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Abstract

Compositional verification is a technique aimed at addressing the state

explosion problem associated with model checking. One approach to com-

positional verification is assume-guarantee reasoning, in which the verifi-

cation of components of a system allows properties of the whole system

to be checked by using assumptions derived from one component in the

verification of a second component. Once such intermediate assumptions

have been found, they can be used to re-run the verification of the whole

system at much lower computational expense. In this context, the size of

the intermediate assumptions is of primary importance.

In this thesis we discuss a method for computing minimal intermediate

assumptions. The method is based on a recent approach to automatic

derivation of intermediate assumptions using the L* algorithm for active

learning of regular languages.

1 Introduction

Model checking is a method to verify that the formal description of a system
(the model) satisfies a formal specification [4]. The model is usually represented
as a state transition system and the model checking process decides whether
the model satisfies the required properties by exploring successive states of the
system. Especially in the case of systems consisting of several interacting compo-
nents, the combinatorial blow-up of the state space (the state explosion problem)
prevents naive model checking from succeeding in most real-world applications.
One focus of current research is thus on reducing the state space that needs to
be explored before the verification process can return conclusive results.

An interesting way of addressing the state explosion problem in modular
systems is based on the ”divide an conquer” paradigm, that is, one decomposes
the system into components and applies model checking locally to those com-
ponents. If the results of this local verification can be efficiently combined to
prove the initial system correct, then in principle one avoids any combinatorial
explosion since no combinations of states need to be considered.

One such ”divide and conquer” approach is known as assume-guarantee rea-
soning. The key to assume-guarantee reasoning is to consider each component
not in isolation, but in conjunction with assumptions about the context of the
component [8, 10]. That is, in a system consisting of two components M1 and
M2, component M1 is verified under the assumption that context M2 behaves
correctly and symmetrically, M2 is verified assuming that context M1 behaves
correctly. The challenge of this approach lies in the circularity of the reasoning
which must be handled carefully if termination is to be maintained. It is easy to
see that this circularity could be broken if a special property A was known, such
that component M1 satisfies the overall specification P under the assumption
A, and component M2 satisifes A under no assumptions.

This style of reasoning is typically performed in an interactive fashion. De-
velopers first check a component under no assumptions about the environment.
If model checking returns a counterexample that is impossible for the system
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under analysis, they make several attempts at manually defining an assumption
that is strong enough to eliminate spurious violations, but that also appropri-
ately reflects the remaining system [7, 12, 8, 10].

In [2], M. Cobleigh et al. present a framework for performing assume-guarantee
reasoning in an incremental and fully automatic fashion. They follow an iter-
ative approach based on the L* algorithm for learning regular languages. The
learning process is based on queries to component M , and on couterexamples
obtained by model checking M and its environment, alternately. Each iteration
may conclude that the required property is satisfied or violated in the system
analyzed. This process is guaranteed to terminate and it converges to an as-
sumption that is necessary and sufficient for the property to hold in the specific
system. However, the algorithm often terminates before reaching this point, and
returns the first assumption that satisfies the requirements of the verification.
Hence it makes sense to ask oneself whether the algorithm can be optimized
with respect to certain properties of the returned assumptions.

A property of particular interest is the size of the generated assumptions.
Since the assumptions capture those interactions between components which
contribute to the non-violation of desired properties of the combined system, it
may also be of interest outside of the specific verification context, e.g. the ob-
tained assumption may reveal interesting aspects of the interaction. A smaller
assumption corresponds to a less complex behavior, thus finding minimal ad-
equate assumptions will allow for a better understanding of the behavior by
humans. Another advantage of small assumptions arises in the context of se-
curity guarantees for software. A developer might want to allow its customers
to re-run the assume-guarantee verification on delivered programs by supplying
an adequate intermediate assumption. A smaller assumptions benefits both the
developer who has to transmit it, as well as the user who re-runs the verification.
The goal of this thesis is to develop a method that allows to obtain intermediate
assumptions of minimal size.

This work is organized as follows: After introducing the L* algorithm for the
learning of regular languages, we discuss the incremental framework by Cobleigh
et al. for the automatic derivation of intermediate assumptions. Based on this
work we then develop a search procedure which allows to compute intermediate
assumptions of minimal size. Finally, we develop useful heuristics for improving
the performance of our approach.
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Input :
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ack

sendinput

Output :
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outputsend
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Figure 1: A simple communication channel

2 Definitions

2.1 Labeled transition systems

Both systems and assumptions are represented as Labeled Transition Systems,
which allow the modelling of communicating components. Formally, let Act be
a set of observable actions. Furthermore let π denote a special error state,
which will trap executions that violate the property under analysis and thus
doesn’t have any outgoing transitions. A Labeled Transition System (LTS)
M is then a tuple 〈Q, αM, δ, q0〉 where:

• Q is a set of states

• αM ⊆ Act is a set of observable actions, the alphabet of M

• δ ⊆ Q× αM ×Q is a transition relation

• q0 ∈ Q is a designated initial state

We call M = 〈Q, αM, δ, q0〉 deterministic if for all (q1, a, q′1), (q2, a, q′2) ∈ δ,
q′1 6= q′2 implies q1 6= q2. Furthermore let Π denote the LTS 〈{π},Act, ∅, π〉.

Figure 1 shows two deterministic LTSs which are the components of a simple
communication channel. We will use this system as running example throughout
this thesis. Unless stated otherwise, the state labeled 0 will always be the initial
state of any LTS.

The formal semantics of parallel composition will be given in the next sec-
tion, but let us quickly describe the behavior of the system. Both components
Input and Output are initially in state 0. Input may now perform a transition,
labeled with input, and thus reach state 1. Think of this as some user issuing
a request for some data to be sent over the channel. Now both components can
simultaneously take their respective send transition. The data has now arrived
in the receiving component Output, which signals this to its user by taking its
output transition. Once this has happened, the two components acknowledge
that the transmission was successful by taking their respective ack transition,
again simultaneously.

A trace σ of an LTS M is a sequence of observable actions that M can
perform starting at its initial state. Formally, σ = a1a2...an is a trace of
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M = 〈Q, αM, δ, q0〉, iff there are states q1, ..., qn ∈ Q such that 〈qi−1, ai, qi〉 ∈ δ

for i ∈ 1, .., n. The set of all traces of M is called the language of M , denoted
L(M). Furthermore, we use λ to denote the empty word.

For Σ ⊆ Act, we use σ � Σ to denote the trace obtained by removing from
σ all occurences of actions a 6∈ Σ. We call σ � Σ the Σ-abstraction of σ.

We extend the restriction operator � to languages by defining

L � Σ := {σ � Σ | σ ∈ L}.

We call a deterministic LTS that contains no π state a safety LTS. A safety

property is specified as a safety LTS P , whose language L(P ) defines the set
of acceptable behaviors over αP . An LTS M satisfies P , denoted M |= P , iff

∀σ ∈ L(M) : (σ � αP ) ∈ L(P ).

When checking a property P , an error LTS denoted Perr is created, which
traps possible violations with the π state. Formally, the error LTS of a property
P = 〈Q, αP, δ, q0〉 is Perr = 〈Q ∪ {π}, αP, δ′, q0〉 where

δ′ = δ ∪ {(q, a, π) | q ∈ Q ∧ a ∈ αP ∧ 6 ∃q′ ∈ Q : (q, a, q′) ∈ δ}

Note that the error LTS is complete, meaning that each state other than the
error state has outgoing transitions for every action in the alphabet. To detect
violations of property P by component M , the parallel composition M || Perr

is computed. M violates P iff the π state is reachable in M || Perr [2].
The Order property shown in Figure 2 captures a desired behavior of the

communication channel shown in Figure 1. The property comprises states 0
and 1. The dashed arrows illustrate the transitions to the error state π that are
added to the property to obtain its error LTS.

In order to check whether a specific string σ allows an LTS Merr to reach
its error state π, we simulate σ on Merr. Formally, we do this by constructing
a deterministic LTS Aσ that has σ as its only trace, and testing whether π is
reachable in Aσ ||Merr. Given a string σ = a1a2...an over some alphabet Σ, we
define the LTS Aσ as follows:

Aσ = 〈Q, Σ, δ, q0〉

where

• Q = {q0, q1, ..., qn}

• δ = {(qi, ai+1, qi+1) | 0 ≤ i < n}

2.2 Semantics of parallel composition

Let M = 〈Q, αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q′0〉. We say that M transits

into M ′ with action a, denoted M
a
−→ M ′, iff (q0, a, q′0) ∈ δ and either Q = Q′,

αM = αM ′ and δ = δ′ for q′0 6= π, or, in the special case where q′0 = π,
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output
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Figure 2: The Order property with added error transitions
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Figure 3: Input || Output

M ′ = Π. The parallel composition operator || is a commutative and associa-
tive operator that combines the behavior of two components by synchronizing
the actions common to their alphabets and interleaving the remaining actions.
Formally, let M1 = 〈Q1, αM1, δ1, q

1
0〉 and M2 = 〈Q2, αM2, δ2, q

2
0〉 be two LTSs.

