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Unknot detection

Question: is this a trivial knot?

Answer: Yes, it is so called culprit unknot
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Culprit undone

Figure: by L. H. Kauffman and S. Lambropoulou
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Haken’s Gordian undone

Don’t even think to try it here!
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Unknot detection

Question: is this a trivial knot?

Answer: NO, it is so called Treifoil Knot
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Unknot detection problem, I

Given: A knot, which is a closed loop without
self-intersection embedded in 3-dimensional
Euclidean space R3,
Question: Is it possible to deform R3 continuously
such that the knot is transformed into a trivial
unknotted circle without passing through itself?
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Unknot detection problem, II

Given: A projection of the knot on the plane,
Question: Is it possible to deform R3 continuously
such that the knot is transformed into a trivial
unknotted circle without passing through itself?
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Unknot detection problem, III

Given: A discrete code of the knot diagram,
Question: Is it possible to deform R3 continuously
such that the knot is transformed into a trivial
unknotted circle without passing through itself?
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Unknot detection problem, III

Given: A discrete code1 of the knot diagram,
Question: Is it possible to deform R3 continuously
such that the knot is transformed into a trivial
unknotted circle without passing through itself?

1such as Gauss Code
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Unknot detection: short profile

It is decidable W. Haken (1961)

It is in coNP J. Hass,J.C. Lagarias, N.
Pippenger (1999)

It is in NP G. Kuperberg (2011) (modulo GRH)

Main open question: Is it in PTIME?

We are not aiming to resolve this question (as
yet);

We are rather looking for practically efficient
procedures.
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Some algorithms for unknot detection

An early algorithm, presented by W. Haken (1961) was
deemed to be impractical due to being too complex to
attempt to implement it;

The algorithms based on monotone simplifications (I.
Dynnikov et al, circa 2000) provide practically fast recognition
of unknots but do not necessarily yield a decision procedure.

The algorithms based on normal surface theory, implemented
in Regina system (Burton at al, 2012) provide efficient
recognition of non-trivial knots:

every non-trivial knot with crossing number ≤ 12 is recognized
as such in under 5 minutes.
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Efficiency problems

There still are efficiency problems with the existing algorithms:

they in the worst case are exponential, and it appears that

establishing that a particular diagram with a few hundred (or
even dozens of) crossings represents a non-trivial knot may
well be out of reach of the available procedures;

Thus the exploration of alternative procedures for unknot
detection is an interesting and well-justified task.
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Our approach

The unknotedness property can be faithfully characterized by
the properties of algebraic invariants associated with knot
projections;

We attempt to establish the properties of concrete invariants
by using methods and procedures developed in the automated
reasoning area;

A key observation: the task of unknot detection can be
reduced to the task of (dis)proving a first-order formulae, and
for this there are efficient generic automated procedures
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Involutory quandle

Let Q be a set equipped with a binary operation . (product) such
that the following hold:

Q1 x . x = x for all x ∈ Q.

Q2 (x . y) . y = x for all x , y ∈ Q.

Q3 For all x , y , z ∈ Q, we have
(x . y) . z = (x . z) . (y . z).

Then Q is called a involutory quandle

The three equalities Q1,Q2 and Q3 form an equational
theory of involutory quandles, which we denote by Eiq.
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Involutory quandle of knot diagram

Figure: (a) Left: A labelled crossing and its corresponding relation
a . b = c ; here a and c are the labels of the underarcs at this crossing,
whilst b is the label of the overarc, and we often identify the arcs with
their labels to simplify language in discussions.

(b) Right: The trefoil knot diagram, with solid arcs a,b,c .
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Involutory quandle of knot diagram (cont.)

Let Dtr be the diagram of the trefoil knot K shown below

.
The involutory quandle of Dtr is defined by the presentation
IQ(Dtr ) = 〈a, b, c | a . b = c , b . c = a, c . a = b〉
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Why IQ is good?

