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Groups and their presentations

Groups are algebraic structures which satisfy the following
axioms

(x · y) · z = x · (y · z)
x · e = x
e · x = x
x · x ′ = e

Groups can be defined in different ways, including by
presentations 〈x1, . . . , xn; r1, . . . , rm〉, where x1, . . . , xn are
generators and r1, . . . rm are relators
Intuitively, the presentation above defines a group the elements
of which are words in the alphabet x1, . . . , xn, x

′
1, . . . , x

′
n taken

up to the equivalence defined by r1 = e, . . . , rm = e
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Trivial group presentations

〈a, b | ab, b〉 (trivial example of the trivial group presentation)

〈a, b | abab′a′b′, aaab′b′b′b′ (not so trivial example of the
trivial groups presentation)
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Andrews-Curtis Conjecture. Preliminaries

For a group presentation 〈x1, . . . , xn; r1, . . . rm〉 with generators xi ,
and relators rj , consider the following transformations.

AC1 Replace some ri by r−1
i .

AC2 Replace some ri by ri · rj , j 6= i .
AC3 Replace some ri by w · ri · w−1 where w is any word

in the generators.
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Andrews-Curtis Conjecture

Two presentations g and g ′ are called Andrews-Curtis
equivalent (AC-equivalent) if one of them can be obtained
from the other by applying a finite sequence of transformations
of the types (AC1) - (AC3).
A group presentation g = 〈x1, . . . , xn; r1, . . . rm〉 is called
balanced if n = m, that is a number of generators is the same
as a number of relators. Such n we call a dimension of g and
denote by Dim(g).

Conjecture (1965)

if 〈x1, . . . , xn; r1, . . . rn〉 is a balanced presentation of the trivial
group it is AC-equivalent to the trivial presentation
〈x1, . . . , xn; x1, . . . xn〉.
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Trivial Example

〈a, b | ab, b〉 → 〈a, b | ab, b−1〉 → 〈a, b | a, b−1〉 → 〈a, b |
a, b〉
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AC-conjecture: short profile

AC-conjecture is open

AC-conjecture may well be false (prevalent opinion of experts?)
Series of potential counterexamples; smallest for which
simplification is unknown is AK-3:
〈x , y |xyxy−1x−1y−1, x3y−4〉
How to find simplifications, algorithmically?
If a simplification exists, it could be found by the exhaustive
search/total enumeration (iterative deepening)
The issue: simplifications could be very long (Bridson 2015;
Lishak 2015)
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Search of trivializations and elimination of counterexamples

Genetic search algorithms (Miasnikov 1999; Swan et al. 2012)
Breadth-First search (Havas-Ramsay, 2003; McCaul-Bowman,
2006)
Todd-Coxeter coset enumeration algorithm
(Havas-Ramsay,2001)
Generalized moves and strong equivalence relations
(Panteleev-Ushakov, 2016)
. . .

Our approach: apply generic automated reasoning instead of
specialized algorithms
Our Claim: generic automated reasoning is (very) competitive
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ACT rewriting system, dim =2

Equational theory of groups TG :
(x · y) · z = x · (y · z)

x · e = x

e · x = x

x · r(x) = e

For each n ≥ 2 we formulate a term rewriting system modulo TG ,
which captures AC-transformations of presentations of dimension n.
For an alphabet A = {a1, a2} a term rewriting system ACT2
consists the following rules:

R1L f (x , y)→ f (r(x), y))

R1R f (x , y)→ f (x , r(y))

R2L f (x , y)→ f (x · y , y)

R2R f (x , y)→ f (x , y · x)

R3Li f (x , y)→ f ((ai · x) · r(ai ), y) for ai ∈ A, i = 1, 2
R3Ri f (x , y)→ f (x , (ai · y) · r(ai )) for ai ∈ A, i = 1, 2
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AC-transformations as rewriting modulo group theory

The rewrite relation →ACT/G for ACT modulo theory TG :
t →ACT/G s iff there exist t ′ ∈ [t]G and s ′ ∈ [s]G such that
t ′ →ACT s ′.
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Reduced ACT2

Reduced term rewriting system rACT2 consists of the following
rules:

R1L f (x , y)→ f (r(x), y))

R2L f (x , y)→ f (x · y , y)

R2R f (x , y)→ f (x , y · x)

R3Li f (x , y)→ f ((ai · x) · r(ai ), y) for ai ∈ A, i = 1, 2

Proposition
Term rewriting systems ACT2 and rACT2 considered modulo TG

are equivalent, that is →∗ACT2/G
and →∗rACT2/G

coincide.

