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Preamble: Fibonacci Words

Fibonacci words:

wo = b

w1 = a

wi+2 = wi+1wi

b, a, ab, aba, abaab, abaababa, abaababaabaab . . .

Observation: none of the words contains bb or aaa as the
subword

Question: How to prove it?

Answer: Let’s apply FO logic . . .
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Logic encoding

FO theory FIB:

(x ∗ y) ∗ z = x ∗ (y ∗ z)

R(b, a)

R(x , y)→ R(y , x ∗ y)

Proposition

If w is a Fibonacci word then FIB ` ∃xR(tw , x)

Here tw denote a term encoding of w , i.e. taba = (a ∗ b) ∗ a

Corollary

If FIB 6` ∃x∃z∃yR(z ∗ b ∗ b ∗ y , x) then there is no Fibonacci word
with bb as a subword
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Finite countermodel

Now to show FIB 6` ∃x∃z∃yR(z ∗ b ∗ b ∗ y , x) we are looking for

Finite countermodels for FIB → ∃x∃z∃yR(z ∗ b ∗ b ∗ y , x), or
equivalently, for

Finite models for FIB ∧ ¬∃x∃z∃yR(z ∗ b ∗ b ∗ y , x)

To find a model we apply generic finite model finding procedure,
e.g. impemented in Mace4 finite model finder by W.McCune
(see demonstration)
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(see demonstration)

A model of size 5 is found in 0.05s. The property is proved!

To show that ′aaa′ is not a subword of any Fib. word a model
of size 11 can be found in ≈ 43s (2019)
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From Fibonacci words to Safety Verification

In this lecture:
The same idea/approach can be applied to (surprisingly) large
classes of infinite state and parameterized safety verification
problems. Furthermore it is competitive with many alternative
approaches.
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Preamble II: MIU system and MU puzzle

MIU system

Alphabet: M, I and U
Axiom: MI
Derivation rules:

I. If xI is a theorem, so is xIU.

II. If Mx is theorem, so is Mxx .

III. In any theorem III can be replaced by U.

IV. UU can be dropped from any theorem.

MU puzzle

Is MU a theorem of MIU system?

Douglas Hofstadter, Goedel, Escher, Bach: An eternal Golden
Braid, 1979
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MU puzzle

Answer: Negative, that is MU 6∈ LMIU

Condition, I (GEB,79): “the number of I symbols in any
string in LMIU cannot be multiple of three”

Condition, 2 (Swanson, McEliece, 1988): ”any MIU
theorem should start with M followed by an arbitrary word in
I ’s and U’s”
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MU puzzle (cont.)

Question: How to solve it automatically?

Answer: Let’s apply classical FO logic . . .

Fully automated solution of the puzzle
Puzzle is considered as infinite state safety verification problem
Generic Finite Countermodels Method (FCM) is used
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MU puzzle (cont.)

Question: How to solve it automatically?
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Fully automated solution of the puzzle
Puzzle is considered as infinite state safety verification problem
Generic Finite Countermodels Method (FCM) is used
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Back to MU puzzle: Logic encoding

FO theory MIU:

1 (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity of concatenation);

2 e ∗ x = x ;

3 x ∗ e = x ;

4 T (M ∗ I ) (MI is a theorem of MIU);

5 T (x ∗ I )→ T (x ∗ I ∗ U) (rule I of MIU);

6 T (M ∗ x)→ T (M ∗ x ∗ x) (rule II of MIU);

7 T (x ∗ I ∗ I ∗ I ∗ y)→ T (x ∗ U ∗ y) (rule III of MIU)

8 T (x ∗ U ∗ U ∗ y)→ T (x ∗ y) (rule IV of MIU)
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Back to MU puzzle: Logic encoding (cont.)