The importance of involutory quandles, in the context of unknot
detection, relies on the following properties (Joyce1982),( Winker
1984):

Involutory quandle is a knot invariant, i.e. it does not depend
on the choice of diagram;

Involutory quandle IQ(K ) of a knot K is trivial (i.e. it
contains a single element e with e ∗ e = e) if and only if K is
the unknot.
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IQ as unknot detector

These properties suggest the following approach to unknot
detection.

Given a knot diagram,

one can try to decide whether its
associated involutory quandle is trivial.

Non-trivial task: an involutory quandle of a knot can be an
infinite (Winker 1984).

Not much progress has been made towards the development
of specific decision procedures for such a problem, apart of
that presented in the thesis of S. Winker;

The diagrammatic method presented there, together with
details and explanations, allows one to construct the
involutory quandles for many knot diagrams,.
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IQ as unknot detector via automated reasoning

In (Fish, Lisitsa 2014), we take an alternative route and propose to
tackle unknot detection as follows:

Given a knot diagram, compute its involutary quandle
presentation;

Convert the task of involutary quandle triviality detection into
the task of proving a first-order equational formula;

Concurrently, apply generic automated reasoning tools for
first-order equational logic to tackle the (dis)proving task
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Unknot detection by equational reasoning

Given a knot diagram D, with n arcs, consider its involutory
quandle representation IQ(D) = 〈GD | RD〉 with
GD = {a1, . . . , an}

Denote by Eiq(D) an equational theory of IQ(D), i.e.
Eiq(D) = Eiq ∪ RD .

Proposition

A knot diagram D is a diagram of the unknot if and only if
Eiq(D) ` ∧i=1...n−1(ai = ai+1), where ` denotes derivability in the
equational logic (or, equivalently in the first-order logic with
equality).
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Unknot detection by equational reasoning (cont.)

So, the unknot detection procedure P which we propose here
consists of the parallel composition of

automated proving Eiq(D)→ ∧i=1...n−1(ai = ai+1), and

automated disproving Eiq(D)→ ∧i=1...n−1(ai = ai+1) by a
finite model finder.

It is obvious that the parallel composition above provides with at
least a semi-decision algorithm for unknotedeness.

Is it decision procedure?
We don’t know . . . It would be if the following conjecture holds
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Finite residuality conjecture

Conjecture (Involutory quandles are finitely residual)

For any knot diagram D, if IQ(D) is not trivial (i.e. consists of
more than 1 element), then there is a finite non-trivial involutory
quandle Q which is a homomorphic image of IQ(D).
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Example, I

Figure: Culprit
Unknot

Assumptions:

%Involutory quandle axioms

x * x = x.

(x * y) * y = x.

(x * z) * (y * z) = (x * y) * z.

%Culprit unknot

a1 = a9 * a7.

a3 = a1 * a2.

a2 = a3 * a4.

a5 = a2 * a10.

a6 = a5 * a4.

a7 = a6 * a1.

a8 = a7 * a4.

a10 = a8 * a9.

a4 = a10 * a3.

a9 = a4 * a8.

Goals:

(a1 = a2) & (a2 = a3) &

(a3 = a4) & (a4 = a5) &

(a5 = a6) & (a6 = a7) &

(a7 = a8) & (a8 = a9) &

(a9 = a10).
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Example, II: Haken’s unknot

(See demonstration)
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Some comparisons on unknot certification

The only alternative approach capable of detecting
unknotedness of Haken’s Gordian Unknot in practice, that we
are aware of, is Dynnikov’s algorithm based on monotone
simplifications (under a second);

We have experimented also with the detection of other
well-known hard unknots, such as

Goerlitz unknot,
Thistlethwaite unknot,
Friedman’s Twisted unknot, etc;

All detected in a less than a second

The largest tried unknot we can detect had 339 crossings
(Dynnikov’s example, in 40s)

The smallest tried unknot we can not detect had 407
crosssings (Dynnikov’ example, ≥ 40000s)
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Example, III: Trefoil knot a)