If M1 = Π or M2 = Π, then M1 || M2 = Π. Otherwise, M1 || M2 is an LTS
M = 〈Q, αM, δ, q0〉, where Q = Q1 ×Q2, q0 = (q1

0 , q2
0), αM = αM1 ∪ αM2, and

δ is defined as follows:

M1

a
−→M ′

1, a 6∈ αM2

M1 || M2

a
−→ M ′

1 || M2

M1

a
−→M ′

1, M2

a
−→M ′

2

M1 || M2

a
−→ M ′

1 || M
′
2

Note that the symmetric rules are implied by the fact that the operator is
commutative. Figure 3 shows the LTS Input || Output. Each state is labeled
by a pair of indices, the first refers to the state of Input, the second to the state
of Output. The initial state is labeled by 0, 0.

2.3 Deterministic finite automata and LTSs

In the following, we will have to deal with Deterministic Finite-State Automata
and convert them into safety LTSs. Let us recall that a Deterministic Finite-

State Automaton (DFA) M is a five-tuple 〈Q, αM, δ, q0, F 〉 where:

• Q is a finite set of states

• αM ⊆ Act is a set of observable actions that make up the alphabet of M

• δ : Q× αM → Q is a transition function

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of accepting states
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For a DFA M and a string σ, we use δ(q, σ) to denote the state that M will
be in after reading σ starting at state q. A string σ is said to be accepted by
a DFA M = 〈Q, αM, δ, q0, F 〉 if δ(q0, σ) ∈ F . The language accepted by M ,
denoted L(M) is the set {σ | δ(q0, σ) ∈ F}.

If a DFA is minimal and its language is prefix-closed (i.e., for every σ ∈
L(M) and for every prefix σ′ of σ, it holds that σ′ ∈ L(M)), then the DFA
contains exactly one non-accepting state. A DFA with this property is called a
safety DFA, since its language describes a (regular) safety property. Such a
DFA can be transformed into a language-equivalent LTS by removing the non-
accepting state and all its incoming transitions. As expected, the resulting LTS
will be a safety LTS. Safety properties are among the properties that occur most
often in practical verification problems [3].

2.4 Assume-guarantee reasoning

In the assume-guarantee paradigm a formula is a triple 〈A〉M〈P 〉, where M is
a component, P is a property and A is an assumption about M ’s environment.
The formula is true if, whenever M is part of a system satisfying A, then the sys-
tem also guarantees P . To check an assume-guarantee formula 〈A〉M〈P 〉, where
both A and P are safety LTSs, one computes the composition A || M || Perr

and checks if state π is reachable in the composition. If this is the case, then
〈A〉M〈P 〉 is violated by component M ; otherwise it is satisfied.
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〈Ai〉 M1 〈P 〉

〈true〉 M2 〈Ai〉

Assumption
Generation

Model checking

Analysis

true

false

true

false

counterexample - strengthen assumption

counterexample - weaken assumption

Ai

true

false
counterexample

Figure 4: Incremental composition verification

3 Incremental compositional verification

In this section we describe the method presented in [2], which decides whether
an assume-guarantee formula of the from 〈true〉 M1 || M2 〈P 〉 is true. Here
true should be be understood as the empty assumption, that is, the assumption
that does not disallow any behavior. The method is based on the following
observation: if we can find a property A (expressed as a safety LTS) such that
component M1 satisfies property P under the assumption A and it is the case
that component M2 satisfies A without assumptions (i.e., under 〈true〉), then
the system M1 || M2 will satisfy P . The following inference rule captures this
proof strategy:

〈A〉 M1 〈P 〉 〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P 〉

In the context of this rule, the property A is called an intermediate as-

sumption. It is clear that the rule places certain requirements on A, e.g. it has
to be strong enough (i.e. its language has to be small enough) for M1 to satisfy
P . On the other hand, it should not be too strong, since it needs to be satisfied
by M2. Thus the restrictions it places on M2 should reflect M2’s behavior.

Finding an appropriate intermediate assumption is a non-trivial task, thus
we will present an iterative method which converges to an appropriate inter-
mediate assumption if one exists, and returns a counterexample to the assume-
guarantee formula otherwise.

At each iteration i, a conjecture Ai is computed based on some knowledge
about the system and on the results of the previous iteration. Model checking
can then be used as described in Section 2.4 to check the two premises of the
compositional rule.
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〈Ai〉 M1 〈P 〉 is modelchecked first. If the result is false, model checking
returns a counterexample, i.e. a trace of Ai || M1 || Perr ending in the π state.
In this case, we know that the assumption was too weak, since it did not restrict
the environment enough for P to be satisfied. The assumption therefore needs
to be strenghened, which corresponds to removing behaviors from it. This is
done using the counterexample. In the context of the next assumption Ai+1,
component M should not exhibit the violating behavior reflected by this coun-
terexample.

Once we find that the first premise of the compositional rule is satisfied by Ai,
we also need to check the second one. This is done analogously to the previous
step, i.e. 〈true〉 M2 〈Ai〉 is checked. If this check is successful, then by the
compositional rule P holds in M1 || M2. On the other hand, if model checking
finds a counterexample, two situations are possible: either the assumption Ai

was too strong, since it did not allow certain behaviors of M2; or P is violated
in M1 || M2.

To distinguish between these two cases, the counterexample needs to be
analyzed. The analysis concludes either that the counterexample does not rep-
resent a violation of P by M1 || M2, in which case we proceed as before: the
assumption Ai was too strong, so the counterexample is used to weaken the as-
sumption in such a way that this particular counterexample is no longer allowed
by Ai+1. Otherwise the analysis returns another trace which is a counterexam-
ple to M1 || M2 satisfying P . In this case the whole algorithm terminates with
that counterexample as output.

Finally, if both 〈A〉 M1 〈P 〉 and 〈true〉 M2 〈A〉 are shown to hold, the algo-
rithm has proven that M1 || M2 satisfies P . Figure 4 gives a schematic view of
the incremental framework.

3.1 The L* algorithm

We now take a closer look at the algorithms employed by the iterative method
described above. The successive intermediate assumptions are computed by a
learning algorithm introduced by Angluin [1] and later improved by Rivest and
Schapire [11], the L* algorithm. It represents a general method for learning
an unknown regular language based on queries and counterexamples.

Let U be an unknown regular language over some alphabet Σ. The L*
algorithm interacts with a so called Teacher and an Oracle, to which it can
send two types of queries.

• A membership query consists in asking the Teacher whether a string
σ ∈ Σ∗ is in U . The Teacher answers true or false.

• A conjecture is DFA C which is a candidate for the unknown language,
the goal being L(C) = U . The Oracle answers true if this is the case;

10



E

λ b

S
λ 1 1
a 0 0

S · Σ

a 0 0
b 1 1
aa 0 0
ab 0 0

Figure 5: An observation table for Σ = {a, b}, S = {λ, a}, E = {λ, b} and
U = b∗

otherwise it returns a counterexample, which is a string in the symmetric
difference of L(C) and U .

The learning algorithm (which we call the learner in the following) will then
start by making a number of membership queries to gain some partial knowledge
about the unknown language. When certain conditions are met, which allow
the algorithm to build a candidate DFA, it submits this as a conjecture to
the Oracle. Typically the first conjectures won’t match the target language,
so the learner will use the counterexamples obtained from the Oracle to refine
its hypothesis. If the target language is regular, this process is guaranteed to
terminate with the learner producing a DFA C with L(C) = U .

At any point during this process, the information the learner has about U

can be represented as a partial mapping γ : Σ∗ → {0, 1}, where dom(γ) is the
set of strings for which membership queries have been performed.

In order to facilitate the transformation of the partial mapping into a DFA,
the learner represents γ as an observation table T = (S, E, T ). The obser-
vation table consists of two sets S, E ⊆ Σ∗, the prefixes and suffixes, and a
function T : S ∪ (S · Σ)×E → {0, 1}, where · denotes string concatenation.

We can think of T as a table with rows labeled by the strings in S ∪ (S ·Σ),
and columns labeled by the strings in E. The entry in row s, column e is then
T (s, e) = γ(se).