Proposition

If w ∈ LMIU then MIU ` T (tw )

Corollary

If T (tS) is not FO provable from TMIU , that is
TMIU 6`FO T (tS) then S 6∈ LMIU ;

For any non-ground term t(x̄) in vocabulary {∗,M, I ,U} over
the set of variables X , if TMIU 6`FO ∃x̄T (t(x̄)) then none of S
such that tS is a ground instance of t(x̄) belongs to LMIU .
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Finite countermodels

Now to show MIU 6` T (M ∗ U) we are looking for

Finite countermodels for MIU → T (M ∗ U), or equivalently,
for

Finite models for MIU ∧ ¬T (M ∗ U)

To find a model we apply generic finite model finding procedure,
e.g. impemented in Mace4 finite model finder by W.McCune
(see demonstration)

A model of size 3 is found in less than 0.01s. The property is
proven!
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CounterModel as Invariant

The domain D of the model is a three element set {0, 1, 2}.
Interpretations of constants: [I ] = [M] = 0, [U] = 1.
Interpretation of the predicate T: [T ] = {1, 2}.
The interpretation of the binary function ∗ is given by the following
table

0 1 2

0 2 0 1

1 0 1 2

2 1 2 0

Invariant property which holds for any MIU theorem w :

[tw ] ∈ [T ] = {1, 2}

Notice that [tMU ] = 0 ∗ 1 = 0 6∈ [T ]
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CounterModel as Invariant (cont.)

In summary

The interpretation [∗] above defines the set of strings
LM = {s | [ts ]M ∈ {1, 2}} for which

LMIU ⊆ LM
MU 6∈ LM

Thus, LM is an invariant separating the theorems of MIU
system and the string in question, MU

It is easy to see also that the invariant is a regular language

Interestingly, LM 6= LMIU as, for example, [M ∗M] = 2 ∈ [T ]
hence MM ∈ LM but MM 6∈ LMIU .
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MM 6∈ LMIU

Let us search for countermodels for MIU → T (M ∗M).
Mace4 finds a countermodel M′ of size 2, with the domain {0, 1},
the interpretations of constants M, I and U as 1, 0 and 0,
respectively; the interpretation [T ] of T = {1}. the interpretation
of * is given by the table

[*] 0 1

----

0 |0,1

1 |1,0

The corresponding invariant {s | [ts ]M′ = 1} captures the
“oddness” of M count in strings, which is sufficient to separate
MM from LMIU .
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Subsets of configurations in FCM proofs

�
�
�
�

'

&

$

%
'
&

$
%

'

&

$

%

Init

Reach

Inv

Bad

Figure: Subsets of configurations in general position
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MU puzzle via formal verificaltion

MU puzzle was considered as an example in
E. M. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouakine,
Abtsraction and Counterexample-Guided Refinement in Mpdel
Checking of Hybrid System, 2002

It has been formally verified that MU is not a theorem of
MIU, but the proof was not fully automated and required “a
good deal of insight’

Our FCM based verification was fully automated and did not
require any insight!

Alexei Lisitsa Finite Countermodel Finding for Infinite State and Parametrized Verification



MU puzzle via formal verificaltion

MU puzzle was considered as an example in
E. M. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouakine,
Abtsraction and Counterexample-Guided Refinement in Mpdel
Checking of Hybrid System, 2002

It has been formally verified that MU is not a theorem of
MIU, but the proof was not fully automated and required “a
good deal of insight’

Our FCM based verification was fully automated and did not
require any insight!

Alexei Lisitsa Finite Countermodel Finding for Infinite State and Parametrized Verification



Reachability as deducibility

Many problems in verification can be naturally formulated in
terms of reachability within transition systems;

We propose to use deducibility (or derivability) in first-order
predicate logic to model reachability in transition systems of
interest;

Then verification can be treated as theorem (dis)proving in
classical predicate logic;

Many automated tools (provers and model finders) are readily
available.
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Reachability as deducibility

Let S = 〈S ,→〉 be a transition system with the set of states
S and transition relation →
Let e : s 7→ ϕs be encoding of states of S by formulae of
first-order predicate logic, such that

the state s ′ is reachable from s, i.e. s →∗ s ′ if and only if ϕs′ is
the logical consequence of ϕs , that is ϕs |= ϕs′ and ϕs ` ϕs′ .