The countermodel found by Mace4 is:

interpretation( 3, [number=1, seconds=0], [

function(a1, [ 0 ]),

function(a2, [ 1 ]),

function(a3, [ 2 ]),

function(*(_,_), [

0, 2, 1,

2, 1, 0,

1, 0, 2 ])

]).
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Detecting non-trivial knots

We have experimented with the detection of all prime knots
up to 10 crossings using Mace4 model finder;

The data presented in a table (separate document) include
the standard code of the knot, size of minimal countermodel
found and time taken;

For the five special cases 1083, 1091, 1092, 10117, 10119 our
approach did not terminate in a reasonable time (≥ 20000s);
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Comparison with Regina tool algorithm

Regina tool algorithm (Burton et al 2012) is the most efficient
algorithm for non-triviality of knots certification (all knots up
to 12 crossings can be certified in under 5min each, up to 10
crossings in under 3min each);

How do we fare against Regina (up to 10 crossings)?

Average time Regina: 47s
Average time Mace4: 1230s (ignoring 5 failed cases);

but

In general our approach demonstrates much higher
discrepancy in timing data:

For countermodels sizes up to 15-17 the detection time is
under a second – that holds in more than 70% of instances,
where our approach outperforms Regina’s algorithm;
In a few cases with large countermodels (e.g 1088, 1094, 10115)
it takes 40000-80000s to complete the search.
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Let us try to do some exercises

See provided files with the encoding of some non-trivial knots.
Also have a look at https://www.indiana.edu/ knotinfo/
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Further developments

Assymetric approach: prove for involutory quandles, disprove
for quandles (disproving using quandles is much faster than
using inv. quandles)

Quandle coloring, constraint satisfaction and SAT-solving
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Quandles

Definition

A set Q equipped with a binary operation . is called a quandle if
the following conditions hold:

Q1 x . x = x for all x ∈ Q.

Q2 For all x , y ∈ Q, there is a unique z ∈ Q such that
x = z . y .

Q2’ (x . y) . y = x for all x , y ∈ Q.

Q3 For all x , y , z ∈ Q, we have
(x . y) . z = (x . z) . (y . z).

Then Q is called a quandle if Q satisfies Q1,Q2 and Q3, and an
involutory quandle if Q satisfies Q1,Q2′ and Q3.
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Knot coloring by quandles

Let D be a knot diagram and Q a quandle. A coloring is a
mapping c assigning to every arc a color from Q in a way that
for every crossing with arcs labeled α, β, γ as below,
c(γ) = c(β) . c(α) holds.

Let colQ(D) denote the number of non-trivial (more than one
color) colorings of D by Q, then colQ(D) is knot invariant
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Main theorem

Theorem

The following are equivalent for a knot K :

(*) K is knotted (i.e., not equivalent to the unknot).

(U1) Q(K ) is non-trivial.

(U2) IQ(K ) is non-trivial.

(K1) There is a finite quandle Q such that colQ(K ) > 0.

(K2) There is a finite simple quandle Q such that colQ(K ) > 0.

(K3) There is a conjugation quandle Q over the group SL(2, p), for
some prime p, such that colQ(K ) > 0.

By combination Joyce 1982, Matveev 1984, Winker 1984,
Clark, Satio and Vendramin, 2014 , Kuperberg 2014
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Semi-algorithm for knot detection

Given a knot K and some (pre-computed) family of quandles
Q. Iterate over Q and check whether K is colorable by some
quandle from Q.

The check can be reduced to a task which can be handled by
automated reasoning methods: constraint satisfacton, or
SAT-solving

We have experimented with various variants, including serial
and parallel constraint solving, Prolog search mechanisms,
SAT-solving, etc

SAT solving is an absolute winner!
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Computational Problems

Given a quandle Q, and a knot diagram D, one formulates the
following problems:

Q-colorability. Is Q(D) > 0, i.e., is there a non-trivial Q-coloring of
D?