For a given observation table T = (S, E, T ), we denote by rowT (s) the finite
function f from E to {0, 1} defined by f = T (s, e), for s ∈ S ∪ (S ·Σ). We shall
omit the subscript and write row(s) whenever T is clear from the context.

Figure 5 shows an observation table for Σ = {a, b}, S = {λ, a}, E = {λ, b}
and U = b∗.

Let us recall Nerode’s right congruence. Given a language L ⊆ Σ∗, two
strings u, v ∈ Σ∗ are said to be equivalent, written u ≡L v, if for all w ∈ Σ∗, it
holds that uw ∈ L iff vw ∈ L. That is, two strings are equivalent if there does
not exist a suffix that distinguishes between them.

In order to build an automaton M such that L(M) = U , the learner would
have to know ≡U . Since the learner has only partial information about U , it
needs to approximate ≡U by an equivalence relation over S ∪ (S · Σ), using

11



1. S ← {λ}
2. E ← {λ}
3. loop

4. update T using queries
5. while T is not closed do

6. add sa to S to make S closed
7. update T using queries
8. construct candidate DFA C from T

9. submit C to Oracle
10. if C is correct then

11. return C

12. else

13. add e ∈ Σ∗ that witnesses the counterexample to E

Figure 6: The L* Algorithm

the current partial knowledge about U . Any closed observation table implicitly
represents an equivalence relation 'T , defined by:

∀s, s′ ∈ S ∪ (S · Σ) : s 'T s′ ⇔ row(s) = row(s′)

That is, the suffixes in E are considered as potentially distinguishing exper-
iments.

Initially, the algorithm sets S and E to be {λ}. The mapping γ is then
updated by making membership queries until there is a value associated with
every string in (S ∪ (S ·Σ)) ·E. It then checks whether the observation table is
closed, i.e., whether

∀t ∈ S · Σ, ∃s ∈ S : row(t) = row(s)

The observation table in Figure 5 is closed. In the original algorithm by
Angluin [1], it was also required that the observation table be consistent, i.e.,
whenever s1, s2 ∈ S such that row(s1) = row(s2), then ∀a ∈ Σ : row(s1a) =
row(s2a). However, in the algorithm of Rivest and Schapire [11], any obser-
vation table produced during the learning process satisfies the invariant that
whenever s1, s2 ∈ S such that s1 6= s2, then row(s1) 6= row(s2), hence consis-
tency holds trivially and doesn’t need to be checked explicitely.

If the observation table T is not closed, then there exists some t ∈ S · Σ for
which there is no s ∈ S with row(t) = row(s). In this case t is added to S and
T is again updated by making membership queries.
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Once T is closed, a candidate DFA C = 〈Q, αM, δ, q0, F 〉 is constructed as
follows:

• Q = {row(s) | s ∈ S}

• q0 = row(λ)

• F = {row(s) | s ∈ S and γ(s) = 1}

• δ(row(s), a) = row(sa)

The candidate C is presented as a conjecture to the Oracle. If the conjecture
is correct, i.e. L(C) = U , the L* algorithm returns C as correct, otherwise it
receives a counterexample c ∈ Σ∗ from the Oracle. The counterexample c is
analyzed by L* to find a suffix e of c that witnesses a difference between L(C)
and U . This suffix must be such that adding it to E will cause the candidate
to reflect this difference.

3.1.1 Distinguishing suffixes of counterexamples

Inuitively, a difference between L(C) and U means the current approximation
'T of ≡U is too coarse, i.e. there exist strings s and t that are equivalent under
'T but not under ≡U . Hence the suffix e extracted from the counterexample c

must be such that it distiguishes s and t, at least.
The following approach is due to Rivest and Schapire [11]. For some s, s′ ∈ S

and a ∈ Σ for which row(s) = row(s′a), the suffix e should distinguish s and
s′a, i.e. it should hold that γ(se) 6= γ(s′ae). Let MU be a minimal automaton
with L(MU ) = U and C = 〈Q, αM, δ, q0, F 〉 the current candidate DFA.

Since Q = {row(s) | s ∈ S} and because of the invariant mentioned earlier,
for each q ∈ Q, s ∈ S is uniquely determined by q = row(s). Hence each state
q can be associated with a unique string s. From the construction of the DFA
C, it follows that s belongs to the equivalence class represented by q.

For 0 ≤ i ≤ |c|, let pi, ri be such that c = piri and |pi| = i. Let si be the
unique string determined by row(si) = δ(q0, pi), i.e. the state reached in C

after the first i symbols of c have been read. Since c is a counterexample, we
know that γ(c) = 1 iff c 6∈ U and γ(c) = 0 iff c ∈ U . Now let

αi =

{

1 if siri ∈ U

0 if otherwise

Note that αi can be determined by submitting siri to the Teacher as a
membership query.

Let us now assume without loss of generality that c ∈ L(C) − U . Since
c = s0r0 6∈ U , it follows that α0 = 0. On the other hand, since c ∈ L(C),
it holds that s|c| is an accepting state of C, hence γ(s|c|) = 1. But then by
construction of γ, we have that s|c| ∈ U . It follows that α|c| = 1 (note that r|c|
is the empty string). Using binary search, it is possible to find some i such that
αi 6= αi+1.

13



We can now show that ri+1 is the desired suffix e: let a be the first symbol
of ri. By definition of si, we have si+1 = δ(si, a), hence row(si+1) = row(sia).
But if we add ri+1 to E and update γ, we get

T (sia, ri+1) = γ(siari+1) = αi 6= αi+1 = γ(si+1ri+1) = T (si+1, ri+1)

3.2 L* for assume-guarantee reasoning

In the context of incremental compositional verification as presented in Section
3, the L* algorithm is used to learn an intermediate assumption that can be
used in the compositional rule.

An assumption with which the compositional rule (see Section 3) is guaran-
teed to work is the weakest assumption Aw, which restricts the environment
of M1 no more and no less than necessary for P to be satisfied. Assumption
Aw describes exactly those traces over Σ = (αM1 ∪ αP ) ∩ αM2 which, when
simulated on M1 || Perr cannot lead to state π.

It is easy to see that for any environment component ME, the formula
〈true〉M1 ||ME 〈P 〉 holds iff 〈true〉ME 〈Aw〉 holds. In the learning framework
by Cobleigh et al. [2], L* learns the traces of Aw. The process returns as soon
as both Oracles return true, which is often before the weakest assumption Aw

is computed. We now look at how the Teacher and the Oracle are implemented
in this framework.

Teacher. To answer a membership query for σ = 〈a1, a2, ..., an〉 in Σ∗, the
Teacher simulates the query on M1 || P . That is, the Teacher checks if there is
a trace σ′ of M1 || P leading to the error state, such that σ′ � Σ = σ. If such a
trace exists, the Teacher returns false; otherwise, the answer to the membership
query is true. In other words, the Teacher checks whether σ ∈ L(Aw).
Oracle. Due to the fact that the language L(Aw) that is being learned is
prefix-closed, all conjectures returned by L* are also prefix-closed. Hence they
can be transformed into safety LTSs as described in Section 2.3, which constitute
the intermediate assumptions Ai.

The conjecture Ai must satisfy both premises of the compositional rule,
hence the Oracle actually consists of two steps, which we call Oracle 1 and
Oracle 2. In the first step, or Oracle 1, 〈Ai〉 M1 〈P 〉 is checked. If it succeeds,
the second step, or Oracle 2, checks 〈true〉 M2 〈Ai〉.

Counterexample analysis needs to distinguish whether a counterexample c

returned by Oracle 2 only means that Ai was too strong, or whether it shows
that P is violated in M1 ||M2. To do this, Ac�Σ is computed and 〈Ac�Σ〉M1 〈P 〉
is checked. If true, it means that M1 does not violate P in the context of c, so
c � Σ is returned to the learner as a counterexample for conjecture Ai.
If model checking fails with some counterexample c′, then P is violated in
M1 || M2. A counterexample to 〈true〉 M1 || M2 〈P 〉 is then generated by
combining c and c′.
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αM1 = {a, b, e, f}
αM2 = {a, b, c, d}
Σ = αM1 ∩ αM2 = {a, b}
c = abb c b d a dd b

c′ = abb b ee a ef b

combination of c and c′: abb c b ee d a ef dd b

Figure 7: Combination of counterexamples c ∈ αM2 and c′ ∈ αM1

Combination of counterexamples works similarly to parallel composition of
LTSs, in the sense that actions common to αM1 and αM2 are ”synchronized”
and the remaining actions of c and c′ are interleaved. Figure 7 shows an exam-
ple of combination, where interleaving inserts non-synchronized substrings of c′

before non-synchronized substrings of c.