Under such assumptions:

Establishing reachability ≡ theorem proving
Establishing non-reachability ≡ theorem disproving
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Verification of safety

Safety ≡ non-reachability of “bad” states

Verification of safety properties ≡ theorem disproving

To disprove ϕ |= ψ it is sufficient to a find a countermodel for
ϕ→ ψ, or which is the same a model for ϕ ∧ ¬ψ
In general, such a model can be inevitably infinite and the set
of satisfiable first-order formulae is not r.e.

One can not hope for full automation here

Our proposal: use automated finite model finders/builders
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Remarks

For the verification of safety the weaker assumption on the
encoding is sufficient:

s →∗ s ′ ⇒ ϕs ` ϕs′

For the verification of parameterized systems general idea of
reachability as deducibility should be suitably adjusted

depends on particular classes of systems
unary or binary predicates modeling reachabiity can be used
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Origins

The idea of using finite model finders for verification is not
new (thanks to anonymous referees of FMCAD 2010
conference!)

It was proposed and developed in the area of verification of
security protocols in the following papers (at least):

C. Weidenbach Towards an Automatic Analysis of Security
Protocols in First-Order Logic, in H. Ganzinger (Ed.):
CADE-16, LNAI 1632, pp. 314–328, 1999.
Selinger, P.: Models for an adversary-centric protocol logic.
Electr. Notes Theor. Comput. Sci. 55(1) (2001);
Goubault-Larrecq, J.: Towards producing formally checkable
security proofs, automatically. In: Computer Security
Foundations (CSF), pp. 224238 (2008)
Jan Jurjens and Tjark Weber, Finite Models in FOL-Based
Crypto-Protocol Verification. Foundations and Applications of
Security Analysis, LNCS 5511, 2009.
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Further developements

AL (2009-. . .)

Countermodel finding based verification methods are
practically efficient for the verification of various classes of
infinite state and parameterized systems:

lossy channel systems
cache coherence protocols
parameterized linear arrays of finite state automata
etc.

Completeness (for lossy channel systems verification)

Relative completeness wrt to regular model checking (RMC);
regular tree model checking (RTMC); tree automata
completion techniques

Generic MACE4 finite model finder by W.McCune has been
successfully used to verify above systems
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Case Study I: Parameterized mutual exclusion protocol

Taken from the paper Parosh Aziz Abdulla, Giorgio Delzanno,
Noomene Ben Henda, Ahmed Rezine. Monotonic Abstraction:
on Efficient Verification of Parameterized Systems. Int. J.
Found. Comput. Sci. 20(5): 779-801 (2009)

Operates on the parameterized linear array of finite state
automata
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Protocol specification

The protocol is specified as a parameterized system ME = (Q,T ),
where Q = {green, black, blue, red} is the set of local states of
finite automata, and T consists of the following transitions:

∀LR{green, black} : green→ black

black → blue

∃L{black, blue, red} : blue → blue

∀L{green} : blue → red

red → black

black → green

The correctness condition: if the protocol starts with all states
being green it will never get to a state where there are two or more
automata in the red state
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Translation to the first-order logic,I

(x ∗ y) ∗ z = x ∗ (y ∗ z)

e ∗ x = x ∗ e = x

(∗ is a monoid operation and e is a unit of a monoid)

G (e)

G (x)→ G (x ∗ green)

(specification of configurations with all green states)

GB(e)

GB(x)→ GB(x ∗ green)

GB(x)→ GB(x ∗ black)

(specification of configurations with all states being green or

black)
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Translation to the first-order logic,II

G (x)→ R(x)

(initial states assumption: “allgreen” configurations are

reachable)

(R((x ∗ green) ∗ y) & GB(x) & GB(y))→ R((x ∗ black) ∗ y)

R((x ∗ black) ∗ y)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & (x = (z ∗ black) ∗ w)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & (x = (z ∗ blue) ∗ w)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & (x = (z ∗ red) ∗ w)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & G (x)→ R((x ∗ red) ∗ y)

R((x ∗ red) ∗ y)→ R((x ∗ black) ∗ y)

R((x ∗ black) ∗ y)→ R((x ∗ green) ∗ y)

(specification of reachability by one step transitions from T ;

one formula per transition, except the case with existential

condition, where three formulae are used)
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Adequacy of encoding and Verification

If a configuration c̄ is reachable in ME then ΦP ` R(tc̄)

To establish safety property of the protocol (mutual exclusion)
it does suffice to show that
ΦP 6` ∃x∃y∃zR((((x ∗ red) ∗ y) ∗ red) ∗ z).