Q-coloring number. Compute Q(D), the number of non-trivial
Q-colorings of D.
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SAT vs #SAT problems

SAT: Given a propositional formula, is there a satisfying
assignment?

#SAT: Given a propositional formula, find a number of
satisfying assignments.

For both problems there are efficient solvers.
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Quandle colorability via SAT (FLS2015)

Fix a quandle Q = ({1, . . . , q}, .) and a knot diagram D with
|D| = n, with arcs numbered α1, . . . , αn.
We consider boolean variables vi ,c that determine whether the arc
αi has the color c .
We need to satisfy the following constraints:

Every arc has a unique color: the obvious description uses the
clauses

vi ,1 ∨ . . . ∨ vi ,q and ¬vi ,c ∨ ¬vi ,d
for every i = 1, . . . , n and c = 1, . . . , q, d = c + 1, . . . , q.

Not all arcs have the same color: the obvious description uses,
for every c = 1, . . . , q, the clause

¬v1,c ∨ . . . ∨ ¬vn,c .

For every crossing we use formulas of the form

(vi ,c ∧ vj ,d)→ vk,d.c .
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Experimental Setup

For our experiments, the following families of quandles and knots
were used:

SQ. all 354 simple quandles of size ≤ 47, indexed in accordance to
size.

CQ. 26 quandles (each of size ≤ 182).

Q1-Q3. small sets of quandles used for knot recognition (with #-SAT).

K10-K13 all 249, 801, 2977 and 12965 prime knots (up to reverse and
mirror image) with crossing numbers not exceeding 10,11,12
and 13 respectively.

T3. (3, n)-torus knots with n = 6k + 2.

R. 52 randomly generated large knots

A13. all 34659 alternating minimal projections of prime knots with
crossing numbers not exceeding 13.
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Experimental Setup (cont.)

Software

MiniSat 2.2.0

#-SAT 12.08

Perl/Prolog scripts

Debian Linux VM, hosted on Windows 7 system
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SAT solving for fast knot detection

Given a PD code of a knot, a procedure

iterates over all quandles from SQ,
converts quandle colorability task into SAT instance,
check satsifiability with MiniSat,
proceeds until the first satsifiable case is found.

When a satsifiable case is found, this is a solution to the
Q-colorability problem, giving witness to the non-triviality of
the knot.
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SAT solving for fast knot detection
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Figure: Cumulative
frequency of running times
(s) for the K12 family.
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frequency of running times
(s) for the A13 family.

K12 family, SAT solving: the detection time for each case is
in the interval 0.013–3.31s
K12 family, Regina’s algorithm B. Burton & M. Özlen,(2012):
the detection time for each case is in under 5 minutes.
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Visual Proofs based on tangles

Tangles are essentially knots but with free ends possible

a1

a2

a3

a6

a7

a8
a9

a10

Figure: A tangle (disconnected Culprit)
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Visual Proofs based on tangles (cont.)

Theorem (FLV18)

A knot diagram D (with unique labels) represents the unknot if
and only if for each pair of its labels a, b a labeled tangle diagram
T which has exactly 2 free-end arcs labelled a and b, can be build
from the elementary tangles (corresponding to the original
crossings) using the tangle building rules.
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Tangle building rules (FLV18)

1 Given a labelled tangle diagram which has, amongst its end
arcs, two adjacent end arcs labelled with the same letter,
connect these two arcs.
a a

a

2 Given two labelled tangle diagrams T and U such that both
T and U have an end arc labelled with the same letter,
connect these two arcs.

a
a a
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Theorem Proving for Tangle Building

Now the tangle building procedure can be delegated again to the
automated theorem proving procedure, giving yet another way for
proving unknotedness.

Try practical example culprit-tangle
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Conclusion

Unknot detection via theorem (dis)proving is viable and
interesting;

There is a variety ways in which this can be done;

Knot detection via SAT solving is practically fastest known
procedure;

Further analysis, both empirical and theoretical is required;

Applications to biology: detection of knotted fragments of
DNA and proteins

Thank you for you attention!
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