3.3 Example

Given the components Input and Output as shown in Figure 1 and the property
Order shown in Figure 2, we will check 〈true〉 Input || Output 〈Order〉 by using
the approach presented so far. The alphabet of the assumptions that will be
used in the compositional rule is

Σ = (αInput ∪ αOrder) ∩ αOutput = {ack, output, send}.

The first closed observation table T1 obtained by L*, along with its derived
assumption A1 is shown if Figure 8. A1 is submitted to Oracle 1, which checks
〈A1〉 Input 〈Order〉. σ = {input, send, ack, input} is a trace in
A1 || Input || Ordererr that leads to state π, hence Oracle 1 returns false,
with counterexample c = σ � Σ. From c, L* extracts the suffix ack, adds
it to the set E of suffixes and updates the observation table. This table T2
along with its assumption A2 is shown in Figure 9. This time, the assump-
tion passes both Oracle 1 and Oracle 2, so L* terminates with the result that
〈true〉 Input || Output 〈Order〉 holds.

This example did not involve weakening of the assumption, since A2 was suf-
ficient for the compositional proof. This isw not always the case. For example,
let us substitute Output by Output’ shown in Figure 10, which allows multiple
send actions to occur before producing output. The process will be identical to
the previous one, until Oracle 2 is invoked for conjecture A2. Oracle 2 returns
that 〈true〉 Output 〈A2〉 is false, with counterexample c = 〈send, send, output〉.
Counterexample analysis determines that in the context of this trace, Input does
not violate Order. The trace is returned to the L* algorithm, which extracts
the suffix output and uses it to weaken its assumption. The process involves
two more iterations, during which assumptions A3 and A4 (Figure 11) are pro-
duced. Using assumption A4, both Oracles report true, so L* terminates with
the result that 〈true〉 Input || Output′ 〈Order〉 holds.
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T1 λ

λ 1
output 0
ack 1
output 0
send 1
output,ack 0
output,output 0
output,send 0

0
ack
send

Figure 8: T1 and A1

T2 λ ack

λ 1 1
output 0 0
send 1 0
ack 1 1
output 0 0
send 1 0
output,ack 0 0
output,output 0 0
output,send 0 0
send,ack 0 0
send,output 1 1
send,send 1 1

0ack 1

send

output
send

Figure 9: T2 and A2

ack

outputsend
send

0 1 2

Figure 10: Output’

0

ack

1

send

output

send

2

ack
output
send

0

ack

1

output

send

ack
output
send

2

3

sendack

send

Figure 11: A3 and A4
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4 Computing minimal assumptions

In the framework introduced so far, queries to the Teacher test for membership
of a string in the language of the weakest assumption Aw (as defined in Section
3.2, but the procedure terminates as soon as the conditions of both Oracles are
met. Remember that Oracle 1 removes words not in L(Aw) to be removed from
the learned language, while Oracle 2 causes words from L(M2) to be added.
When the procedure terminates, the language of the intermediate assumptions
it returns is thus a language U which satisfies L2 ⊆ U ⊆ L1 for two languages

L2 = L(Aw)
L1 = L(M2) � Σ

In order to find a minimal intermediate assumption, we thus have to find
a language that respects the above inclusion relations, while having a mini-
mal number of equivalence classes and thus a minimal representation as an au-
tomaton. Obtaining smaller intermediate assumptions is interesting for several
reasons:

• A smaller assumption means less complex behavior, hence such an assump-
tion is easier for a human to understand. This is interesting, since the
intermediate assumptions capture the interaction between components,
which might be complex themselves.

• A party producing security-critical or otherwise essential software might
want to allow its users to convince themselves that the software is correct
by allowing them to re-run the verification. In order to save them the
work of running the iterative scheme presented in the last sections, the
producer might deliver the precomputed intermediate assumptions along
with the actual components. The smaller the assumptions are, the easier
it is to transmit them.

• Finally, assuming the same scenario as before, the user applies the compo-
sitional rule with the delivered intermediate assumption. Since checking
of the premises is done by model checking of a parallel composition which
has the assumption as one of its components, the computational cost of
this check is influenced by the size of the assumptions.

4.1 Three-valued observation tables

Considering the inclusion relations mentioned above, the natural idea to mini-
mize the intermediate assumptions is to take these inclusions into account al-
ready during the membership queries. We will thus relax the partial mapping
γ by extending its range to include a third value ∗, which can be read as ”don’t
know”. Since we are trying to learn a language for which we only know a lower
and an upper bound (w.r.t language inclusion), we will mark those strings which
lie in the upper language but not in the lower language as ”don’t know” since
they may or may not be in the language of the minimal automaton we want to
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compute. Strings which lie outside the upper language cannot be part of the
target language, and strings which are in the lower language have to be in the
target language.

Upon receiving a membership query σ = a1, a2, ..., an in Σ∗, the modi-
fied Teacher simulates the query on M1 || Perr, which corresponds to checking
whether σ ∈ L1. If the result is negative, the Teacher returns 0. Otherwise,
it simulates σ on M2err to decide whether σ ∈ L2. If this is true, the Teacher
returns 1, otherwise ∗.

We have now increased the accuracy of our observation tables by distinguish-
ing between strings which lie in the lower language and those which do not. We
still have to eventually transform those observation tables into automata, and
we want these automata to be minimal.

If we want to apply the construction described in Section 3.1, we have to
get rid of the ”don’t know” entries. Since a ”don’t know” entry means that
the corresponding string may or may not be in the target language, it seams
reasonable to instantiate the ∗ entries by 0 or 1. Determining how any such
instantiation affects the size of the eventual automaton is non-trivial.

Hence our first approach consists in exploring all possible instantiations of
all ”don’t know” entries by both 0 and 1. This will yield an exponential (in
the number of ∗ entries) number of new observation tables at each step. We
call such observation tables instances of the observation table they are derived
from.

4.2 Wellformedness

We call an observation table T = (S, E, T ) wellformed, if it defines a unique
partial mapping γ. Note that different combinations of row and column labels
can designate the same string in (S ∪ (S · Σ)) · E. This is the case whenever
s, s′ ∈ S ∪ (S · Σ), e, e′ ∈ E such that s 6= s′, e 6= e′ but se = s′e′. For the
observation table to be wellformed, it must hold that the entries at se and s′e′

be identical, i.e. T (s, e) = T (s′, e′). When instantiating an observation table,
the wellformedness requirement thus constrains all ∗ entries representing the
same string to take on the same value.

If T is wellformed, there is a unique function γ : (S ∪ (S · Σ)) · E → {0, 1}
with T (s, e) = γ(se). In this case, we will use γ and T interchangeably. If
an observation table contains ∗ entries, γ will actually be a partial function,
remaining undefined on the strings which label ∗ entries in the table.

4.3 Prefix-closedness

Since the language we are learning is prefix-closed, we want to exclude from the
search those observation tables which do not represent prefix-closed languages.

from the partial mapping γ represented by the observation table T . In
practice, this can be checked using two functions has prefix and is prefix
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λ b

λ 1 1
a 0 1

...

Figure 12: An observation table that is not prefix-closed

which get a set S of strings over Σ as first argument and a string of Σ∗ as
second argument and are defined as follows: .

• has prefix is a function such that, for any s ∈ Σ∗, has prefix(S, s) = 1
if there exists s′ ∈ S and some string e ∈ Σ∗ (possibly empty) such that
s = s′e, and 0 otherwise;

• is prefix is a function such that, for any s ∈ Σ∗, is prefix(S, s) = 1 if
there exists s′ ∈ S and some string e ∈ Σ∗ (possibly empty) such that
s′ = se, and 0 otherwise.

Now let
Saccepted = { s ∈ (S ∪ (S · Σ)) ·E | γ(s) = 1 }

be the set of all strings accepted by the current mapping γ, and similarly let

Srejected = { s ∈ (S ∪ (S · Σ)) · E | γ(s) = 0 }

be the set of strings rejected by γ.
We call the observation table T prefix-closed, iff there exists no string

s ∈ (S ∪ (S · Σ)) · E such that both

has prefix(Srejected, s) = 1

and

is prefix(Saccepted, s) = 1

hold.
Figure 12 shows part of an observation table that is not prefix closed, since

here both has prefix(Srejected, a) = 1 and is prefix(Saccepted, a) = 1 hold.