Delegate the latter task to the finite model finder MACE4
(see demonstration)
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If a configuration c̄ is reachable in ME then ΦP ` R(tc̄)

To establish safety property of the protocol (mutual exclusion)
it does suffice to show that
ΦP 6` ∃x∃y∃zR((((x ∗ red) ∗ y) ∗ red) ∗ z).

Delegate the latter task to the finite model finder MACE4
(see demonstration)

It takes approx. 0.01s to find a countermodel and verify the
safety property!
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Countermodel as Invariant

Take a configuration c̄ of the protocol, consider its term
representation tc̄

The following property is an invariant of the system:

[tc̄ ] ∈ [R]

Here [. . .] denote the interpretation in the (counter)model.

Alexei Lisitsa Finite Countermodel Finding for Infinite State and Parametrized Verification



Model and Invariant

The domain D of the model is a four element set {0, 1, 2, 3}.
Interpretations of constants: [black] = [blue] = 0, [e] = [green] =
1, [red ] = 2. Interpretations of unary predicates: [G ] = {1}; [GB]
= {0, 1}; [R] = {0, 1, 2}.
The interpretation of the binary function ∗ is given by the following
table

0 1 2 3

0 0 0 2 3

1 0 1 2 3

2 2 2 3 3

3 3 3 3 3

Invariant property which holds for any reachable configuration c̄ :

[tc̄ ] ∈ [R] = {0, 1, 2}
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Relative completeness

Theorem (2010)

If the safety of parameterized linear system of automata can be
demonstrated by monotonic abstraction method then it can be
demonstrated by FCM too.
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Safety for parameterized linear systems

Problem

Given: A parameterized system P = (Q,T ), a set In ⊆ C of
initial configurations, a set B ⊆ C of bad
configurations.

Question: Are there any configurations c ∈ In and c ′ ∈ B such
that c ′ is reachable from c in P, i.e. for which
c →∗P c ′ holds?

A negative answer for the above question means the safety
property (“not B”) holds for the parameterized system.
Further assumptions:

I = q∗o for qo ∈ Q

The set B of bad configurations is defined by a finite set of
words F ⊆ Q∗: B = {c̄ | ∃w̄ ∈ F ∧ w̄ � c̄}, where w̄ � w̄ ′

denotes that w̄ is a (not necessarily contiguous) subword of w̄ ′
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Monotonic abstraction

Abdulla et al 2009
Given a parameterized system P = (Q,T ) and the corresponding
transition relation →P on the configurations within P.
The monotonic abstraction →A

P of →P is as follows. For two
configurations c̄ and c̄ ′ c̄ →A

P c̄ ′ holds iff either

c̄ →P c̄ ′ holds, or

there is a transition t = ∀LJq → q′ in T , c̄ = c̄l q c̄r and
c̄ ′ = reductJ(c̄l) q′ c̄r

there is a transition t = ∀RJq → q′ in T , c̄ = c̄l q c̄r and
c̄ ′ = c̄l q′ reductJ(c̄r )

there is a transition t = ∀LRJq → q′ in T , c̄ = c̄l q c̄r and
c̄ ′ = reductJ(c̄l) q′ reductJ(c̄r )
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Verification via monotonic abstraction

Symbolic backward reachability algorithm Abdulla et al 2009

U0 = B

Ui+1 = Ui ∪ Pre(Ui )

where Pre(X ) = {c̄ | ∃c̄ ′ ∈ X ∧ c̄ →A
P c̄ ′}.

This iterative process is guaranteed to stabilize, i.e Un+1 = Un

for some finite n.

Once the process stabilized the resulting U consists of all
configurations from which some bad configuration can be
reached via →A

P .

