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m Part I: Automated Reasoning for Knots (computational
topology)

m Part Il: Solution for the Erdos Discrepancy Problem,
C=2 (combinatorial number theory)

m Part lll: Exploration of the Andrews-Curtis Conjecture
(computational combinatorial group theory)
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Part Il is based on

(KL2014) Boris Konev, Alexei Lisitsa: A SAT Attack on the
Erd6s Discrepancy Conjecture. SAT 2014: 219-226

(KL2015) Boris Konev, Alexei Lisitsa: Computer-aided proof of
ErdGs discrepancy properties. Artif. Intell. 224:
103-118 (2015)
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Longer version

The Erdés discrepancy conjecture is interesting (even for C = 2).
EDP2 can be settled by reduction to SAT. ’

Discrepancy Theory
Erdds Discrepancy Conjecture
SAT attack on the EDP

Results and Perspectives
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Discrepancy theory

Discrepancy theory is a branch of mathematics dealing with
inevitable irregularities of distributions
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Combinatorial discrepancy

m Aset U
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Combinatorial number theory
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Combinatorial number theory
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Theorem (Roth, 1964)

For U,={1,2,...,n} and S, ={(a- i+ b)}

the discrepancy grows at least as 55n/%.
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Erdés Discrepancy Conjecture (EDP)
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What about homogeneous arithmetic
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Deoouos U,=11,2,...,n}
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Conjecture ( Erdés, circa 1930)

For any C > 0 in any infinite £1 sequence (x,) there exists a
subsequence X4, Xad, X3d, - - - s Xkd Such that | Zf-;l xi.d |> C.
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Known results on the discrepancy of +1 -1 sequences

m For random +1 sequences the discrepancy grows as nt/2+e(1)
(folklore?);
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Known results on the discrepancy of +1 -1 sequences

m For random +1 sequences the discrepancy grows as nt/2+e(1)
(folklore?);

m An explicit constructions of a sequence with slowly growing
discrepancy logs n [Borwein, Choi, Coons, 2010];

= EDP holds for C = 1. [Mathias,1994]
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Example: C =1

Conjecture ( Erdés, circa 1930)
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Example: C =1

Conjecture ( Erdés, circa 1930)

For any C > 0 in any infinite £1 sequence (x,) there exists a
subsequence Xd, Xad, X3d, - - - y Xkd Such that | Zf'(:l xi.d |> C.

1 2 3 4 5 6 7 8 9 10 11 12

But then x3+x6 + X9 + X120 = —-1+1—-1—-1= -2
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Polymath and the EDP

m A 2009-2010 topic of Polymath — ‘massively collaborative
maths' project started and coordinated by T. Gowers
m A computer attack
m Discrepancy 2 sequences of length 1124 (backtracking search)

“...given how long a finite sequence can be, it seems
unlikely that we could answer this question just by a
clever search of all possibilities on a computer. .. "
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Our contribution

m There are 1 sequences of length 1160 and discrepancy 2,

m There are no £1 sequences of length 1161 (or more) and
discrepancy 2.
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Automata encoding of discrepancy conditions

m If for every d : 1 < d < | 7] the automaton Ac does not
accept the subsequence x4, X2, - - - , Xkd, Where k = | 5| then
the discrepancy of the sequence x does not exceed C
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SAT representation

+1 +1 | +1 +1
V\_/ \_/
-1 1 -1 -1

m p; is true if <= j-th letter is +1.
(i,d)

m s/ is true <= Ac is in sj having read first (i — 1) letters.
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SAT representation

m p; is true if <= j-th letter is +1.
(i,d)

m s/ is true <= Ac is in sj having read first (i — 1) letters.
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Adequacy and correctness of encoding

Let
Re=d

G(n,c) = "B A /\ P(n,c,d) N frame, ¢y,
d=1

where frame(, c) is a Boolean formula encoding that the
automaton state is correctly defined.

Proposition

The formula ¢, c) is satisfiable if, and only if, there exists a £1
sequence X = xi,...,Xn of length n of discrepancy C.
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Adequacy and correctness of encoding

Let .
Kol
(o) ="BA |\ Fnca) A frameg,c),
d=1
where frame(, c) is a Boolean formula encoding that the
automaton state is correctly defined.