4.4 Closedness

Before we can build a candidate DFA out of a prefix-closed instance, we still need
the instance to be closed. Remember that an observation table T = (S, E, T )
is closed if

∀t ∈ S · Σ, ∃s ∈ S : row(t) = row(s)
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λ

λ 1
a 1
b ∗

λ

λ 1
a 1
b 0

λ

λ 1
b 0

a 1
b 0

ba 0

bb 0

γ(b) := 0

γ(b) := 1
...

make
closed

Figure 13: Instantiation and update without membership query

If the instance is not closed, new prefixes must be added, as before. Now
however, we cannot simply add a prefix to the set S and update the observation
table by making membership queries to the modified Teacher. If we add a prefix
s ∈ Σ∗ where row(s) has been modified by the instantiation, then by adding s

to S and re-querying row(s), we introduce ∗ entries again.
More generally, when updating an observation table that is the result of an

instantiation, we need to take into account the information introduced by the
instantiation. This can be achieved in the following way: before updating an
observation table T , record the partial mapping γ represented by T (assum-
ing that T is wellformed). Note that if T is an instance of T ′, the partial
mapping represented by T contains more information than the partial mapping
represented by T ′. When T is updated and a string σ needs to be tested for
membership, use γ before submitting any membership query to the modified
Teacher. If σ has a prefix that is mapped to 0 by γ, then σ must be rejected.
Similarly, if some string mapped to 1 by γ has σ as a prefix, then σ must be
accepted. In practice, testing this can again be achieved using tries.

Figure 13 illustrates this idea with a simple observation table over Σ = {a, b}
that initially contains a * entry. The bold entries are deduced from the instanti-
ation γ(b) := 0 without membership queries. Both ba and bb have b as a prefix,
hence they must be rejected.

In general however, when updating an observation table, the partial map-
ping must be truly extended, in the sense that the membership of some strings
cannot be determined without making a membership query.

4.4.1 Partial closing

Consider again the notion of closedness of an observation table. Since ∗ entries
may be instantiated to either 0 or 1, our current definition of closedness does
not make much sense for non-instantiated tables. On the other hand, it is
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clear that if a non-instantiated table T contains some t ∈ S · Σ such that
there is no s ∈ S with row(s) = row(t), then no instance of T will contain
such an s either. Futhermore, if row(t) does not contain any *, then making
any instance of T closed will involve adding t to S. Hence a lot of work can
be avoided by treating such cases before instantiating the observation table.
But the absence of ∗ in a row alone is not a sufficient condition for adding
the corresponding prefix to S. In order to maintain the consistency invariant
described in Section 3.1, we must also make sure that no row in the upper part of
the table can be instantiated to the row we are adding. Otherwise, the invariant
s1 6= s2 ⇒ row(s1) 6= row(s2) could be violated in that particular instance.
Hence, we will say that an observation table is partially closed whenever

∀t ∈ S · Σ, if ∗ 6∈ row(t) and 6 ∃s ∈ S : inst(row(t), row(t)), then
∃s′ ∈ S : row(t) = row(s′).

holds, where inst is defined by

inst(r, r′)⇔ ∀e ∈ E : r(e) = r′(e) ∨ r′(e) = ∗

T λ b

λ 1 1
a 1 0
b x1 x2

a 1 0
b x1 x2

aa 0 0
ab 0 0
ba x3 x4

bb x2 0

T ′ λ b

λ 1 1
a 1 0
b 0 0

a 1 0
b 0 0

aa 0 0
ab 0 0
ba 0 0

bb 0 0

Figure 14: An observation with table constraints (T ), and the instance obtained
from it by setting γ(b) := 0 (T ′).

Let us now consider a small example which will relate the notions of well-
formedness and partial closing. Figure 14 shows an observation table T in
which the ”don’t know” entries have been named x1 to x4. The variable x1

represents the value of γ(b), and x2 stands for γ(bb). x3 and x4 denote γ(ba)
and γ(bab), respectively. Because of the wellformedness requirement, x1 and x2

appear several times in the table, meaning that any instance derived from this
observation table must instantiate the entries T (b, b) and T (bb, λ) identically.
Note that the table is already partially closed: there is no row 0, 0 in the upper
part of the table, however we can not add aa as a new prefix to S, because
inst(row(aa), row(b)) holds. Indeed, by setting both x1 and x2 to 0, we would
obtain the desired row. So let us consider what happens if we start instantiating
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the variables. Setting x1 to 0 is already sufficient to remove all ”don’t know”
entries from the table: since all of bb, ba and bab have b as prefix, it follows that
the only prefix-closed observation table derivable from T is T ′ shown (Figure
14). Note that T ′ is a closed observation table.

4.5 Treatment of suffixes

In the L* algorithm as described in Section 3.1, for each counterexample to the
current conjecture, one suffix was extracted and added to the set E of suffixes. It
turns out that in the case of three-valued observation tables, doing this naively
can result in inconsistent instances.

Figure 15 shows an observation table and its derived conjecture (this obser-
vation table arose during experimentation with the Peterson mutual exclusion
protocol, see Section 6.2). The alphabet is {0, 1, 2, 3, 4, 5, 6, 7}. Note that the
states are labeled by their corresponding prefixes in the observation table. The
state labeled by λ is the initial state.

Oracle 1 determined that the language of the conjecture was too large, and
returned the string 5.3.7.2.0 as a counterexample. The extracted suffix was
3.7.2.0. The observation table obtained after adding this suffix, applying partial
closing and instantiating all ∗ entries by 0 is shown in Figure 16, along with the
conjecture built from it (the entries resulting from instantiation are underlined).

This new conjecture indeed represents a finer equivalence relation ', since
the string 5 now has an equivalence class of its own, while it previously was
equivalent to the empty string λ. However, the string 5.3.7.2.0 is still in the
language of the new conjecture. The reason lies in the way we have instanti-
ated the * entries in the new column 3.7.2.0. According to this instantiation,
row(5.3) = row(5), hence 5.3.7.2.0 ' 5.7.2.0. By row(5.7) = row(7), it follows
that 5.7.2.0 ' 7.2.0. Hence we obtain 5.3.7.2.0 ' 7.2.0, but T (7.2.0, λ) = 1, so
the string 5.3.7.2.0 is accepted. It is clear that the observation table can not be
consistent, since T (5, 3.7.2.0) = 0, meaning that the string 5.3.7.2.0 should not
be in the language of the conjecture.

But this inconsistency does not imply that the observation table is not well-
formed, in the sense defined in above. This is because the inconsistency does
not arise from contradictory information about the membership of strings from
(S ∪ (S · Σ)) · E, i.e. strings ”directly” represented in the observation table,
but rather from contradictions between this membership information and the
equivalence relation ' implicitely represented by the observation table.

Instead of testing each instance of an observation table for such contradic-
tions, we will instead make sure that no instance can ever contain such contra-
dictions. We can achieve this in the following way: whenever we get a coun-
terexample to our current conjecture, we add not only the extracted suffix itself,
but also ensure that the set E is always suffix-closed. Then the wellformedness
requirement discussed in Section 4.2 will take care of maintaining consistency.

To see why this is the case, suppose we again have the table from Figure 15 as
starting point. Oracle 1 again returns the string 5.3.7.2.0 as a counterexample,
and we extract the suffix 3.7.2.0. Now we add to E the suffixes: 3.7.2.0, 7.2.0 and
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2.0 (note that 0 was already in E). By membership queries we again obtain that
T (5, 3.7.2.0) = 0. But now, by wellformedness, we also have T (5.3, 7.2.0) = 0.
Assuming we have chosen an instantiation for the remaining * entries and made
the resulting instance closed, there must now (by closedness) be a row labeled by
some s1 ∈ S such that row(5.3) = row(s1). Now consider the entry T (s1.7, 2.0).
By wellformedness, it must again be 0, and by closedness, there exists some
s2 ∈ S such that row(s1.7) = row(s2). Again by wellformedness, we have
T (s2.2, 0) = 0 and finally T (s3, λ) = 0 for some s3 ∈ S with row(s2.2) =
row(s3). Hence the string 5.3.7.2.0 is equivalent to some rejected string, and
hence rejected.