Proposition
For ground t1 and t2 we have t1 →∗ACT2/G

t2 ⇔ t2 →∗ACT2/G
t1,

that is →∗ACT2/G
is symmetric.
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Equational Translation

Denote by EACT2 an equational theory TG ∪ rACT= where rACT=

includes the following axioms (equality variants of the above
rewriting rules):

E-R1L f (x , y) = f (r(x), y))

E-R2L f (x , y) = f (x · y , y)

E-R2R f (x , y) = f (x , y · x)

E-R3Li f (x , y) = f ((ai · x) · r(ai ), y) for ai ∈ A, i = 1, 2

Proposition
For ground terms t1 and t2 t1 →∗ACT2/G

t2 iff EACT2 ` t1 = t2

A variant of the equational translation: replace the axioms
E− R3Li by “non-ground" axiom E− RLZ :
f (x , y) = f ((z · x) · r(z), y)
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Implicational Translation

Denote by IACT2 the first-order theory TG ∪ rACT→2 where rACT→2
includes the following axioms:

I-R1L R(f (x , y))→ R(f (r(x), y)))

I-R2L R(f (x , y))→ R(f (x · y , y))

I-R2R R(f (x , y))→ R(f (x , y · x))

I-R3Li R(f (x , y))→ R(f ((ai · x) · r(ai ), y)) for
ai ∈ A, i = 1, 2

Proposition
For ground terms t1 and t2 t1 →∗ACT2/G

t2 iff
IACT2 ` R(t1)→ R(t2)
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Higher Dimensions

An equational translation for n = 3 (“non-ground” variant):
f (x , y , z) = f (r(x), y , z) f (x , y , z) = f (x , r(y), z)
f (x , y , z) = f (x , y , r(z)) f (x , y , z) = f (x · y , y , z)
f (x , y , z) = f (x · z , y , z) f (x , y , z) = f (x , y · x , z)
f (x , y , z) = f (x , y · z , z) f (x , y , z) = f (x , y , z · x)
f (x , y , z) = f (x , y , z · y)
f (x , y , z) = f ((v · x) · r(v), y , z)
f (x , y , z) = f (x , (v · y) · r(v), z) f (x , y , z) =
f (x , y , (v · z) · r(v)).
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Automated Reasoning for AC conjecture exploration

For any pair of presentations p1 and p2,
to establish whether they are AC-equivalent one can formulate and
try to solve first-order theorem proving problems

EACTn ` tp1 = tp2 , or
IACTn ` R(tp1)→ R(tp2)

OR, theorem disproving problems

EACTn 6` tp1 = tp2 , or
IACTn 6` R(tp1)→ R(tp2)

Our proposal: apply automated reasoning: ATP and finite model
building.
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Theorem Proving for AC-Simplifications

Elimination of potential counterexamples

Known cases: We have applied automated theorem proving
using Prover9 prover to confirm that all cases eliminated as
potential counterexamples in all known literature can be
eliminated by our method too.
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Theorem Proving for AC-Simplifications (cont.)

New cases (from Edjvet-Swan, 2005-2010):

T14 〈a, b | ababABB, babaBAA〉
T28 〈a, b | aabbbbABBBB, bbaaaaBAAAA〉
T36 〈a, b | aababAABB, bbabaBBAA〉
T62 〈a, b | aaabbAbABBB, bbbaaBaBAAA〉
T74 〈a, b | aabaabAAABB, bbabbaBBBAA〉

T16 〈a, b, c | ABCacbb,BCAbacc,CABcbaa〉
T21 〈a, b, c | ABCabac,BCAbcba,CABcacb〉
T48 〈a, b, c | aacbcABCC , bbacaBCAA, ccbabCABB〉
T88 〈a, b, c | aacbAbCAB, bbacBcABC , ccbaCaBCA〉
T89 〈a, b, c | aacbcACAB, bbacBABC , ccbaCBCA〉

T96 〈a, b, c , d | adCADbc, baDBAcd , cbACBda, dcBDCab〉
T97 〈a, b, c, d | adCAbDc, baDBcAd , cbACdBa, dcBDaCb〉 [ICMS
2018]
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AC-trivialization for T16