Proposition

The formula ¢, c) is satisfiable if, and only if, there exists a £1
sequence X = xi,...,Xn of length n of discrepancy C. Moreover, if
®(n,c) is satisfiable, the sequence X = x1,...,x, of discrepancy C
is uniquely identified by the assignment of truth values to
propositions pi, ... pn.
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Disclaimer

In fact we have used more “economical”’ encoding, where a state s;
of automaton is encoded not by a separate propositional variable
pi, but by the propositional variables encoding 7 in binary

Alexei Lisitsa



Experiments and Results

In our experiments we used
m the Lingeling SAT solver, the winner of the SAT-UNSAT
category of the SAT 13 competition, and
m the Glucose solver version, the winner of the certified UNSAT
category of the SAT'13 competition.

All experiments were conducted on PCs equipped with an Intel
Core i5-2500K CPU running at 3.30GHz and 16GB of RAM.
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Experiments and Results

m By iteratively increasing the length of the sequence, we
establish precisely that the maximal length of a £1 sequence
of discrepancy 2 is 1160.

m On our system it took Plingeling, the parallel version of the

Lingeling solver, about 800 seconds to generate a sequence of
discrepancy 2 and length 1160.
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Experiments and Results

m By iteratively increasing the length of the sequence, we
establish precisely that the maximal length of a £1 sequence
of discrepancy 2 is 1160.

m On our system it took Plingeling, the parallel version of the
Lingeling solver, about 800 seconds to generate a sequence of
discrepancy 2 and length 1160.

m On the other hand, when we increased the length of the
sequence to 1161, Plingeling reported unsatisfiability.

m We also used Glucose: It took the solver about 21 500 seconds
to compute a Delete Reverse Unit Propagation (DRUP)
certificate of unsatisfiability (~ 13Gb).

m The certificate has been independently verified by the
drup-trim tool
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Deep asymmetry

m It is easy to check, either by a simple program, or even by
hands that a 1160 sequence has discrepancy 2;
m It is computationally difficult to obtain a certificate of

unsatisfiability. It is even more difficult to come up with a
human comprehensible proof;

= 13GBI!

m Challenge: Give a human understandable proof of
non-existence of 1161 sequences of discrepancy 2.

Alexei Lisitsa



EDP3 ?

We have applied the same methodology to the case C=3.

Proposition
There exists a sequence of length =~ 14,000 of discrepancy 3.
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m Tuned search strategy
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Life after SAT: Journal submission, CoRR abs/1405.3097

Better SAT encodings

Tuned search strategy
850Mb RUP certificate for EDP2

Multiplicative and completely multiplicative sequences for
EDP3

Xm-n = Xm * Xn
Longest completely multiplicative EDP3 sequences contains
127 645 elements

m (independently reported by La Bras, Gomes and Selman,
CoRR abs/1407.2510)

Longest multiplicative EDP3 sequences also contains 127 645
elements!

m Notsofor C=1and C =2
New lower bound for EDP3 of 130 000
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Life after SAT, 2015

Terence Tao, September 2015
Proof of general case of EDP.

Conjecture ( Erdés, circa 1930)

For any C > 0 in any infinite £1 sequence (x,) there exists a
subsequence X4, Xad, X3d, - - - y Xkd Such that | Zf-‘zl xi.d |> C.
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Life after SAT, 2015

Terence Tao, September 2015
Proof of general case of EDP.

Conjecture ( Erdés, circa 1930)

For any C > 0 in any infinite £1 sequence (x,) there exists a
subsequence X4, Xad, X3d, - - - y Xkd Such that | Zf-‘zl xi.d |> C.

Not SAT solving or automated reasoning, but full power of Fields
prize laureate's mind!
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Conclusion

m Another example of the power of SAT
m Outperforms bespoke tools

Reignited the debate on what a mathematical proof is

Further development

Challenge: Give a human understandable proof of EDP2,
EDP3, ...

m EDP
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A sequence of length 1160 and discrepancy 2
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