λ 2 0

λ 1 0 0

1 0 0 0

7 1 1 0

7, 2 1 0 1

0 0 0 0

1 0 0 0

2 0 0 0

3 1 0 0

4 1 0 0

5 1 0 0

6 0 0 0

7 1 1 0

1, 0 0 0 0

1, 1 0 0 0

1, 2 0 0 0

1, 3 0 0 0

1, 4 0 0 0

1, 5 0 0 0

1, 6 0 0 0

1, 7 0 0 0

7, 0 0 0 0

7, 1 0 0 0

7, 2 1 0 1

7, 3 1 1 0

7, 4 1 1 0

7, 5 1 1 0

7, 6 0 0 0

7, 7 0 0 0

7, 2, 0 1 0 0

7, 2, 1 0 0 0

7, 2, 2 0 0 0

7, 2, 3 1 0 1

7, 2, 4 1 0 1

7, 2, 5 1 0 0

7, 2, 6 0 0 0

7, 2, 7 0 0 0

7 7.2

3,4,5

3,4,5 3,4

7

2

0,5
λ

Figure 15: Observation table and corresponding conjecture LTS

4.6 Search procedure

Extending observation tables by adding prefixes or suffixes will in general in-
troduce new ∗ entries, which again requires instantiation before any candidate
DFA can be built.

Finding a conjecture of minimal size that passes both Oracles thus consti-
tutes a search problem in a search space of observation tables. If we consider
wellformed, closed instances to be successors of observation tables, we can apply
classic search algorithms. We can conveniently define the size |T | of an obser-
vation table T = (S, E, T ) as |S|. This way, the size of any closed instance
corresponds to the number of states of its derived conjecture. If observation
tables are ”expanded”, i.e. instantiated, in strictly increasing order of size
(instantiation leaves the size of an observation table unchanged, whereas the
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λ 2 0 3, 7, 2, 0

λ 1 0 0 1

1 0 0 0 0

7 1 1 0 0

7, 2 1 0 1 0

5 1 0 0 0

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 1 0 0 1

4 1 0 0 1

5 1 0 0 0

6 0 0 0 0

7 1 1 0 0

1, 0 0 0 0 0

1, 1 0 0 0 0

1, 2 0 0 0 0

1, 3 0 0 0 0

1, 4 0 0 0 0

1, 5 0 0 0 0

1, 6 0 0 0 0

1, 7 0 0 0 0

7, 0 0 0 0 0

7, 1 0 0 0 0

7, 2 1 0 1 0

7, 3 1 1 0 0

7, 4 1 1 0 0

7, 5 1 1 0 0

7, 6 0 0 0 0

7, 7 0 0 0 0

7, 2, 0 1 0 0 0

7, 2, 1 0 0 0 0

7, 2, 2 0 0 0 0

7, 2, 3 1 0 1 0

7, 2, 4 1 0 1 0

7, 2, 5 1 0 0 0

7, 2, 6 0 0 0 0

7, 2, 7 0 0 0 0

5, 0 0 0 0 0

5, 1 0 0 0 0

5, 2 0 0 0 0

5, 3 1 0 0 0

5, 4 1 0 0 1

5, 5 1 0 0 0

5, 6 0 0 0 0

5, 7 1 1 0 0

7 7.2

3,4

3,4,5 3,4

7

2

0,5

5 3,5
5

4

7

λ

Figure 16: Observation table from Figure 15 after adding suffix 3.7.2.0, and
corresponding conjecture LTS

addition of prefixes and suffixes causes it to become strictly greater), then any
optimal search strategy will find a minimal intermediate assumption, if there is
one.

4.6.1 Breadth-first search

One such optimal search strategy is breadth-first search, where uninstantiated,
partially-closed observation tables are kept in a FIFO queue.

Figure 17 shows a breadth-first search procedure as a pair of mutually re-
cursive procedures bfs pop and bfs instantiate. Before bfs pop is called, the
FIFO queue q contains only the initial observation table with S = E = {λ}. The
set instances(T ) at line 2 of bfs pop is the set of all wellformed, prefix-closed
instances of T . It appears in the formal description of the search procedure
for convenience, but in the actual implementation, the incremental method de-
scribed in Section 5.4 is used to compute those instances.
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procedure bfs pop()

1. T ← q.pop()
2. bfs instantiate(T, 0, |instances(T )|)

procedure bfs instantiate(T , i, n)

1. if i = n then

2. bfs pop()
3. Ti ← instance(T , i) = (Ti, Si, Ei)
4. make closed(Ti)
5. if Ti contains * then

6. q.push(Ti)
7. bfs instantiate(T , i + 1, n)
8. construct candidate DFA C from Ti

9. if Oracle1 (C) fails with c then

10. extend Ei

11. partial close(T〉)
12. q.push(Ti)
13. bfs instantiate(T , i + 1, n)
14. else if Oracle2 (C) fails with c′

then

15. if c′ witnesses violation of P

then

16. return Violation + ctrex
17. else

18. extend Ei

19. partial close(T〉)
20. q.push(Ti)
21. bfs instantiate(T , i + 1, n)
22. else

23. return C

Figure 17: The bfs pop and bfs instantiate procedures

4.6.2 Iterative-deepening depth-first search

The main problem with breadth-first search as presented above, is that the queue
has to hold a (potentially) exponentially growing number of observation tables.
This makes the approach unpractical even for examples of modest size (see
Section 6.2). Iterative-deepening depth-first search combines the space-efficieny
of depth-first search with the optimality of breadth-first search. It proceeds by
running a depth-limited depth-first search repeatedly, each time increasing the
depth limit by one, but still has the same asymptotic complexity as breadth-first
search. Only the path from the root (the initial observation table) to the current
instance has to be kept in memory. This path is represented by a stack data
structure. Figure 18 shows the iterative-deepening depth-first search procedure.
Procedure dls applies depth-limited depth-first search, procedure iddfs calls dls

with increasing depth limits. The initial table at line 3 of iddfs is again the
non-instantiated observation table with S = E = {λ}.

25



procedure iddfs()

1. maxd← 0
2. while true do

3. path← [initial table]
4. dls(maxd, 0)
5. maxd← maxd + 1

procedure dls(maxd, d)

1. if path = empty then

2. return ”no result”
3. if d ≥ maxd then

4. path.remove top()
5. dls(maxd, d − 1, path)
6. Ti ← path.pop()
7. if i ≥ |instances(parent(Ti))| then

8. path.remove top()
9. dls(maxd, d − 1, path)

10. construct candidate DFA C from Ti

11. if Oracle1 (C) fails with c then

12. extend Ei

13. partial close(T〉)
14. path.push(Ti)
15. dls(maxd, d + 1, path)
16. else if Oracle2 (C) fails with c′

then

17. if c′ witnesses violation of P

then

18. return Violation + ctrex
19. else

20. extend Ei

21. partial close(T〉)
22. path.push(Ti)
23. dls(maxd, d + 1, path)
24. else

25. return C

Figure 18: The iddfs and dls procedures

5 Reducing the search space

As we started implementing the algorithm described above, it became evident
that even with the reduction in search space induced by requirements of well-
formedness, prefix-closedness and partial closing, the number of instances that
need to be explored can be very large (see Section 6.2 for experimental results).

One way of getting closer to a practically usable method is to introduce
heuristics which reduces the search space, at the price of losing optimality,
since they may cause the search procedure to terminate with a non-minimal
intermediate assumption. Chosing which heuristics to use will hence involve
a trade-off between speed and optimality, which may depend on the concrete
problem.

An approach which potentially maintains optimality but lets the user decide
when a result is satisfactory is discussed in Section 5.3.
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5.1 Independent counterexamples

Assume that C = 〈Q, αM, δ, q0, F 〉 is a conjecture DFA built from some instance
Ti of an observation table T that contains ∗ entries. If a counterexample c to
C, returned by one of the two Oracles, can be shown to be independent of the
specific instantiation, then c is guaranteed to be also a counterexample to any
other instance Tj of T . Hence if c was also a minimal counterexample to any
instance of T , the procedure from Figure 17 would submit each instance to the
Oracle, obtain the same counterexample c and add the same suffix before adding
the instance to the queue. In this case it would make sense to add the particular
suffix directly to T and only then generate instances.

To determine whether the membership of some string c = a1 . . . an in the
language L(C) is independent of the chosen instantiation, we look at the states
that C goes through when reading c. By the construction of C (see Section
3.1), each transition δ(row(s), a) = row(sa) involves two rows of Ti, which also
correspond to two rows of T (since Ti is an instance of T ). Hence the set of all
rows which may influence the membership of c in L(C) is

{ row(si−1 , ai), row(si) | i = 1 . . . n and s0 = λ }

If no row in this set contains ∗, then the membership of c in L(C) is independent
of the instantiation of T .

Hence the heuristic consists in checking, for every counterexample to a con-
jecture, if the counterexample is independent of the particular instantiation. If
so, then we backtrack and add the obtained suffix to the ”parent”, i.e. the ob-
servation table from which the current instance was derived. This backtracking
can be realized both in breadth-first and depth-first search.