Then the check is performed on whether Init ∩ U = ∅. If this
condition is satisfied then the safety is established, for no bad
configuration can be reached from initial configurations via
→A
P and, a fortiori, via →P .
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Important properties of the fixed-point U

If the safety holds then Ū (complement of U) is an invariant
of the system sufficient to prove the safety. Indeed, it
subsumes Init and is closed under reachability.

U has a finite set of generators and therefore is a regular set.
It follows that Ū is a regular set too.
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Regular Invariants

Theorem (on regular invariants)

Given a parameterized system P = (Q,T ) and the set of bad
configurations B = {c̄ | ∃w̄ ∈ F ∧ w̄ � c̄}. Then the following
two conditions are equivalent:
(1)There exists a regular set of configurations Inv such that

Reach ⊆ Inv where Reach = {y | ∃x(x ∈ Init ∧ x →∗P y)}
Inv is closed under reachability, that is
x ∈ Inv ∧ x →P y ⇒ y ∈ Inv

Inv ∩ B = ∅
and
(2) There exists a finite model for ΦP ∧ ¬ΨF

Proof.

Uses an algebraic characterization of regular languages in terms of
inverse homomorphic images of subsets of finite monoids
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Regular Invariants and Relative Completeness

If the safety for P holds and can be shown by the monotonic
abstraction method, then

There exists a regular invariant, which implies

An existence of a finite countermodel for FO encoding of the
problem, which means

Safety can be established by FCM (finite countermodel
method) if a complete finite model building procedure is used
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Subsets of configurations
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Figure: Subsets of configurations in general position
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FCM is stronger than monotonic abstraction

The parameterized system (Q,T ) where Q = {q0, q1, q2, q3, q4}
and where T includes the following transition rules

1 ∀LR{q0, q1, q4} : q0 → q1

2 q1 → q2

3 ∀L{q0} : q2 → q3

4 q3 → q0

5 ∃LR{q2} : q3 → q4

6 q4 → q0

satisfies mutual exclusion for state q4, but this fact can not be
established by the monotonic abstraction method.
Using FCM we have verified mutual exclusion for this system,
demonstrating that FCM method is stronger than monotone
abstraction. Mace4 has found a finite countermodel of the size 6
in 341s.
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Further relative completeness results

Theorem (2010)

If the safety of a linear parameterized system can be demonstrated
by regular model checking method then it can be demonstrated by
FCM too.

Theorem (2011)

If the safety of a tree-shape parameterized system can be
demonstrated by regular tree model checking method then it can
be demonstrated by FCM too.

Theorem (2011, RTA 2012)

If the safety of a term rewriting system can be demonstrated by
tree automata completion technique then it can be demonstrated
by FCM too.
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Why does it work?

In all cases the proofs of relative completeness results rely upon
existence of regular invariants, that is regular sets (of words or
trees) subsuming all reachable states and disjoint with all unsafe
states.
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Case Study II

Automated verification via finite countermodel finding can be
applied to the various parameterized systems

Parameterized cache coherence protocols specified in terms of
Extended FSM
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Case study II: Caches and cache coherence

Cache coherence protocols play an important role in models of
shared memory multiprocessor systems.

Typically, every individual processor has its own private cache
memory, which is used to hold local copies of main memory
blocks;

While reducing the access time, this approach poses the
problem of cache consistency:

one has to ensure that the copies of the same memory block in
the caches of different processors are consistent.
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Automata model

Abstracting from low-level implementation details
Cache coherence protocols are

families of identical finite state machines, with the number of
the machines being a parameter, together with

the means of communication:

Broadcast: if one automaton makes a transition (an action) a,
then it is required that all other automata make a
complementary transition (reaction) ā
Rendevouz: if one automaton makes an action then some
other automaton makes a reaction;

the computation is assumed to be non-deterministic, i.e. at
every step one automaton is chosen to make one of the
available actions.
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MSI Protocol
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Correctness conditions:

No two automata are
simultaneously in the
states S and M.

