Koenighofer, R. Bloem, A. Khalimov, A. Abu-Yonis, and S. Moran.
OpenSEA: Semi-Formal Methods for Soft Error Analysis. ArXiv e-prints, December
2017.

128

[59] Uri Klein and Amir Pnueli. Revisiting synthesis of gr(1) specifications. In Sharon
Barner, Ian G. Harris, Daniel Kroening, and Orna Raz, editors, Haifa Verification
Conference, volume 6504 of Lecture Notes in Computer Science, pages 161–181.
Springer, 2010.

[60] Tobias Klenze, Sam Bayless, and Alan J Hu. Fast, flexible, and minimal CTL
synthesis via SMT. In International Conference on Computer Aided Verification,
pages 136–156. Springer, 2016.

[61] O. Kupferman and M. Y. Vardi. Safraless decision procedures. In FOCS, pages
531–542, 2005.

[62] Orna Kupferman and Moshe Y. Vardi. Church’s problem revisited. Bulletin of
Symbolic Logic, 5(2):245–263, 1999.

[63] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic
approach to branching-time model checking. J. ACM, 47(2):312–360, March 2000.

[64] R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes.
Inf. and Comp., 117(1):1–11, 1995.

[65] Z. Manna and A. Pnueli. Temporal specification and verification of reactive mod-
ules. Weizmann Institute of Science Technical Report, 1992.

[66] Zohar Manna and Pierre Wolper. Synthesis of communicating processes from tem-
poral logic specifications. In Dexter Kozen, editor, Logics of Programs, Workshop,
Yorktown Heights, New York, May 1981, volume 131 of Lecture Notes in Computer
Science, pages 253–281. Springer, 1981.

[67] David E Muller and Paul E Schupp. Simulating alternating tree automata by
nondeterministic automata: New results and new proofs of the theorems of rabin,
mcnaughton and safra. Theoretical Computer Science, 141(1-2):69–107, 1995.

[68] Nir Piterman. From Nondeterministic Büchi and Streett Automata to Deterministic
Parity Automata. Logical Methods in Computer Science, Volume 3, Issue 3, August
2007.

[69] Nir Piterman and Amir Pnueli. Faster solutions of Rabin and Streett games. In
21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August
2006, Seattle, WA, USA, Proceedings, pages 275–284, 2006.

[70] Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[71] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989, pages 179–190. ACM Press,
1989.

[72] Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module,
pages 652–671. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.

[73] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthe-
size. In 31st Annual Symposium on Foundations of Computer Science, St. Louis,
Missouri, USA, October 22-24, 1990, Volume II, pages 746–757. IEEE Computer
Society, 1990.

129

[74] Nicola Prezza. CTL (computation tree logic) SAT solver.

[75] M.O. Rabin. Automata on Infinite Objects and Church’s Problem. Number 13 in
Conference Series in Mathematics. American Mathematical Society, 1969.

[76] Roni Rosner. Modular synthesis of reactive systems. PhD thesis, PhD thesis, Weiz-
mann Institute of Science, 1992.

[77] Shmuel Safra. On the complexity of omega-automata. In 29th Annual Symposium
on Foundations of Computer Science, White Plains, New York, USA, 24-26 October
1988, pages 319–327. IEEE Computer Society, 1988.

[78] Sven Schewe. Tighter bounds for the determinisation of Büchi automata. In Proceed-
ings of the Twelfth International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS 2009), 22–29 March, York, England, UK,
volume 5504 of Lecture Notes in Computer Science, pages 167–181. Springer-Verlag,
2009.

[79] I. Suzuki. Proving properties of a ring of finite state machines. Inf. Process. Lett.,
28(4):213–214, 1988.

[80] M Y Vardi and L Stockmeyer. Improved upper and lower bounds for modal logics
of programs. In Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing, STOC ’85, pages 240–251, New York, NY, USA, 1985. ACM.

[81] Moshe Y Vardi. Branching vs. linear time: Final showdown. In TACAS, volume 1,
pages 1–22. Springer, 2001.

[82] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf.
Comput., 115(1):1–37, 1994.

[83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite
computation paths (extended abstract). In 24th Annual Symposium on Foundations
of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 185–194.
IEEE Computer Society, 1983.

130

	Introduction
	I Excursion into Branching Logic
	Common Definitions for Part I
	Bounded Synthesis for Streett, Rabin, and CTL*
	Introduction
	Synthesis from Büchi, Streett, Rabin, and Parity Automata
	Preliminaries on Ranking
	Ranking for Büchi Automata
	Ranking for co-Büchi Automata
	Ranking for Streett Automata
	Ranking for Rabin Automata
	Discussion of Ranking

	Bounded Synthesis from CTL*
	Direct Encoding
	Encoding via Alternating Hesitant Tree Automata
	Prototype Synthesizer for CTL*
	Discussion of Bounded Synthesis from CTL*

	CTL* Synthesis via LTL Synthesis
	Introduction
	Converting CTL* to LTL for Synthesis
	LTL Encoding
	Complexity
	Bounded Reduction

	Checking Unrealisability of CTL*
	Experiments
	Conclusion

	II Excursion into Parameterized Systems
	Parameterized Guarded Systems
	Introduction
	Related Work
	Preliminaries
	System Model
	Specifications
	Model Checking and Synthesis Problems

	Reduction Method and Challenges
	New Cutoff Results
	Proof Structure
	Proof Techniques for Disjunctive Systems
	LTL"026E30F X Properties without Fairness: Existing Constructions
	LTL"026E30F X Properties with Fairness: New Constructions
	Deadlocks without Fairness: Updated Constructions
	Deadlocks with Fairness: New Constructions

	Proof Techniques for Conjunctive Systems
	LTL"026E30F X Properties Without Fairness: Existing Constructions
	LTL"026E30F X Properties with Fairness: New Constructions
	Deadlocks Without Fairness: Updated Constructions
	Deadlocks with Fairness: New Constructions

	Conclusion

	Parameterized Token Rings
	Introduction
	Definitions
	Token-ring Systems
	Parameterized Systems
	Parameterized Specifications
	Parameterized Synthesis Problem

	Reduction by Cutoffs
	Bounded Synthesis of Parameterized Token Rings
	SMT Encoding
	Optimizations
	Evaluating Optimizations
	Discussion

	AMBA Protocol Case Study
	Description of the AMBA Protocol
	Handling the AMBA Specification
	Experiments
	Discussion

	Conclusion

	Bibliography