A possible variation of the independent counterexample heuristic might con-
sist in checking independence of counterexamples not only with respect to the
last instantiation (as described above), but to take into account all entries that
have been instantiated at some point in the search. If a counterexample can
be shown to be independent wrt. to, say, the last n instantiation steps, the
search procedure could backtrack n steps, back to the table to which the first
instantiation was applied.

Another variation might consist in building non-complete automata from ”*-
free” parts of the observation table, i.e. using only rows which do not contain
”don’t know” entries. Counterexamples returned for such conjectures would
then also be independent of the chosen instantiation. This approach remains to
be investigated.

5.2 Conservative instantiation

Since our goal is to obtain an intermediate assumption of minimal size, a natural
idea for limiting the search space is to instantiate ∗ entries in a way that intro-
duces as little new rows into the table as possible. Remember that new rows
are added whenever the observation table is not closed (see Section 3.1). Hence
if we can match each row in the lower part of the table (those labeled by strings
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from S · Σ) to some row in the upper part of the table, no instantiation of the
resulting table should make it necessary to add new rows. Figure 19 illustrates
some aspects of this heuristic. The row labeled by t1 can be matched to either
s2 or s3, each matching inducing a different instantiation of t1e2. Rows t2 and
t3 can each be matched to s1, but they place contradicting requirements on the
value of γ(s1e2). No matter which value we chose for γ(s1e2), the table will not
be closed and either t2 or t3 will have to be added to the set of prefixes.

e1 e2

s1 0 ∗
s2 1 0
s3 1 1
t1 1 ∗
t2 0 0
t3 0 1

Figure 19: Conservative instantiation

This heuristic leaves some room for adjustments, since one may or may not
want to explore all combinations of possible matchings. More specifically, in
the example from Figure 19, there are four ways to match rows from the lower
part of the table to rows in the upper part. In each case, a prefix (either t2 or
t3) needs to be added. These four matchings happen to cover all four possible
instances of the table. In the cases where a row can be matched to several
different rows, or several different rows can be matched to one (like here), one
might however limit oneself to fixing one combination of matchings.

But even if all combinations are considered, the heuristic still does not nec-
essarily cover all instances of an observation table. The reason is illustrated in
Figure 20.

e1 e2

s1 1 1
t1 1 ∗
t2 1 ∗

Figure 20: A situation in which conservative instantiation is incomplete

In this case, both lower rows would be matched to the only upper row, with
the effect of making both lower rows identical. In general, whenever two or
more lower rows can be matched to only one upper row, this induces equal-
ity constraints between the lower rows, which reduce the number of possible
instances.
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5.3 An interactive approach

Even when using heuristics presented so far, finding the first instance which
passes both Oracles can require the exploration of a very large search space.
Since it is difficult to give a general estimate of what consitutes an acceptable
tradeoff between optimality and computation time, a natural idea is to let the
user decide, based on the information he or she has about the system being
analyzed. The approach we chose is that of an interactive depth-first search
without depth limit. The search proceeds along one path, choosing always the
first (or 0th) instance as successor, until it reaches an instance that passes both
Oracles. Since the choice of the instantiation is arbitrary and depth-first search
is not optimal, this first result may not be the smallest one. Now however, the
users can judge wether the result is sufficiently small for his or her purposes. If
the user decides that this is not the case, the search is resumed by backtracking
to the next higher level and expanding the remaining instances.

5.4 Generating prefix-closed instances

As discussed in Section 4.3, only prefix-closed instances of observation tables
need to be considered. Given an observation table T containing n ∗ entries
(assuming we those entries which represent the same string in (S ∪ (S · Σ)) · E
count as a single one), a naive approach might consist in generating all 2n

possible instances, testing each one for prefix-closedness and discarding those
that are not prefix-closed. This is obviously a very expensive procedure, since
exponentially many instances are generated and each instance needs to be tested
for prefix-closedness, which takes time O(n2) in the worst case. It is hence
desirable to have a procedure which generates exactly those instances that are
prefix-closed, which then also allows to drop the test for prefix-closedness.

We consider the strict partial order ≺ over Σ∗ defined by

s ≺ s′ iff ∃s′′ 6= λ : s′ = ss′′

Let S∗ be the set of strings that label ∗ entries in T . A partial mapping γ

which assigns 0 or 1 to all strings in S∗ represents a prefix-closed instance of T
iff for all s, s′ ∈ S∗, if s ≺ s′, then

γ(s) = 0⇒ γ(s′) = 0

holds.
Note that the smallest element of Σ∗ wrt. ≺, λ, is not necessarily in S∗.

In fact, it will usually be the case that λ 6∈ S∗, since otherwise we would have
L(M2) = ∅. However, if we add λ to S∗, the Hasse diagram of S∗ wrt. ≺ is
a tree with root λ. To represent γ, we can label each node s of this tree by
γ(s). Then the trees representing prefix-closed instances will be exactly those
in which no subtree with root labeled by 0 contains any nodes labeled by 1. We
hence need a procedure that, given a tree, returns a list of trees of the same
shape, representing all possible ways of labeling the nodes of the given tree
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λ

a b

ba bb

. . .

Figure 21: Hasse diagram and some prefix-closed variants for {a, b, ba, bb}∪{λ}

which satisfy the prefix-closedness requirement. Call these trees prefix-closed

variants of the original tree.
Figure 21 shows an example for S∗ ∪ {λ} and S∗ = {a, b, ba, bb}. The upper

tree represents the Hasse diagram of S∗ ∪ λ wrt. ≺. In the lower row, some
of the variants returned by the procedure are shown. There are 11 of them.
Depending on the depth of the tree, the number of prefix-closed variants can
vary between linear (if the tree is linear) and exponential (tree of depth 1) in
the number of nodes. Adding λ to S∗ simply allows to represent each γ using
a single tree, since otherwise there would be one separate tree for each minimal
element in S∗. If λ originally was not in S∗, the first tree (representing γ(λ) = 0)
can be discarded.

We will now give a formal description of the generating procedure. In ML-
style syntax, the type of boolean-labeled trees can be written as follows:

type tree = T of bool * tree list

A recursive formulation of the procedure (call it variants) is then as follows (we
assume that it is initially called with a tree whose nodes are all labeled by 0):

variants T(0,nil) = [T(0,nil), T(1,nil)]

variants T(0,ts) =

T(0,ts) :: ( map (fn ts’ -> T(1,ts’)) (cross (map variants ts)) )

where [.] represents lists, :: is the cons operator and cross computes a ”cross
product” on lists, i.e.

cross [[a1,1, . . . , a1,n1
], . . . , [am,1, . . . , am,nm

]] =
[[a1,1, . . . , am,1], . . . , [a1,n1

, . . . , am,nm
]]

This recursive formulation is obviously unsuitable for implementation since
the computation of a single variant of a tree requires to complete the computa-
tion of all variants of all subtrees.

A better way of generating all prefix-closed variants of a tree is to label the
nodes in a bottom-up fashion. Note that if we have chosen a labeling for all the
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leaf nodes, we can propagate this assignment up the tree: any leaf that is labeled
by 1 must also have its parent labeled by 1 and so on. After this propagation
step, all leaves will be labeled, along with zero or more paths from leaves to the
root. Removing the assigned leaves from the tree yields a new tree, in which
zero or more leaves will be labeled by 1, all other leaves remaining unlabeled.
For these unlabeled leaves, we can again chose a labeling and propagate it up,
repeating this process until there are no more unlabeled nodes. By labeling any
sequence of leaves in a fixed order (e.g., binary counting) we can thus enumerate
all prefix-closed variants of a tree.

This procedure is again recursive, but can be made tail-recursive by making
its stack explicit. The stack holds lists of leaves, together with their labeling.
The advantage of this approach is that we can generate prefix-closed variants
in a sequential fashion, computing only those subtree variants which are needed
in the current variant. This is especially nice in the context of the independent-
counterexample heuristic (see Section 5.1), since we might need to inspect only
a very small number of instances before obtaining an independent counterexam-
ple. In this case it would be wasteful to compute all possible variants beforehand.
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6 Implementation

In order to evaluate the practical usefulness of our minimization approach, an
experimental version of it was implemented in the Objective Caml (OCaml)
functional progamming language [5]. For the purpose of comparison, the learn-
ing framework presented in Section 3 was implemented, together with the the
different search procedures developed in this thesis.

6.1 Implemented algorithms

We have implemented a collection of tools which allow to experiment with the
algorithms which we have discussed.