No two automata are
simultaneously in the
state M

τ(I ,W ) = M τ(I ,R) = S τ(S ,T ) = S τ(M,T ) = M

τ(I ,W ) = I τ(I ,R) = I τ(I ,T ) = I

τ(S ,W ) = I τ(S ,R) = S τ(S ,T ) = S

τ(M,W ) = I τ(M,R) = S τ(M,T ) = M
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MSI global machine
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Verification of parameterized protocols

We would like verify the properties like

If global machine for MSI of the dimension n starts in a global
state with all automata in local states I then during any
possible run

No two automata are simultaneously in the states S and M.
No two automata are simultaneously in the state M

We would like to verify this property for all n.
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Counting abstraction

In protocols the automata are assumed identical ⇒ there is a
lot of symmetry in their behaviour;

Counting abstraction: keep track only of the numbers of
automata in every possible (local) states.

For a broadcast protocol P = 〈Q,Σ, Σ̄, τ〉, configuration of P
is a function c : Q → N;
Intuitively, c(s) indicates how many processes are in the local
state s
If Q = {s1, . . . , sn} then with any global state (of any
dimension) one may associate configuration, presented as
vector (c(s1, . . . , c(sn)) ∈ Nn.
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Parameterized configurations

A parameterized configuration ≡ a set of configurations;

It can be specified by

a vector with indeterminate values (variables): (1, x , 5, y)
represents a set of configurations {(1, x , 5, y) | x , y ∈ N};
a vector with arithmetical terms: (1, x + 1, 5, y + 3) represents
a set of configurations {(1, x + 1, 5, y + 3) | x , y ∈ N};
more generally, by a set of arithmetical constraints:
(c(s1) = 3) ∧ (c(s3) > 1)
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Extended FSM

Counting abstraction maps global machines for protocols into a
variant of Extended FSM (Cheng, Krishnakumar 1997)

States of EFSM are non-negative integer vectors;

Transitions are guarded linear transformations;

Guards are linear constraints.

Alexei Lisitsa Finite Countermodel Finding for Infinite State and Parametrized Verification



Extended FSM

Counting abstraction maps global machines for protocols into a
variant of Extended FSM (Cheng, Krishnakumar 1997)

States of EFSM are non-negative integer vectors;

Transitions are guarded linear transformations;

Guards are linear constraints.

Alexei Lisitsa Finite Countermodel Finding for Infinite State and Parametrized Verification



Case study: EFSM for MSI

From the paper by E.A. Emerson and V. Kahlon (2003):

(PrWr1) invalid ≥ 1 → invalid ′ = invalid + modified + shared -
1, modified ′ = 1, shared ′ = 0.

(PrWr2) shared ≥ 1 → invalid ′ = invalid + modified + shared -
1, modified ′ = 1, shared ′ = 0.

(PrRd) invalid ≥ 1 → invalid ′ = invalid - 1, modified ′ = 0,
shared ′ = 1 + shared + modified .

The parameterized initial configuration is expressed as: invalid
≥ 1, modified = 0, shared = 0

The potentially unsafe states:

invalid ≥ 0, modified ≥ 1, shared ≥ 1
invalid ≥ 0, modified ≥ 2, shared ≥ 0
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Encoding of EFSM for MSI

Let Φ be a conjunction of the following formulae

R(i(x), y , z)→ R(plus(plus(x , y), z), i(0), 0)

R(x , y , i(z))→ R(plus(plus(x , y), z), i(0), 0)

R(i(x), y , z)→ R(x , 0, i(plus(y , z)))

R(i(x), 0, 0)

plus(0, y) = y

plus(i(x), y) = i(plus(x , y))

Proposition 1 ∃n ≥ 1((n, 0, 0)→∗ (k , l ,m)) ⇒ Φ ` R(ik , i l , im)

Alexei Lisitsa Finite Countermodel Finding for Infinite State and Parametrized Verification



Verification of MSI

By Proposition 1 it is sufficient to show that

Φ 6` (∃x∃y∃z(R(x , i(y), i(z)) ∨ R(x , i(i(y)), z))

Now apply finite model finder MACE4

A finite model for
Φ ∧ ¬(∃x∃y∃z(R(x , i(y), i(z)) ∨ R(x , i(i(y)), z)) is found in a
less than 0.01 sec of CPU time.