〈ABCacbb,BCAbacc,CABcbaa〉
x ,y ,z→x ,y ,azA−−−−−−−−−→ 〈ABCacbb,BCAbacc , aCABcba〉
x ,y ,z→x ,y ,zx−−−−−−−−→ 〈ABCacbb,BCAbacc, aCABacbb〉
x ,y ,z→x ,y ,bzB−−−−−−−−−→ 〈ABCacbb,BCAbacc, baCABacb〉
x ,y ,z→x ,y ,zy−−−−−−−−→ 〈ABCacbb,BCAbacc , bac〉
x ,y ,z→x ,y ,czC−−−−−−−−−→ 〈ABCacbb,BCAbacc, cba〉
x ,y ,z→x ′,y ,z−−−−−−−−→ 〈BBCAcba,BCAbacc, cba〉
x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈BBCAcba,BCAbacc,ABC 〉
x ,y ,z→xz,y ,z−−−−−−−−→ 〈BBCA,BCAbacc ,ABC 〉
x ,y ,z→x ′,y ,z−−−−−−−−→ 〈acbb,BCAbacc,ABC 〉 x ,y ,z→x ,y ,z ′−−−−−−−−→
〈acbb,BCAbacc, cba〉
x ,y ,z→x ,y ,azA−−−−−−−−−→ 〈acbb,BCAbacc , acb〉 x ,y ,z→x ,y ,z ′−−−−−−−−→
〈acbb,BCAbacc,BCA〉
x ,y ,z→x ,y ,zx−−−−−−−−→ 〈acbb,BCAbacc , b〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈acbb,BCAbacc,B〉
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AC-trivialization for T16 (cont.)

x ,y ,z→x ,y ′,z−−−−−−−−→ 〈ac,CCABacb,B〉 x ,y ,z→x ,yz,z−−−−−−−−→ 〈ac,CCABac ,B〉
x ,y ,z→x ,y ′,z−−−−−−−−→ 〈ac,CAbacc,B〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈ac,CAbacc, b〉
x ,y ,z→x ′,y ,z−−−−−−−−→ 〈CA,CAbacc , b〉
x ,y ,z→x ,yx ,z−−−−−−−−→ 〈CA,CAbacA, b〉 x ,y ,z→x ,y ′,z−−−−−−−−→ 〈CA, aCABac, b〉
x ,y ,z→x ,yx ,z−−−−−−−−→ 〈CA, aCAB, b〉 x ,y ,z→x ,yz,z−−−−−−−−→ 〈CA, aCA, b〉
x ,y ,z→x ′,y ,z−−−−−−−−→ 〈ac, aCA, b〉 x ,y ,z→x ,yx ,z−−−−−−−−→ 〈ac, a, b〉
x ,y ,z→x ,y ′,z−−−−−−−−→ 〈ac ,A, b〉 x ,y ,z→x ,yx ,z−−−−−−−−→ 〈ac, c , b〉
x ,y ,z→x ,y ′,z−−−−−−−−→ 〈ac ,C , b〉 x ,y ,z→xy ,y ,z−−−−−−−−→ 〈a,C , b〉
x ,y ,z→x ,yz,z−−−−−−−−→ 〈a,Cb, b〉 x ,y ,z→x ,y ′,z−−−−−−−−→ 〈a,Bc, b〉
x ,y ,z→x ,y ,zy−−−−−−−−→ 〈a,Bc, c〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈a,Bc ,C 〉
x ,y ,z→x ,yz,z−−−−−−−−→ 〈a,B,C 〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈a,B, c〉
x ,y ,z→x ,y ′,z−−−−−−−−→ 〈a, b, c〉
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What about automated disproving?

Proposition

To simplify AK-3 (if at all it is possible) one really needs
conjugation with both generators a and b.

Mace4 finite model builder finds countermodels of sizes 12 and 6
for the cases where either of the conjugation rules is omitted.

Can we disprove AC-conjecture by building a finite countermodel
witnessing non-trivialization for one of the open cases (e.g. AK-3)?

No, unfortunately (Borovik et al, The Finitary Andrews-Curtis
Conjecture, 2005)
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Automorphic Moves

(Panteleev-Ushakov, 2016): add automorphisms of F2 to the set of
AC-moves

AT1 Replace r̄ by φ1(r̄), where φ1(. . .) is an
automorphism defined by a 7→ a and b 7→ b−1.

AT2 Replace r̄ by φ2(r̄), where φ2(. . .) is an
automorphism defined by a 7→ a and b 7→ b ∗ a.