• basic is our implementation of the original learning framework by Cobleigh
et al. as presented in Section 3.2.

• bfsmin is an implementation of the breadth-first search procedure as de-
scribed in Section 4.6.1

• dfsmin is an implementation of the iterative-deepening search procedure
as discussed in Section 4.6.2 and can also be used to run a single (possibly
depth-limited) depth-first search and also allows to use the interactive
depth-first search described in Section 5.3.

• compose is a tool which allows to compute the parallel composition of
LTSs, as described in Section 2.2

The independent counterexample heuristic (see Section 5.1) is available in
both bfsmin and dfsmin. For usage information the reader is referred to the
supplied documentation and user manual. The tools are available via
http://react.cs.uni-sb.de.
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6.2 Experimental results

We tested our implementation on a few small example systems.

Simple Channel

For the simple channel introduced in Section 3.3 (Figure 1), our search procedure
returns the same result, i.e. the LTS A2 shown in Figure 9. Hence for this
simple system, the intermediate assumption returned by the original framework
is already minimal.

Modified Channel

For the modified communication channel (Figure 10 from Section 3.3), the orig-
inal framework computed an intermediate assumption of size 4 (A4 in Figure
11). For this example, our search procedure found an intermediate assumption
of size 2. The original intermediate assumtpion is shown again in Figure 22 for
ease of comparison, along with our result.

0

ack

1

output

send

ack
output
send

2

3

sendack

send
ack

send

output
send

0 1

Figure 22: Intermediate assumption for the modified channel: the result by the
original framework (left) and our minimal result (right)

Two Channels

In this slightly modified version of the simple communication channel, the sender
can acquire messages via two different input actions, and then proceeds to send
the message on one of two corresponding channels. The receiver acts analo-
gously. The system, composed of the LTSs Input2 and Output2, is shown in
Figure 23, along with the property Order2.

The intermediate assumption computed by the original learning algorithm
is shown in Figure 24, along with our result.

Peterson’s mutual exclusion algorithm

In [9], Peterson presents an elegant algorithm to solve the mutual exclusion
problem for two processes, A and B, which use only shared memory for com-
munication. There are three shared variables, x, y and turn. Both x and y
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Input2 :

input1

input2

send1

send2

ack1

ack2
0

12

34

Output2 :

send1

send2

output1

output2

ack1

ack2
0

12

34

Order2 :

1 0 2

input1 input2

output1 output2

Figure 23: Communication over two channels

0 12

send1

ack1

ack2

 ack2,out1

send1,send2

send2

 ack1,out2

send1,send2

0 12

send1

ack1

ack2

out1

send2

out2

Figure 24: Intermediate assumptions for the system from Figure 23: the result
by the original framework (left) and our minimal result (right)

are initially set to zero. The variable turn can hold one of two possible values
A and B (we use these instead of 0 and 1 for clarity of presentation), and is
initially set to A. The algorithm is shown in Figure 25.

Since every variable can only take one of a finite number of values, the state
space of the composition of the processes A and B is finite. We have modeled
both processes as LTSs. The LTS for process A is shown in Figure 26, the LTS
for process B in Figure 27.

The states are labeled by four-tuples, which represent the shared variables
as well as the program counter. The tuples are of the form 〈turn, x, y, pc〉 where
the program counter pc counts the number of steps taken so far in each process.
The program counter starts with 0 and is increased with each transition that
the process makes. Both LTSs have A000 as respective initial state. Once a
process has left it critical section, it returns to the initial state to start a new
run.

Since our notion of labeled transition system does not include reading and
writing of variables, we model the communication between the processes using
the semantics of parallel composition, introduced in Section 2.2. Hence each
process also contains those transitions which correspond to the writing of shared
variables by the respective other process. The alphabet includes actions like
x = 1, which are taken synchronously by both processes whenever process A

sets x to 1. The actions enterA, leaveA etc. indicate that a process enters or
leaves its critical section. Since this does not affect shared variables, process
A does not have any transitions labeled by enterB or leaveB, and similarly,
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Process A:

1. x← 1
2. turn← B

3. while y = 1 and turn = B do;
4. enter critical section
5. leave critical section
6. x← 0

Process B:

1. y ← 1
2. turn← A

3. while x = 1 and turn = A do;
4. enter critical section
5. leave critical section
6. y ← 0

Figure 25: Peterson’s algorithm

process B does not have any transitions labeled by enterA or leaveA.
These actions however do appear in the LTS of the mutual exclusion prop-

erty, which is shown in Figure 28. Its initial state is labeled by 00.
For this example, the breadth-first-search was not practical, since it con-

sumed too much memory. On the other hand, using iterative deepening search
proved to take too much time and finally only a depth-first search without depth
limit returned a conclusive result. This intermediate assumption (see Figure 29)
has one state less than the one computed by the original framework (Figure 30),
but it may not be minimal.

.
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7 Conclusions

Based on previous work of M. Cobleigh et al. [2], this thesis introduced an
approach to reducing the size of intermediate assumptions which arise during
compositional verification in assume-guarantee style. The intermediate assump-
tions are constructed incrementally by a variant of Angluin’s L* algorithm [1] for
learning regular languages. The L* algorithm gains knowledge about a regular
language by making membership queries for particular words, and construct-
ing a sequence of conjecture automata. The approach uses the fact that the
language of the intermediate assumption lies between two known regular lan-
guages, and makes use of this fact when answering membership queries of the
learning algorithm. We have modified the learning algorithm such that it learns
a language that is consistent with these bounds and has a minimal number of
equivalence classes. This allows to represent the intermediate assumption by an
automaton of minimal size. The possible conjectures that are consistent with
the learning algorithm’s partial knowledge form a search space which can be
explored by a search procedure. We have discussed different ways to explore
this search space, using well-known search paradigms. A number of heuristics
to improve the efficiency of this search, possibly at the cost of minimality, were
presented.

A basic version of the methods presented in this thesis has been imple-
mented, allowing an evaluation of its practical benefits. Computation of min-
imal intermediate assumptions is possible for very small systems in the order
of a few states, but the example of Peterson’s mutual exclusion algorithm al-
ready reaches the limites of the current implementation. It is likely that the
computational cost of finding minimal intermediate assumptions will drown the
advantage gained by the smaller size of of the obtained assumptions.

We must thus conclude that the approach studied in this thesis, at least in
its current form, is not suitable for use in practice.

In order to achieve efficiency for systems of realistic size, the implementation
as well as the underlying concepts still need to be further elaborated.
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Figure 26: The LTS for process A in Peterson’s algorithm
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Figure 27: The LTS for process B in Peterson’s algorithm
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Figure 28: The mutual exclusion property for Peterson’s algorithm
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Figure 29: Intermediate assumptions for Peterson’s algorithm as returned by
the original framework
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Figure 30: Intermediate assumptions for Peterson’s algorithm as returned by
depth-first search

40



References

[1] D. Angluin. Learning regular sets from queries and counterexamples. Inf.

Comput., 75(2):87–106, 1987.

[2] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu. Learning assumptions
for compositional verification, 2003.

[3] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in
property specifications for finite-state verification. In ICSE ’99: Proceedings

of the 21st international conference on Software engineering, pages 411–
420, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[4] O. Grumberg E. M. Clarke and D. A. Peled. Model checking, 1999.

[5] French National Institute for Research in Computer Science and Con-
trol (INRIA). Objective caml. http://caml.inria.fr/ocaml/index.en.
html, 2004.

[6] E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499, 1960.

[7] O. Grumberg and D. E. Long. Model checking and modular verification. In
Proc. of the 2nd Int. Conf. on Concurrency Theory, pages 250–265, 1991.

[8] C. B. Jones. Specification and design of (parallel) programs. In R. Mason,
editor, Information Processing 83: Proc. of the IFIP 9th World Congress,
pages 321–332. IFIP: North Holland, 1983.

[9] Gary L. Peterson. Myths about the mutual exclusion problem. Inf. Process.

Lett., 12(3):115–116, 1981.

[10] A. Pnueli. In transition from global to modular temporal reasoning about
programs. In K. Apt, editor, Logic and Models of Concurrent Systems,
volume 13, pages 123–144. Springer-Verlag, 1984.

[11] R. L. Rivest and R. E. Schapire. Inference of finite automata using homing
sequences. Inf. Comput., 103(2):299–347, 1993.

[12] S. Qadeer T. A. Henzinger and S. K. Rjamani. You assume, we guarantee:
Methodology and case studies. In Proc. of the 10th Int. Conf. on Computer-

Aided Verification, pages 440–451, 1998.

41