The protocol is verified.
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Experimental results: cache coherence protocols

Protocol Time

ABP∗ 0.93s

MSI 0.01s

MESI 0.03s

MOESI 0.05s

Firefly 0.03s

Synapse N+1 0.01s

Illinois 0.03s

Berkeley 0.03s

Dragon 0.05s

Futurebus+ 1.14s

Bakery 0.01s

MutEx 0.01s

∗ ABP = Alternating Bit Protocol
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Case study III: Applications to Physical Security

Gold Thief Problem (Kelly, Pearce 2010)
In Gold Thief domain we assume there is thief who may try to
steal some gold from a safe:

The safe is in the room equipped with a light, which may be
toggled between “on” and “off”; and with a security camera
which may detect thief if the light is “on”;

the safe may be open or closed and the gold can be stolen
only if the safe is open;

It is possible for the thief to crack the safe and force it open,
but only if the light is on.

The problem is to show that the gold can not be stolen without
thief being detected.
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Gold Thief

While the problem was introduced as a case for formalizing
reasoning about actions, it has clear security flavor and can be
seen as a very simple and rudimentary security scenario.
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Gold Thief (cont.)

We take the following axioms for basic action theory for this case
from (Kelly, Pearce 2010):

Successor state axioms Dssa:
Stolen(do(a, s)) ≡ a = takeGold ∨ Stolen(s)
SafeOpen(do(a, s)) ≡ a =
crackSafe ∨ SafeOpen(s)
LightOn(do(a, s)) ≡ a = (toggleLight ∧
¬LightOn(s)) ∨ (LightOn(s) ∧ a 6= toggleLight)

Action description axioms Dad :
Poss(a, s) ≡ a = toogleLight ∨ a =
takeGold ∧SafeOpen(s)∨a = crackSafe∧LightOn(s)
Undet(a, s) ≡ Poss(a, s) ∧ a 6=
toggleLight ∧ ¬LightOn(s)

Initial state axiom DS0 :
¬Stolen(s)&¬(SafeOpen(s0)) ∨ LightOn(s0)).
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Gold Thief (cont.)

In order to apply FCM to prove safety we need to
specify/axiomatize the concept of sequence of situations obtained
by undetected actions Dseq:

UndetSeq(s0).

(UndetSeq(y) ∧ Undet(x , y))→ UndetSeq(do(x , y))

Claim (adequacy of encoding)
In the “golden thief” domain if safety does not hold, that is thief
can steal the gold undetected then
Dssa ∪ Dad ∪ Dseq `FO ∃z(UndetSeq(z) ∧ Stolen(z)),
where `FO denotes derivability in first-order logic.
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Gold Thief (Cont.)

Now it should be clear that to show safety it is sufficient to
demonstrate that

Dssa ∪ Dad ∪ Dseq 6`FO ∃z(UndetSeq(z) ∧ Stolen(z)), that is
6`FO Dssa ∪ Dad ∪ Dseq → ∃z(UndetSeq(z) ∧ Stolen(z)).

We propose to show it by automated search for a finite
countermodel, that is a finite model for
Dssa ∪ Dad ∪ Dseq∧ 6 ∃z(UndetSeq(z) ∧ Stolen(z)).

Now we delegate the last problem to an automated finite
model builder program, such as Mace4. Mace4 finds a model
in a fraction of the second. The safety is proven.
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Further work in Physical Security

Formalizing physical security procedures in Logic of Moves
(Meadows, Pavlovic 2010)

Ongoing research (AL): translate above into the situation
calculus and apply FCM
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Beyond FCM: limitations of the method

Can we always apply FCM to establish safety?

No. Here is an example: consider TRS (term rewriting
system):

f (x , y)↔ f (g(x), g(y))
f (a, g(x))→ a
f (g(x), a)→ a

Is it true that f (a, a) 6→∗ a? Yes! But this can not be
established by FCM, for there is no a regular invariant here
separating reachable terms and a!

Challenge: Extend the method to infinite countermodels!
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Conclusion

We presented FCM method for safety verification of infinite
state and parameterized systems

FCM is simple

FCM is at least as powerful as methods based on monotonic
abstraction, RMC, RTMC, tree automata completion
techniques in establishing safety

FCM is efficient in practice (in many cases)
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