AT3 Replace r̄ by φ3(r̄), where φ3(. . .) is an
automorphism defined by a 7→ b and b 7→ a.
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Automorphic Moves: known properties

Adding Automorprhic moves to AC does not increase the sets of
reachable presentations when:

applied to AC-trivializable presentations (easy to see);
applied to Akbulut-Kirby presentations AK (n), n ≥ 3 (not
known to be trivializable) (Panteleev-Ushakov, 2016)

The general case was left open in Op.cit.:

It is not known if adding these transformations to
AC-moves results in an equivalent system of
transformations or not . . .
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AR for automorphic moves

We answer the question negatively and show that adding any AT
move to AC transformations does indeed lead to a non-equivalent
system of transformations:

Theorem
A group presentation g = 〈a, b | aba, bba〉 is not AC -equivalent to
either of

g1 = 〈a, b | φ1(aba), φ1(bba)〉 ≡ 〈a, b | ab−1a, b−1b−1a〉
g2 = 〈a, b | φ2(aba), φ2(bba)〉 ≡ 〈a, b | abaa, babaa〉

A group presentation g ′ = 〈a, b | aaba, bba〉 is not AC -equivalent
to

g3 = 〈a, b | φ3(aaba), φ3(bba)〉 ≡ 〈a, b | bbab, aab〉
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Proof using AR

Apply equational translation and show that ẼACT2 6` tg = tgi
i = 1, 2 and ẼACT2 6` tg ′ = tg3 .
Mace4 has found the following countermodels
1) For
ẼACT2 6` f ((a ∗b)∗a, (b ∗b)∗a) = f ((a ∗ r(b))∗a, (r(b)∗ r(b))∗a):

interpretation( 3, [number = 1,seconds = 0], [
function(*(_,_), [

2,0,1,
0,1,2,
1,2,0]),

function(a, [0]),
function(b, [0]),
function(e, [1]),
function(r(_), [2,1,0]),
function(f(_,_), [

0,0,0,
0,1,0,
0,0,0])]).
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Proof using AR (cont.)

2) For ẼACT2 6` f ((a ∗ (b ∗ a)) ∗ a, ((b ∗ a) ∗ (b ∗ a)) ∗ a): the same
as above.
3) For ẼACT2 6` f ((a ∗ (a ∗ b)) ∗ a, (b ∗ b) ∗ a) =
f ((a ∗ (a ∗ b)) ∗ a, (b ∗ b) ∗ a) = f ((b ∗ (b ∗ a)) ∗ b, (a ∗ a) ∗ b):

interpretation( 5, [number = 1,seconds = 0], [
function(*(_,_), [

4,3,0,2,1,
3,0,1,4,2,
0,1,2,3,4,
2,4,3,1,0,
1,2,4,0,3]),

function(a, [0]),
function(b, [1]),
function(e, [2]),
function(r(_), [3,4,2,0,1]),

....
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PU algorithmic approach vs AR

(Panteleev-Ushakov, 2016):

Powerful algorithmic approach to AC-transformations based on
generalized moves and strong equivalence relations;
12 novel AC-trivializations for presentations:

(XyyxYYY,xxYYYXYxYXYY) (XyyxYYY,xxyyyXYYXyxY)
(XyyxYYY,xxYXyxyyyXY) (XyyxYYY,xxYXyXyyxyy)
...

All confirmed by our AR method!
16 presentations are shown to be AC-equivalent to F2
automorphic images:

(xxxyXXY,xyyyyXYYY) (xxxyXXY,xyyyXYYYY)
(xyyyXYY,xxxyyXXY) (xxxyXXY,xxyyyXYY)
...

Our AR method failed for all cases!
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Conclusion

Automated Proving and Disproving is an interesting and
powerful approach to AC-conjecture exploration;
Source of interesting challengeing problems for ATP/ATD;
Can ML help to guide the proofs?

Thank you!

Alexei Lisitsa Automated Reasoning for Experimental Mathematics Part III: AR for the Andrews-Curtis Conjecture



Conclusion

Automated Proving and Disproving is an interesting and
powerful approach to AC-conjecture exploration;
Source of interesting challengeing problems for ATP/ATD;
Can ML help to guide the proofs?

Thank you!

Alexei Lisitsa Automated Reasoning for Experimental Mathematics Part III: AR for the Andrews-Curtis Conjecture



Time to prove simplifications

T14 T28 T36 T62 T74 T16 T21 T48 T88 T89 T96 97
Dim 2 2 2 2 2 3 3 3 3 3 4 4

Equational 6.02s 6.50s 7.18s 24.34s 57.17s 12.87s 11.98s 34.63s 57.69s 17.50s 114.05s 115.10s
Implicational 1.57s 2.46s 1.34s 22.50s 6.29s 1.61s 1.45s 2.17s 1.97s 2.14s 102.34s 89.65s

Implicational GC t/o t/o t/o t/o t/o 3.76s 1.61s t/o 0.86s 0.75s t/o t/o

“t/o” stands for timeout in 200s; “GC” means encoding with ground
conjugation rules; all other encodings are with non-ground
conjugation rules.
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